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Маштаков Я.В., Ткачев С.С. 

Влияние возмущений на точность стабилизации спутника ДЗЗ 

Предложен алгоритм синтеза углового движения спутника дистанционного 

зондирования Земли (ДЗЗ) для отслеживания маршрутов на поверхности Земли. 

Рассмотрено влияние неучтенных внешних возмущений на точность 

ориентации и стабилизации космического аппарата. Исследована связь между 

отклонением точки визирования и ошибки скорости бега изображения, 

точностью ориентации и стабилизации аппарата, а также кривизной снимаемой 

траектории и возможностями системы управления 
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The angular motion synthesis algorithm for remote sensing satellite is developed. 

Effect of external disturbances on attitude accuracy is considered. Relations between 

attitude accuracy and image quality and trajectory curvature and control capabilities 

are investigated. 
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Introduction 

Remote sensing satellites could be irreplaceable when hard to access areas are 

studied Usually, huge spacecrafts (SCs), such as «Resurs-P» [1] or «WorldView» [2] 

are used for remote sensing. They provide high-resolution pictures of Earth, but for 

near real-time monitoring (e.g. ice situation or forest fires monitoring) these satellites 

could be inappropriate due to long time intervals between two successive flybys over 

the region of interest. For this purpose, small satellites (less than hundred kilograms) 

on low Earth orbit (less than 400 km) can be used. Development cost and time 

usually much lower for these satellites. Their capabilities of course are also lower, but 

it is possible to launch simultaneously several satellites that give qualitatively new 

options for remote sensing problems solutions.  

In case of small remote sensing satellite, it is reasonable to fix camera with 

respect to the satellite body otherwise the complexity and development cost could be 

unacceptably high. Because of the limited size, it is impossible to install large high-

resolution and wide-angle cameras on such small satellites, so to increase the 

resolution of obtained images it is necessary to use small narrow-angle cameras that 

can cover much less territory but can provide images with satisfactory resolution. 

Therefore, ability to survey not only simple straight lines on the Earth surface but 

some complex routes might be quite useful. 

It should be noticed that similar problem was discussed in papers of S.A. Butyrin 

and S.E.Somov [4–6], but they used numerical integration of kinematic equations for 

SC attitude quaternion. The main attention there is focused on velocities 

compensation of different image points which is very important in case of wide angle 

cameras. In case of small satellites with narrow angle cameras this problem is not 

crucial. In this paper problem of complex routes surveying is studied. This route is 

considered as three times continuously differentiable curve. Significant part of the 

paper is devoted to the study of disturbance influence on stabilization errors and 

image quality. Here, characteristics of image quality are image velocity w.r.t. camera 

sensing element (if its value is high, obtained image might be blurred) and 

observation point displacement (distance between the desirable point satellite 

“looking” at and the real one). 

1. Problem statement and coordinate systems 

1.1 Problem statement 

In this paper, the problem of tracking the specified route on the Earth surface is 

considered. Following parameters are assumed to be known: 

1) Orbital motion of the satellite, i.e. it’s velocity and position at each moment  

2) SC’s tensor of inertia; 

3) Parameters of the camera installed on the satellite: focal length and required 

image velocity; 
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4) Parameters of the attitude control system: maximum and minimum control 

torque produced by reaction wheels and their maximum angular 

momentum; 

5) Route on the Earth surface that is three times continuously differentiable 

parameterized curve. 

Based on these data it is necessary to construct the angular motion of the satellite 

and suggest an algorithm of attitude control that can provide such motion. Moreover, 

it is required to provide the necessary accuracy of attitude stabilization even in the 

presence of unknown external disturbances (gravitational, magnetic and 

aerodynamical torques).  

1.2 Optical sensor features 

In this work, the CCD line is considered as optical sensor. It imposes some 

constraints on velocity of every image point in the camera focal plane (Fig. 1): it 

must be equal to a certain value and aligned with the normal to CCD line. 

 

Fig. 1. Camera scheme 

It is impossible to make all image points move with the same velocity in the focal 

plane due to already applied (see section 1.1) constraints for the angular velocity. 

