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Bopoovée B.C., I'pywmuun A.C., Hosukos B.TI.

HccaenoBanue (l)aSOBbIX Mmepexoa0oB B HE3UMN € MMOMOIIIBIO MOIEJIN CPEAHETO
aToMa

B nmanHOl paboTte, UCTIONB3YST MOJENb CpPEeIHEro aToMa (KBa3WM30HHAS MOJEITh
BEIIECTBa), OCHOBAaHHYIO Ha Mojenu Xaptpu-Poka-CidTepa, mokazaHo, YTO KpUBas
XOJIOJTHOTO CXKATHS Ie3Usl UMEET JIBa JIOKAIBHBIX MUHAMYyMa B JIaBIICHUU — TICPBHIM
MHUHUMYM HAXOAUTCSA IIPU OTHOCHTENBHO Manbix IotHocTax 0.3 r/cm®, m BTOpOI
npu 6ojee BHICOKUX MIOTHOCTAX 6.2 r/cm®. IlepBblii MUHUMYM CBS3aH C OOBIYHBIM
($a30BBIM TEPEXOJIOM JKHJIKOCTh-TIAp B 00JIACTH KPUTUYECKOW TOUYKH, MMApaMETPhI
KOTOPOTO XOPOIIIO M3y4YeHBI, B TOM YHCJI€ — SKCIICPUMEHTAILHO. BTOpOl MHHUMYM
JaBJICHUS, OOYCIIOBJICHHBIH OOMEHOM BAJICHTHBIMH SJICKTpOHAMU Mexay S u d
MOJAYPOBHAMH, TPUBOJUT KO BTOPOMY, IUIa3MEHHOMY, (a30BOMYy IEpEXoay ¢
KPUTHYECKON Toukoi mpu Temneparype 6400 K, miortnoctu 5.3 r/em® u napnennn
mopsinka 61000 atm. Ilpm »TOoM, BTOpOH (ha30BEIN mMepexos, HaOI0IaeMbId B
BBIPOXKJICHHOW HEHWIEaTbHOM IUTa3Me, CONPOBOXKAACTCS PE3KUM H3MEHEHHUEM
cpennero 3apsaga co 3Hadenus 1.5 npu mmotnoctu 3 r/em® no 3Hauenus 3.5 mpu
mwotHoctH 6.5 r/em?.

Kniouegvle cnosa: ypaBHeHne cocTosiHusi, $Ga3oBblid mepexo], Pu3nka Iia3Msl,
MOJIEJIb CPEHET0 aToMa, 11e3Uii, HeuieaabHas 1a3Ma

PaGota BeimonHeHa npu noanepxkke rpanta PH® No 14-11-00699. Pacuértsl
npoBoawirck Ha COBM K-100 (MIIM um. M.B. Kenaeima PAH).

Vladimir Sergeevich Vorob’ev, Alexander Sergeevich Grushin, Vladimir
Grigor’evich Novikov

Investigation of the phase transitions in cesium by the average atom model

Using the average atom method (quasizone model) we show that the cesium
cold curve has two minimums — the first one is at relatively small densities 0.3 g/cm?
and the second one is at higher densities 6.2 g/cm?®. The first one leads to the usual
critical point characterizing the liquid-vapor phase transition, which is confirmed by
experimental data. The reason for the second minimum is connected with s-d
transition of valence electron. This leads to a second phase transition with the critical
point at temperature 6400 K, density 5.3 g/cm® and pressure approximately 61000
atm. This phase transition takes place in the cesium plasma state. In this degenerate
nonideal plasma with mean ion charge 1.5 and density 3 g/cm® jumps in a highly
ionized state with mean charge of 3.5 and density 6.5 g/cm?.

Key words: equation of state, phase transition, physics of plasma, average atom
model, cesium, nonideal plasma
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Introduction

Properties of matter at ultra-high pressures have always been a significant
interest in a number of areas of physics and related sciences — astrophysics,
geophysics, and some applied sciences [1]. In recent years, these studies have
purchased especially large interest. This is due to the development of new
experimental methods [2—6], using powerful current generators and lasers with ultra-
short pulse duration. With their help it is possible to create record high pressures,
which could not be obtained by conventional explosive installations or easy gas guns.
The densities achieved in these experiments, several times higher than the density
under normal conditions, leading to substantial changes in the nuclear, chemical and
electronic structure of the materials. This may also cause previously unknown phase
transformations. For describing of the physical processes and phenomena in these
conditions, it is necessary to have mathematical models of the state of matter.
Particularly, the chemical [4-6] and quantum-statistical models [7—9] are used.

