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Иванов Д.С., Овчинников М.Ю., Пеньков В.И., Ролдугин Д.С., Доронин 

Д.М., Овчинников А.В. 

Использование магнитных катушек и магнитометра для обеспечения трехосной 

ориентации спутника 

Рассматривается спутник, оснащенный магнитной системой ориентации в 

составе трех взаимно перпендикулярных магнитных катушек и 

трехкомпонентного магнитометра. Спутник стабилизируется в орбитальной 

системе координат в неустойчивом в гравитационном поле положении 

равновесия. Рассматриваются два подхода к реализации управления. Показана 

возможность обеспечения трехосной ориентации спутника с использованием 

минимального состава аппаратных средств. Исследуется влияние ошибок в 

знании моментов инерции аппарата и возмущающих моментов на точность 

ориентации. 

Ключевые слова: магнитная система ориентации, магнитометр, трехосная 

ориентация, фильтр Калмана 

Danil Ivanov, Mikhail Ovchinnikov, Vladimir Penkov, Dmitry Roldugin, Dmitry 

Doronin, Andrey Ovchinnikov  

Three-axis satellite stabilization using only magnetorquers and magnetometer 

Attitude motion of a satellite equipped with magnetic control system is 

considered. System comprises of three mutually orthogonal magnetorquers and one 

three-axis magnetometer. Satellite is stabilized in orbital reference frame in 

equilibrium position unstable in gravitational field. Two control strategies are 

presented. Three-axis attitude is shown to be achievable. Accuracy in presence of 

disturbing torques and inertia moments uncertainty is assessed. 

Key words: magnetic attitude control system, three-axis magnetometer, three-

axis attitude, Kalman filter 
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Introduction 

Magnetic control systems are widely used for satellite attitude stabilization. The 

main intrinsic problem with magnetic control is underactuation. Control torque 

direction is always restricted to the plane perpendicular to the local magnetic field 

vector. Magnetic three-axis control is discussed in this paper following results 

obtained in [1,2]. These previous works support the possibility of such a control and 

provide recipes for proper control parameters adjustment. This paper focuses on 

numerical simulation of satellite attitude under soft assumptions relevant to real 

orbital motion. The most important feature relates to the attitude determination 

problem. This process is modelled also. Furthermore attitude sensors are restricted to 

a three-axis magnetometer. It is impossible to reconstruct three-axis attitude using 

one vector measurement. However geomagnetic induction vector rotation allows 

Kalman filter implementation. Vector motion is included in filter mathematical model 

for the system and sensor readings. The similar system with magnetic torquers and 

magnetometer is considered in [3] for achieving three-axis attitude stabilization, but 

control algorithm is based on SDRE (state-dependant Riccati equation) technique. 

The problem of attitude determination with magnetometer measurements is well 

studied. Psiaki et.al. were among the first who proposed application of the extended 

Kalman filter for this problem [4]. Besides quaternion vector part and angular 

velocity vector authors estimate disturbing torque acting on gravitationally stabilized 

satellite. The -paper considers influence of models parameters on the estimation 

accuracy. Self-initializing filter guaranteeing convergence with any initial state vector 

estimate is proposed in [5,6]. Special modification of the algorithm is developed in 

[7] for a fast-rotating satellite. Interesting two-step Kalman filter is applied for 

attitude motion determination in [8]. Magnetic field derivative is determined first. It 

is then used for state vector estimation. Orbital motion may be estimated along with 

angular [9,10]. This requires significant computational effort and may not be 

applicable for microsatellites on-board computers. Present paper focuses on the 

application of the extended Kalman filter with minimal state vector for satellite 

stabilized by magnetic torquers only. Approach proposed by the authors in [11] is 

used for Kalman filter tuning. 

Control system under consideration is therefore fully magnetic: three 

magnetorquers and one magnetometer. This control system is by far the cheapest one. 

It is also among the most reliable, small and lightweight. The drawbacks are the 

worst accuracy and even underactuation. It is shown that control parameters and 

Kalman filter tuning allows accuracy of few degrees for the gravitationally unstable 

attitude in orbital reference frame. Inertia tensor uncertainty, unaccounted disturbance 

and magnetometer bias influence is assessed also. 

1. Problem statement 

Rigid spacecraft angular motion is considered. The satellite is equipped with 

three mutually orthogonal magnetorquers and three-axis magnetometer. 
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Magnetorquers are capable to produce any restricted dipole moment. Disturbing 

torques include gravitational and unaccounted ones. The latter is represented by 

constant and/or arbitrary Gaussian value. Inertia tensor knowledge is also erroneous. 