Difference between velocities of central image point and the border one can be 

estimated as  

  E .
f

V


   Ω ω r   
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Here r  is vector from observation point to the swath border, ,EΩ ω  are Earth and 

satellite angular velocity respectively, f  is camera focal length,   is distance 

between the camera and observation point. If the swath width is considered to be 20 

km, 600 km  , 6mf  , 3 s10 radω , difference in image velocities will be only 
410 m s . For example, required image velocity for the camera installed on the 

TabletSat-Aurora satellite (produced by SPUTNIX) is 2 s.105 m  Thus, it is possible 

to apply constraint on image point velocity only to the central image point. 

1.3 Coordinate systems 

The following right-handed Cartesian coordinate systems are used (Fig. 2): 

1 2 3aO YY Y  — Inertial Frame (IF): aO  is located in the Earth center, 1aO Y  axis is 

directed to the vernal equinox of J2000 epoch, 3aO Y  is normal to equatorial plane; 

1 2 3aO Z Z Z  — Greenwich Frame (GF): aO  is located in the Earth center, 1aO Z  

locates in the equator plane and directed to the Prime Meridian, 3aO Z  directed to the 

North Pole; 

1 2 3Ox x x  — Body Frame (BF): O  located in the satellite center of mass, axes are its 

principal axes of inertia; 

1 2 3Cy y y  — Camera Frame (CF): С is located in the CCD line center, 1Cy  aligned 

with camera optical axis, 2Cy  is antiparallel to required image velocity; 

1 2 3CX X X  — Reference Frame (RF): С is located in the CCD line center, 1CX  

direction follows the route and constraint for velocity of central image point is 

satisfied (motion equations for these axes will be obtained in the next section). 

 
Fig. 2. Camera and Reference Frames 
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Direction Cosine Matrices describe transition between these coordinate systems: F 

from RF to CF, B from IF to RF, N from GF to IF, D from IF to BF, G from CF to 

BF (the last matrix is constant, i.e. camera is rigidly fixed in the satellite).  

2. SC angular motion synthesis 

To construct reference angular motion (i.e.  tB  that provide surveying of the 

route and satisfy constraints imposed by CCD line camera) Poisson’s equations for 

DCM are used 

 

 

1 1

2 2

3 3

= ,

= , ,=

T T

T T

T T



   
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   
   
   



e e

B e e

e

ω

e

B B

B
 (1) 

where ω  is RF angular velocity, ie  are RF basis vectors. Further on dot denotes time 

derivative, and designation for skew-symmetric matrix of cross product is introduced: 

for any  1 2 3

T
y y yy   

  
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3 1

2 1

0

: 0 .

0
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

 
 

 
 
  

y   

So cross product of two vectors can be represented as matrix multiplication 

   .


a b a b   

It was mentioned in Sec. 1.1 that route on the Earth surface can be described as 

three times continuously differentiable parameterized curve ( )p pr , where p is the 

curve parameter and pr  is the radius-vector of the point on this curve in GF. To 

construct angular motion of the satellite it is necessary to get this vector in IF: 

 ,p pr Nr   

where N , as was mentioned above, is transition matrix from GF to IF.  

Image velocity constraints can be written as 
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where , spV V  are observation point and SC velocities in IF respectively, ω  is RF 

angular velocity, 
sr  is radius-vector of SC center of mass, || || || ||p s  ρ r rN  is 

distance between the satellite and the observation point. From these equations it is 

possible to get some of angular velocity components 
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Equation for 1  can be obtained from (1). RF basis vectors are defined as follows 

(the case of ideal control is considered, so CF and RF are aligned): 
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  (4) 

Satellite size is much smaller than the distance between it and the observation point, 

so the vector between observation point and center of the optical sensor is considered 

equal to the one between observation point and satellite center of mass. Derivatives 

of the basis vectors can be described as follows: 
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 (5)  

After substitution these equations in (1), one can get expressions for the angular 

velocity components: 
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Comparing them with (3) and keeping in mind that  E 
 NN Ω  the following 

expressions can be obtained: 
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From the second expression differential equation for trajectory parameter p  is 

obtained 

 
 
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
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Nτ e
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Solution of this equation and expressions (4) and (5) are completely define angular 

motion (i.e. angular velocity and attitude) of RF. 

3. Control synthesis, disturbances effect 

3.1 PD-controller 

To implement obtained angular motion control algorithm based on Lyapunov 

function, also known as propotional derivative controller (PD-controller), is used [7–

9]. The purpose of control is to match RF and CF. 