In the first case, a dense matter is treated as an equilibrium mixture of
molecules, atoms, molecular and atomic ions, and electrons. The equilibrium
composition of the mixture follows from the minimum of free energy. However,
consistently take into account the deformation of the electron shells of the particles,
the ejection of discrete levels in the continuous spectrum, caused by high pressure,
formation of new phase transitions in the framework of chemical models is difficult.
Here are preferred quantum-statistical cell models with boundary conditions,
borrowed from the theory of solids. One such model is the average atom (AA) model
[7-10]. This is a spherical cell model, combined with a self-consistent approximation
of the density functional and Bloch boundary conditions. Its peculiarity lies in the
fact that, along with bound electrons localized within the atomic cell (Wigner-Seitz),
and the states of the continuous spectrum, which are applicable to semi-classical
description, there are more electrons in the allowed energy bands (quasi-zones). A
detailed account of these states is necessary for the correct description of pressure
ionization — the destruction of the outer electron shells and squeezing the discrete
levels in the continuum due to the interaction of atoms in condensed matter.
Therefore the average atom (AA) model is sometimes called the quasizone model
(QZM).

In this paper, the average atom model is used to calculate the thermodynamic
functions of cesium both at relatively low and high pressure. The choice of this
element is not accidental. This is one of the few metals for which the parameters of
the liquid-vapor phase transition were measured [11; 12]. In addition, a number of
studies [13; 14] have suggested that an increase in temperature and pressure leads to
one more phase transition. To verify this prediction by quantum-statistical calculation
of the thermodynamic functions of the cesium is one of the goals of this work.

First, a brief description of the main provisions of the average atom model (a
more detailed description can be found in [8]) is given. Then we present the results of
calculations. They confirmed the presence of first order phase transition at densities
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lower than 1 g/cm?. This phase transition on the parameters corresponds to the usual
liquid-gas transition, measured in references [11; 12]. This was confirmed by the use
of AA model for describing phase transitions in real substance. At higher
temperatures and densities was found the second phase transition, in which the
cesium atom is significantly ionized. Its cause is s-d transition of valence electron.
This fact as noted earlier led to the anomalies in the cesium melting curve [15-18].
The values of the characteristic parameters of degeneration and interaction are given
along the lines of phase equilibrium. The peculiarities of the band structure of the
levels of the cesium atom are discussed, leading to the appearance of a minimum on
the cold-pressure curve and, consequently, the appearance of the plasma phase
transition.

The fundamentals of the quasizone model

In the quasizone model one assumes that each atomic nucleus with charge Z is
placed at the center of the Wigner-Seitz sphere defined by the matter density p and an
atomic weight of the substance A. All Z electrons of the atom are also in the cell,
making it electrically neutral. We assume in the quasizone model the most general
boundary conditions for the wave function — the conditions resulting from
translational symmetry, i.e. Bloch-type conditions. At the boundary of the spherical

cell r = ro for the wave function ¥ (F) we have |W¥ (F)[=|W¥, (-F)[ or

V(1) =e" @ _(F), where y is the set of quantum numbers for one-electron state, k
7K

IS an arbitrary real constant vector (quasi-momentum) and CDyE(F) IS a periodic

function.
For the function ¥ () using continuity of its derivative at | |= r, we obtain

—ikr - ikr -
e (r)=e""Y (-r)
ki O —~ ii; O -
e M W (1) =—e*" —W¥ (—r
Here the effective reciprocal cell in the E-space Is also spherical in this

approximation, and its volume is equal to 4(27:)3/37rr03. It follows that the quantity
|k |r,, henceforth denoted by k, can take values in the interval

9 13
Oskskoz(érj ~2.418.

Assuming the self-consistent potential spherically symmetric, we get in
nonrelativistic approximation the electron wave function as a superposition of partial
solutions of Schrédinger equation
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¥ ()= S A (IR (Y, (8.0)

[£>m r

with y=nfm, radial wave functions R_(r), spherical harmonics Y, (% ¢),
energy ¢=g¢,,,(k) and the projection m of the orbital momentum ¢' on the z-axis,

which is directed along the quasi-momentum vector k . Here the numbers n and ¢
determine the energy level to which the band shrinks when the density of matter is

decreased; the factor i is introduced to make the expansion coefficients A, ,.(k)
real. The A, (k) are calculated from the boundary conditions.

In quasizone model when increasing the density of matter instead of bound
levels we get the energy bands. As a result one obtains the smooth dependence of
thermodynamic and optical properties over temperature and density. The correct
description of the spectrum structure allows one to obtain reasonable thermodynamic
characteristics of dense plasma in a wide range of temperature and density.

Results of calculations and discussion

The cold curve and two pressure isotherms T = 1938 and T = 5620 K, calculated
by using QZM approach, are presented in Fig. 1. First of all, note that the cold curve
has two minimums — the first one is at relatively small densities p ~ 0.3 g/cm? and
second is at higher densities p ~ 6.2 g/cm?®. Their causes will be discussed below.
Accordingly, at temperatures of T = 1938 and 6460 K, there are two critical
isotherms. Let us consider each of these isotherms in more details.