Dynamical and kinematic equations of satellite angular motion are 

  

,

,

,

abs ext ct
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abs
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 (6) 

where absK Jω  is angular momentum of SC, absω  is its angular velocity (in BF), 

D  is DCM from IF to BF, rel abs ref

T  FG ωGω ω , ref refGω Ω , refΩ  is reference 

angular velocity (in RF), ,ext ctrlM M  are external and control torques respectively. 

Due to G  is being constant and that for every DCM L  and vector y  there is an 

equation 

     ,T

 
Ly L y L   

the last expression from (6) can be rewritten as 

   , .re

T

l 
  A AA GFGω   

Lyapunov-candidate function is chosen in the form 
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    
1

3 tr , 0.
2

, a aотн отнV k k   Aω Jω   

This function is non-negative and equal to zero only when RF and CF are coincide. 

Considering (6), time derivative of Lyapunov-candidate function V  can be written as 

follows: 

     , ,
1

tr ,
2

rel rel rel abs rel ref ra ef ak kV


    ω Jω A ω J Jω ω ω AωA J S   

where  32 323 121 13 21 ,a a a a a a   S  
ija  – elements of DCM A . If the following 

expression is fulfilled 

   , 0,abs rel ref ref relak k k 
     Jω ω ω ω ωJ A JA S   

then 0V  . Control torque in this case is 

   .ctrl ext abs abs rel ref aref relk k
       M M ω Jω J ω Aω JAω S ω  (7) 

Equations of relative angular motion of SC can be described as follows: 

 
 

0,

.

arel rel

rel

k k


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ω

A ω

J S

A

ω
  (8) 

It is easy to see that there is no whole trajectories that belong to the set 

 , : 0rel V A ω  except 3 3, 0rel A ωE . Hence, according to Barbashin-Krasovsky 

theorem[10], 3 3, 0rel A ωE  is asymptotically stable. 

3.2 Disturbances effect 

There is extM  in expression for control torque (7) that is the sum of all external 

torques. Unfortunately, the model of external torques usually not sufficiently precise 

or too difficult to calculate it on-board, so the system (8) must be rewritten as 

follows:  

 
 

,

,

rel rel dist

rel

ak k



  
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J S

Aω

Mω ω

A
 

where distM  represents sum of all the torques that do not taken into account during 

control synthesis. In this work aerodynamical and gravitational torques, as well as SC 

tensor of inertia inaccuracy, are considered as disturbances.  
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where atm  is atmosphere density, 
xC  is drag coefficient, S  is SC cross-sectional 

area, 
vve  is SC velocity, 

a ar e  is radius-vector between SC center of mass and center 

of pressure, E  is Earth gravitational parameter, J  is tensor of inertia inaccuracy. It 

is necessary to mention that suggested technique is universal and can be applied to 

any other disturbance.  

To further analysis, it is convenient to rewrite equations of relative motion in 

dimensionless form: 
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where dash denotes derivative with respect to q , 0M  is maximum control torque that 

can be implemented by attitude control system,  0
,

max ij
i j

J J , i  is characteristic 

value of i-th disturbance torque. 

Here the case of 1i   is considered, so the difference between CF and RF is 

small. Hence, it is possible to linearize SC relative motion equations in neighborhood 

of undisturbed stability point 0, 0ei r l  ω . DCM A can be described by Euler 

angles, which are the sequence of rotation angles 2 3 1, ,    around the second, the 

third and the first axis respectively: 
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Linearization in the neighborhood of 1 2 3 0      gives expressions for А  and S  
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Angular velocity is described as follows: 

 , .   Ω α Ω α   

Hence, linearized system of equations is 

 2 2 3 31 12 .aK K        α α α M MI M  

Since solution of this system can be described as a sum of partial solutions, it is 

suitable to consider the general system  

 2 ,aK K    Iα α α M   

where   is small parameter. Since 1  , it is possible to use Poincare method [11] 

of expanding solution into a series in power of    

 0 1 2 2 ...    α α α α   

So, the system of relative motion equations is 
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Since I  is diagonal, this system can be rewritten in the following form (equations for 

the second and greater order of   are omitted here) 
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I I I
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α
, equations of relative motion can 

be written as follows: 
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Solutions for these systems are depend on the relations between i  and i . 

1. Case 2 2 0i i    

In this case solutions of the zero order system are 

      0 2 2exp exp , .i i i i i i i iA q B q               

After substitution it in 0( , )if q α , one can obtain  0 ) (, )(i if q q f qα . 

Parameters variation method is used to obtain solutions of the first order 

system. Differential equations for these parameters are 

 

     
    

    

exp exp

e

0,

( ).

xp

exp

i i i i

i i i i

i i i i i

A B

A

B f

q q

q

q q

   

   

   

   

 

 

  

  

   

  

Their solutions are 

 

  

  

( )exp

2

( ex

,

)
,

p

2

i i i

i

i i i

i

A

B

f q q

f q q

 



 



 


 

 

 

  

and solutions of first order system are 

   
0

1 ( )
exp (h )s ( )i

i i i

i

q
f p

dpq p q p  


      

2. Case 2 2 0i i     

Solution of the zero order system is 

    0 2 2exp ( ) Bexcos sin(p .),i i i i i iA q q q q               
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System of differential equations for ,A B  can be written as follows:  

 
   

   

cos( ) sin( ) 0,

sin( ) cos( ) (

exp exp

exp e p ).x

i i i i

i i i i i i i

A q q B q q

A fq q B q q q

   

     

 



  

   
  

Final expressions for ,A B   are 

 

 

 

sin( ),
(

cos( ),

)exp

( )exp

i i

i

i

i i

i

i

f q q

f q q

A q

B q











  

 

  

and the solution of the first order system is 

     
0

1 1
(( )exp sin ) .i i i

q

i

i

f pp p q pq d  


     

3. Case 2 2 0i i     

Solution of zero order system is  

    0 exp exp .i i iqA Bq q        

System of equations for ,A B   is 

 
   

     

exp exp

e

0

xp 1 exp ( ),

,i i

i i i i i

A q B q q

A q q B q f q

 

   

 

 

   

   
  

and its solution is 

 
 

 

( )exp ,

( )exp .

i i

i i

B f q q

A qf q q





 

  
  

First order system solution in this case can be described as follows: 

    1

0

( )exp .i i

q

if p q dp pq p      

Usually it is impossible to integrate obtained expressions, but for remote sensing 

missions maximum angles deviations and stabilization errors are only important. 

3.3 Estimation of maximum deviations 

Expressions for 0 1,i i   are used to estimate maximum attitude deviation and 

stabilization error of the satellite. Since 0i   is asymptotic stable in undisturbed 

motion, it is reasonable to consider 0 0i  . 

1. Case 2 2 0i i    
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As was shown in previous section, in this case equations for Euler angles can 

be described as follows (with an accuracy up to 2 ) 

   
0

exp ( )
( )

( ) sh( ) .i
i i i

i

q

q p q p
f p

t dp   


      

Angular velocity (in dimensionless form) is 

 

    

  

0

0

ex( ) sh( )

( ) ch

p ( )

exp ( )( ) .

i
i i i i i

i

q

i i i

q

f p dp

f p d

q p q p

pq p q p


   



  

    

 

 











  

Hence, introducing notation  max ( )max i
t

ff q , estimations for attitude 

deviations and stabilization errors are 

 

  

 

       

2 2

0

0

0

2

2 2

( ) sh( )
1

exp ( )

1
exp

exp sh exp c

( )

1
2

sh

h

1

i

i

i max i i

i

max i i max

i i i

max
i i i i i i i

i

i i
ma

q

x

i i i i

q f dp

f x dx f

f
x x x

q p q p

x

dx

f

x





  


 
  

     


 

   







 

 




 


  



    





 
  






  

These expressions can be rewritten in dimension form: 

 

 
2

2

82 2

,

2
,

2

( )
2

8

8

a ii

max
i

a

k

k
a iimax

k J

i

ii a a ii

M
t

k

k k JkM

J
t

k k k Jk




 

 








 
 



 


 


  

  

where 0max max iifM M I  is maximum value of the disturbance torque. 

2. Case 2 2 0i i    

Equations for Euler angles and relative angular velocity are 
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    

    

    

0

0

0

( )exp sin ,

( )e

( ) ( )

( ) xp sin

( )exp cos .

( )

( )

i i i i

i

i
i i i i

i

i i i

q

q

q

f p p q dp

f p p q dp

f p p q d

q q p

q q p

q p p


  




  


  

 





 







 









 

To estimate these integrals the following expression is used: 

 

         

     

(k 1)

00

0
2

0

exp sin 1 exp sin

1
exp sin exp cth .