10

T=6460 K ——

Density, g/cm 3

Fig. 1. Pressure isotherms for cesium at T = 0 (cold), 1938 K and 6460 K.
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The temperature T = 1938 K is not chosen casually. It corresponds to the usual
measurements [11; 12] of the critical temperature of the liquid-vapor in cesium. This
critical transition region is represented on a larger scale in Fig. 2. The values of the
critical density and pressure along this isotherm are equal to 0.35 g/cm?® and 180 atm
correspondingly. This density is close to experimental one (0.39 g/cm3 [12]). The
pressure is higher than the experimental value (94 atm [12]). It should be noted that
the accuracy of AA model decreases with decreasing density. In particular, the loss of
accuracy in the calculation of the critical pressure due to the fact that the critical
pressure is the small difference between two large terms — thermal and potential
pressure contributions. Despite some uncertainty in the determination of the critical
pressure, the first phase transition parameters calculated by AA model corresponds to
the conventional transition liquid — vapor, which is confirmed by experimental data
[11; 12]. This suggests the possibility of using this method for determining the
parameters of phase transitions even in the border area of its application. As a rule,
with the increase of density the precision of the AA model grows and so does the
reliability of its predictions.

0.04

002 [ B S T W S

- e

0,02 [ e R~ T T=1938K - -

T=18383K - ----

T=0K ——
-0.04 ‘ ‘
0 0.2 0.4 0.6 0.8 1

Density, g/cm 3

Fig. 2. The region of the liquid-gas critical point at the density-pressure plane.
CP and CP; are the experimental [14] and calculated in this work values
of the liquid-gas critical point.

Second critical transition region is represented on a larger scale in Fig. 3.
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Fig. 3. The plasma critical and near critical isotherms at the density-pressure plane.
CP, is the critical point at high temperature and high pressure.

The critical point parameters are T.= 6460 K, p.=5.32 g/cm?® and P.= 6.15 GPa.
In the presence of the set of isotherms with a characteristic van der Waals loop, we
can construct curves of phase equilibrium using, for example, Maxwell equal area
rule or other standard methods. Such curves are presented in Figs. 4, 5. The cesium
phase diagram at the temperature-density plane is shown in Fig. 4.

Cesium phase diagram at low densities and temperatures has been investigated
in a number of works [15-22]. Fig. 4 shows the experimental values of the liquid-gas
binodal [12] and the melting line [18] only. The calculated values of the binodal are
very close to the experimental ones, and they are not shown in this figure. The
Inscription “new phase” on the figure correspond to a new binodal, which is realized
at higher densities and higher temperatures and has the critical parameters p. = 5.32
g/cm?® and T.= 6460 K. The pressure-temperature phase diagram is shown in Fig. 5.
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Fig. 4. Density-temperature cesium phase diagram.
Experimental data: 1 — [14], 2 — [18].

0 1000 2000 3000 4000 5000 6000 7000

Temperature, K

Fig. 5. Pressure-temperature cesium phase diagram. Experimental data:
1 —is the liquid-gas phase curve [14], 2 — [19] and 3 — [18] is the melting curve.
4 is the calculated in this work phase diagram.
The remaining notation is the same as in Figs. 1 — 4.
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We emphasize particularly the cesium melting curve marked in the works [16;
18]. In cesium when pressure becomes more than 40000 atm the normal melting turns
into abnormal. According to [18] it is associated with the transition of the valence
electron from s into d-state. There is reason to believe that similar transition also
occurs in liquid cesium. Below we shall discuss this in more details. Importantly, the
pressure of the new phase (line 4) with decreasing temperature tends to the area in
which the normal melting becomes abnormal.

In order to understand what a new phase is, let us consider in more detail its
properties. The ionization composition and average ion charge along the phase lines
are presented in figures 6 and 7. These figures show that cesium atoms are
significantly ionized on both branches of phase equilibrium line. The average ion
charge is more than 1.5 and less than 3.5 both on the lower and top branches of the
phase curve. lon density is less than 2.4 times the electron density at the critical
temperature. With decreasing temperature, this difference increases. In fact, we have
plasma of ions with charge Z and electrons, in which the phase transition becomes
from a state with a smaller ion charge in a state with greater ion charge. The
parameters of this plasma are such that he electron gas is strongly degenerate at such

conditions. The degenerate parameter is 17=NY°A_, where A, =h/+/2zmT s the

electron thermal wave length. The values of this parameter along the phase line are
shown in Fig. 8 and they are everywhere larger than unity.