2 1

k

k

k

k

ax x dx ax x dx

ax x dx
a

ka
a










 







    


 
 

 
  

 



  

Hence, estimation for maximum attitude and stabilization errors are 

 

    

     22 2 2

0

0

exp si( ) ( )

ct

n

exp hsin ,i i

i i

max
i i i

i

max max

i i i

q
f

p q dq q p p

f f
x dpx

  

 

  


  



 












  

 

       

     

    

0

2 2

2 2

2

22 2

( ) exp sin

exp exp sin

exp cth1 ,

i i

i i

i i

i i

q

i i

i i i

i

i i

max

i

max

x

i i

q f p p q q p

f

f

x dx
  

 



   

 

 
   



 



 








 
   

 
 

 


     









  

where 

 
2 2

arccos 0 .
2

,i

i i

 
 

 

 
   
  

  

They can be rewritten in dimension form as follows: 
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2

2 2

( ) ,
2 8

( ) exp arc

1
cth

2

ctcos 1
8 8

.
2 2 8

h

i max

aa ii

max
i

ii a a iia ii a ii

k

k

k k k

k JJ k

t M
k J k

M
t

J k k k J k





  

 







 
 
 



   
  



 
 
 

 
         

  

3. Case 2 2 0i i     

Equations for Euler angles and relative angular velocity are  

 

   

     

0

0

( )exp ,

( )exp 1 .

i i i

i i

q

i i

q

f p q p dp

f p q p dp

q p

q p

  

  

  

  









  

They can be estimated as follows: 

 

 

  

2

0

0

exp ,

x .e p 1 2

max
i max i

i

max
i max i i

i

f
f xdx

f
f x dx

x

x
e

 


 






  

   





  

These expressions can be rewritten in dimension form: 

 

,
2

.4

max
i

a

max
i

M

k

M

ek









  

Hence, expressions that connect attitude and stabilization errors with maximum 

disturbance torque and control parameters are obtained. 

3.4 Effect of attitude and stabilization errors on trajectory surveying 

As was mentioned above, due to disturbance torques it is impossible to align CF 

and RF precisely. Moreover, there is a deviation between the real motion of satellite 

center of mass and the one considered in control loop. All these factors may affect the 

image obtained by SC: because of attitude and center of mass position errors the 

satellite surveys not the trajectory but its vicinity, and due to the stabilization and 

center of mass velocity error obtained image might be blurred.  

If only small deviations between CF and RF are considered, transition matrix from 

IF to CF can be written as follows:  
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 3

0

0 ,

0

 

 

 

  
  

     
  



 

K FB E B   

where , ,    are Euler angles (rotation sequence 2-3-1). Therefore, expressions that 

connect basis vectors of CF and RF are  

 

 

 

 

0 0 0 0

3

0 0 0 0

2 1 3

1 1 2 1 1

2 2

3 3

2

0 0 0 0

3 1 2 3

1 0 0 ,

0 1 0 ,

0 0 1 .

TT

TT

TT

  

  

  

     

     

     

e K e e e e

e K e e e e

e K e e e e

e

e

e

  (9) 

Where ie  are basis vectors of CF, and 0

ie  are basis vectors of RF. 

To determine real observation point 
pr , i.e. the point satellite “looking” at, and its 

deviation pr  from the desirable one, it is necessary to find intersection of camera 

optical axis and Earth surface. To do so, the following quadratic equation must be 

solved (Earth considered as a spheroid): 

 
     

 

22 2

1 1

22 2

32

2

32 1,
1

r e lr e l r e l

a a a 










   (10) 

where ,i ir e  are sr  and 1e  components in IF, l  – unknown value, a  – spheroid major 

semi-axis, 1 300   – polar compression. pr  then can be determine as follows: 

 1 .p s l r r e   

There are three different cases: 

1) Equation (10) has no roots, thus there is no intersection between camera optical 

axis and Earth surface. 

2) Equation has only one root, so the observation point is located on horizon. 

3) Equation has two roots. In this case, the smallest root gives us the observation 

point. 

Since   is small, it is possible to omit all terms with 2 , so (10) can be rewritten as 

follows: 

      
22 2 2

1 3 3 31 2 2 , 2 2 0s srl e a rl        r e r ,  

and its roots are 
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   

 
   

 

2 2 2

1,2 1 1

222 2

3 1 3 3 1

3 3 1 2 2 2

1

2

, ,

2 , 2 ,
2 ,

,
.

s s s

s s s

s

s s

l a

r a r
e

a

e
r



 
  
 
 

    

   


 

r e r e r

r r e r e
r e

r e r

  (11) 

One can see, that term with   is two orders smaller than the one without it, so it is 

reasonable to omit it and consider Earth as a sphere rather than spheroid. In this case 

first two terms of (11) with consideration of 0

s s s r rr  can be rewritten as follows 

(here only zero and first order of s

sr
r

 and ie  are considered): 

 

      

          

        

    

   
   

2 2
0 2

1 1 1 1

2 2
2

1 1 1 1

1

2

1

0 0 0 0

0 0 0 0 0 0 0

0 0 0

1 1

0 0

0

0 0 0

0 0

2 2
2

1

1

1 1

0 0 1

0 0

,

,

1 2 ,
,

, + +

, , ,

, , , ,

, , ,
, ,

s s s s s s

s s s s s

s s s s s

s s

s s s

s s

a

a

l l
a

l

l     

 

  


 
  

    

    



  

  

 
 

  
  


 




  





r e r r e e r r

r e r e r

r e r

r e r

r
r

r e

r e e r

r e e r r

r e e r
e r e

    

    

      

1

2 2
2

1

2 2
0 0 2

1 1

0

0 0 0

0 0 0 0

,

,

,

,

, .

s s

s s

s s s

a

l a



 



    

e r

r e r

r e r

r

r e
  

Thus, expression for observation point is 

 0 0 00 0 0 0 0

1 1 1 1 1 1 .p s s s p sl l l l l l               r r e r e e e r e er r  

Using notation 

 
21 1

1 2 3

3 2 3, , , , , ,( , , , ), ,

,, , ),(

T

s s s s s s

T T T T T

s s

r r r V V V            

   





x

ψ ω r V
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  

    
 

  

    
 

 

1 3,1 1 3,2 1 3,3 6 1 3,7 9 1 3,10 12

0 0 0 0

1 30 0 0 0 0

1 3,1 1 1 3 3
2 2

0 0 2

1

0 0 0 0

1 20 0 0 0 0 0

1 3,2 2 1 1 2
2 2

0 0 0 2

1

1 3,3 6 3 4

10 0

1 3,7 9 3 3 1 1

, , ,

, ,
, ,

, ,
, ,

,

,

,

,

s s

s

s s

s s

s

s s

T

R

l

R

l

       





  

  

   

 

 







 



 

 

M M M M MM

r e r e
M r e e

r e r e
M e r e

M 0

e
M e

e e

r e r

e

e e

r e r

E
     

    

0 0 0 0 0 0

1 1 1

2 2
0 0 2

1

1 3,10 12 3 3

,
,

,

,

T T

s s

s s R

  

 





r r e

M

r

0

r e

e e

  

equation for observation point and its displacement can be written in compact form 

 0 , .p p p p    r r r M xr   

Velocity of observation point relative to satellite is 

        E .T T T T T T

p srel p p s p ss          V V V B ω r r Ω r V B ω rF G rF G   

Matrix T T T
B F G  is the transition matrix between BF and IF. Considering only small 

deviations between RF and CF, matrix F  can be written as follows: 
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and angular velocity of the satellite is 0 ω ω ω . Thus, observation point relative 

velocity is 
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Expressions for image velocity then can be written as 
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Here equations (2) were taken into account: 
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Considering (9) and using notation 
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expressions for deviations in image velocity are represented by 
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Obtained expressions are quite complicated for further analysis. However, if we 

omit center of mass location and velocity errors (these errors does not depend on 

attitude control system) and consider the case, when observation point is located not 

too far from nadir point, i.e.  

 
2 2 2

sin
1

sin

s

s

r

a r
  

where   is the angle between local vertical and radius-vector that connects satellite 

and observation point, expressions for observation point displacement and image 

velocity errors can be simplified: 



21 

 

  

 

0

0

3

0

2

,

,

.

p

E

E

fV f

ff

V

V

  

   

  



  

 



r ψ

ψ ω Ω ω ψ

ψ ω Ω ω

  

These expressions might be useful on the preliminary design stage to 

appropriately choose parameters of the attitude determination and control system. 