12

nx10 22, cms

1000 2000 3000 4000 5000 6000 7000
Temperature, K

Fig. 6. Dependencies of electron and ion densities along the phase equilibrium line.
Ne, Nj are the densities of electrons and ions respectively.
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1000 2000 3000 4000 5000 6000 7000

Temperature, K

Fig. 7. Mean ion charge along the phase line.

20

15

10

0
1000 2000 3000 4000 5000 6000 7000

Temperature, K

Fig. 8. The values of the electron degenerate parameter » along the phase line.

It is of interest to find out what is non-ideality of the considered plasma state.
The system under consideration is characterized by three parameters of interaction:
electron-electron, electron-ion and ion-ion
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Ve =(37°N,) R I2MT  y, =ZeNPIT g, =Z%NP/T

The corresponding values of the interaction parameters along the phase line are
shown in Fig. 9.

100

1000 2000 3000 4000 5000 6000 7000

Temperature, K

Fig. 9. The values of the interaction parameters along the phase line.

According to this picture, the interaction of electrons characterized by the
parameter ., ~1. The interaction of the electron-ion is stronger and appropriate

parameter is y,, ~ 3. The strongest is the interaction between the ions as y,, >10.

So in the domain of the second phase transition we have strongly interacted
plasma with degenerate electrons.

An important feature is the cohesive energy of the atoms. It is defined as
U, =U(0,p)-U,. Here, from the total energy of the cell at zero temperature and

fixed density is subtracted corresponding cell energy at zero temperature and density.
The value of U, is total ionization energy of cesium atom, i.e. the energy required to

remove all electrons from a neutral atom. The cesium cohesive energy has been
calculated by different methods in a number of works [20-22].
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rJa

Fig. 10. Cohesive energy of cesium depends on the cell radius (atomic units).
Calculations: 1 —[21], 2 — [20], 3 — this work, 4 — [19].
The value Eyq is the heat of vaporization.

As it can be seen from Fig. 10, all the curves have a minimum depth close to the
heat of evaporation. However, the position of this minimum depends on the nature of
the repulsion at short distances. In Ref. [22] to account for the interaction of the
valence electron with the ionic core used Kratzer potential, providing the softest
repulsion. In Ref. [21] the repulsion ensured the Madelung energy of point ions and
the exchange energy of a homogeneous electron gas E_,. =—0.458/r,. In this paper,

exc

the concept of point ion is not used, which effectively led to a stronger repulsion. In
contrast to [20-22] on the repulsive branch of our energy curve is visible feature with
the inflection point, the presence of which ensures the coexistence of a second
minimum for cold-pressure curve (see Fig. 1). The band structure of levels depending
on the density at zero temperature is shown in Fig. 11.

In order to determine the cause of the second minimum in the cold curve and
thus the appearance of the second critical point, consider the band structure of most
of the low-lying cesium atom levels. According to our model, atomic levels are
turned into bands with increase of the density.
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Fig. 11. Bands structure of 6s and 5d levels of cesium atom in dependence on the
density. The solid curve is the Fermi level (u), dashed curves are the edges
of 5d zone, dash-dotted curves are the edges of 6s zone.
Dash-double-dot curve is the cold pressure in arbitrary units.

The figure 11 shows the two zones arising from discrete levels 6s and 5d, the
edges of which are indicated by dash-dotted lines and dashed lines, respectively. It is
seen that at densities below ~6 g/cm?® electrons occupy the bottom of zone 6s
(corresponding energies lie below the Fermi level ux (solid line)). However, at
densities greater than 6 g/cm?®, the lower part of the 5d band becomes filled. The
density at which this transition occurs corresponds to the minimum pressure on the
curve of the cold pressure, which graph in arbitrary units is shown in Fig. 11 (dash-
double-dotted line). So the reason for the second minimum is connected with s-d
transition of valence electron. At density p~2.9 g/cm® the 5d-band-edge sinks
underneath the Fermi level and at this point the second derivative of pressure

d*P/dp® changes the sign. The next change of the d*P/dp? sign occurs at density

p =33 g/cm?®, where 5d-band-edge becomes below than 6s-band-edge. Further, at
the density 6.2 g/cm® the 6s-band-edge becomes above the Fermi level and at this

point the first derivative of the pressure dP/dp changes the sign (see Fig. 11). There
Is a correlation with the findings about the features of the melting curve, discussed in
Ref. [18].

Conclusion

This work underlines that previously detected anomaly in the melting curve of
cesium associated with the transition of valence electron from s into d state, leads to
the appearance of the first kind of phase transition in the region where cesium is in
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the ionized state. lonization of the atoms is due to the overlap of electron energy
bands formed blurry energy levels (pressure ionization). The accuracy of the results is
confirmed by the fact that AA model provides acceptable accuracy in describing the
conventional liquid-vapor transition in cesium. Critical parameters of the transition,
calculated by this method are suitable in accordance with the measured values.
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