3.5 Trajectory curvature effect 

Attitude control system can produce only limited torque, which implies constraints 

on the satellite's maximum angular velocity. If stabilized motion is considered, 

expression for control torque can be written as follows: (7) 

 .ctrl ext ref ref ref    M M ω Jω Jω   

Consider the case when external torque and derivative of reference angular velocity 

are much smaller than ref refω Jω , one can obtain an estimation for maximum 

angular velocity that attitude control system could provide: 

 0

,

,
max

max

ii jj
i j

M

J J



   

where 0M  is maximum control torque. Constraints on trajectory curvature can be 

found using expressions for SC reference angular velocity 
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First expression can be rewritten in the following form: 
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Introducing new variable   – angle between 1e  and Nτ , – and taking into account 

expressions for trajectory curvature 
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equation for 
1  can be represented by 
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Small value of sin  corresponds to surveying near horizon, that is practically useless 

due to the significant geometric distortion. Therefore, it is reasonable to bound 

minimum value of sin . For example, if sin 3 2  , one can get an upper bound 

for trajectory curvature: 

 
 2

3 3 .
8

max Ef
V






 
   (12) 

If this inequality is satisfied, it is possible to shoot trajectory. 

4. Simulation 

To verify obtained estimations and algorithms the following mission was 

simulated (chosen parameters are based on TabletSat-Aurora satellite developed by 

SPUTNIX, which was launched on 19 June 2014): 

1. SC tensor of inertia 

0.7 0.002 0.005

0.002 0.579 0.009

0.005 0.009 0.5

 
 


 
 
 

J . 

2. Image velocity 50mm sV    

3. Camera focal length is 6 m. 

4. SC moves on circular orbit with 7000 km radius. 

5. Maximum control torque is 310 mN  , and minimum is 710 mN  . 

Curvature radius in accordance with (12) is 

 100 .0 kmcurvr    

In this simulation Earth was considered as Krasovsky spheroid, so every point can 

be determined by its latitude   and longitude  : 
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Transition matrix N  from GF to IF is 

 

   

   
0 0

0 0

cos sin 0

sin cos 0

0 0 1

E E

E E

t t

t t

 

 

   
 

   
 










N   

Thus, if longitude and latitude are three times continuously differentiable functions, 

 p pr  also will be three times continuously differentiable. In general splines, Bezier 

curves or B-splines[12] can be used to construct functions with necessary function, 

but in this simulation   and   are described as follows: 

 
 

 
,  

sin

2 sin
kp

lp

kp


     ,  (13) 

where , ,l k  are some constants, p  – trajectory parameters. Trajectory in case when 

0.05,   1000,l   100k   is represented in Fig. 3.  

 

Fig. 3. Trajectory and ground trace 

BF and CF are considered the same, i.e 3G E . Also, at start time BF aligned 

with RF and relative angular velocity is equal to zero. Gravitational and aerodynamic 

torques are considered as disturbances. Simulations results are presented in Fig. 4-10.  
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Fig. 4. Attitude error, Euler angles 

 

 Fig. 5. Observation point displacement 

 

 
Fig. 6. Relative angular velocity 

 
Fig. 7. Image velocity error 

 
Fig. 8. Control torque 

 
Fig. 9. Disturbance torque 

As shown on Fig. 7, even in the presence of disturbances, image velocity error is 

small. Observation point displacement is less than 15 m, which is agreed with 
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accuracy of Russian remote sensing satellite Resurs-P. Small picks on Fig. 6 and 7 

occurred because the necessary control torque is too small to produce it. 

 
Fig. 10. Trajectory curvature 

 
 Fig. 11. Trajectory with greater 

curvature 

As shown on Fig. 10, trajectory curvature is less than 610 , which is satisfy an 

estimation obtained earlier. Consider trajectory with greater curvature. To do so, let l 

be equal to 3000 in (13). Simulation results are presented in Fig. 12-16 

 

 
Fig. 12. Control torque 

 

 
Fig. 13. Trajectory curvature 

 
Fig. 14. Image velocity error 

 
Fig. 15. Observation point displacement 
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From these figures one can see that curvature may greatly affect observation point 

displacement and image velocity error, as control system can not provide the 

necessary control torque, as shown on Fig. 12. 

Conclusion 

An algorithm of angular motion synthesis for remote sensing satellite is suggested. 

This algorithm provides shooting of complex routes on the Erath surface. Problem of 

realization of such angular motion in the presence of disturbances is considered. 

Effect of these disturbances on attitude and stabilization errors is studied. Expressions 

that link these errors with observation point displacement and image velocity errors 

are obtained. Trajectory curvature limitations are suggested. 
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