Satellite and its orbit parameters are as follows: 

-  circular orbit, altitude 1000 km, inclination 82.5°, Earth radius 6371 km; 

-  principal moments of inertia 5750 kgm2, 2450 kgm2, 4000 kgm2; 

-  unaccounted disturbing torque value is ±5·10-4 N∙m; 

-  magnetometer parameters: sensing range for each channel ±60000 nT, maximum 

absolute error is 100 nT; 

-  maximum dipole moment for each magnetorquer is 250 Аm2. 

Following reference frames are used:  

OX0Y0Z0  is orbital reference frame located at the satellite center of mass. OX0 is 

directed along the satellite radius-vector, OY0 is directed towards the orbital motion 

and lies in orbital plane, OZ0 completes the frame to be right-handed; 

OXYZ is bound frame described by principal axes of inertia. 

Satellite attitude is represented using Euler angles , ,   (rotation sequence 1-

3-2). Direction cosines matrix A  for transition from OX0Y0Z0 frame to OXYZ is 

cos cos cos sin cos sin sin cos sin sin sin cos

sin cos cos cos sin

sin cos sin sin cos cos sin sin sin sin cos cos

           

    

           

  
  
 
   

A .  (1.1) 

Satellite motion is modelled using Euler dynamical equations and kinematic 

relations based on Euler angles , ,  , direction cosines matrix A  elements ija  (both 

used for analytical study) and quaternion  0,q q  (used for numerical simulation). 

Satellite state vector comprises of angular velocity components and relevant 

positional parameters. Angular velocity may represent either absolute motion (ω  and 

its components 1 2 3, ,   ) or relative motion with respect to orbital reference frame 

(Ω  and 1 2 3, ,   ). Absolute and relative velocities are related by 

orb ω Ω Aω           (1.2) 

where orbω  is orbital reference frame angular velocity. Circular orbit leads to 

 00, 0,orb ω . 

Dynamical Euler equations for the satellite with arbitrary inertia tensor 

diag( , , )x A B CJ  are 

  Jω ω Jω M           (1.3) 

for absolute angular velocity and  

rel   JΩ Ω JΩ M M          (1.4) 

where 

 rel orb orb orb orb     M JWAω Ω JAω Aω J Ω Aω , 
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3 2

3 1

2 1

0

0

0

 

 

 

 
  
 
  

W          (1.5) 

for relative angular velocity. 

The torque may contain control part ctrlM  and disturbing part. The latter is 

divided into gravitational and unaccounted one so ctrl gr dist  M M M M .  

Dynamical equations are supplemented with kinematic relations. Quaternion 

kinematics is 

0 0

1

2q q

   
   

   

q q
С ,          (1.6) 

3 2 1

3 1 2

2 1 3

1 2 3

0

0

0

0

  

  

  

  

 
 
 
 
 
   

С . 

Direction cosines matrix is used for control construction, in this case 

A WA .           (1.7) 

Euler angles are used for analytical analysis, in this case 

 

 

1 3

3 1

2 1 3

1
cos sin ,

cos

cos sin ,

tg cos sin

  


  

   

  

 

   

        (1.8) 

for relative angular velocity. 

Control torque is 

ctrl  M m B  

where m is dipole control moment of the satellite, B  is geomagnetic induction 

vector in bound frame. Gravitational torque is 

   2

0 1 13gr  M Ae J Ae         (1.9) 

where  1 1, 0, 0
T

e  is satellite radius-vector in orbital frame. 

Unaccounted disturbing torque is modelled using three different approaches. 

Gaussian distribution allows modelling arbitrary disturbances with negligible effect 

on satellite motion since control torque is few orders greater. Constant disturbance on 

the level of 10-4 N∙m augmented with Gaussian one represents more important 

disturbance. Constant torque may arise due to aerodynamic or solar pressure torques 

acting on satellite with vast solar panels. The worst case is constant torque of  5∙10-

4 N∙m value.  

Inclined dipole model is mainly used to represent geomagnetic field. Common 

IGRF/WMM models have two drawbacks. They cannot be used for the altitude 
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considered and require extensive computation. Inclined dipole allows quite accurate 

field representation paired with simple computational procedures. Geomagnetic 

induction vector is  

  2

5
3e r

r


 B k kr r   

where k  is Earth dipole vector and r  is satellite radius-vector. Even more simple 

model is used for analytical analysis. Considering direct dipole geomagnetic 

induction vector may be written in orbital frame in compact form 

0

2sin sin

cos sin

cos

orb

u i

B u i

i

 
 

  
 
 

B          (1.10) 

where 0 3

eB
r


 , 6 3 2 17.812 10e km kg s A       , r  is satellite radius vector  magnitude. 

Geomagnetic induction measurements are modelled as 

,orb



  

 

B

B

B AB B η

B η
 (1.11) 

where B are magnetometer readings, orbB  is modelled induction (inclined field is 

used in Kalman filter), B  is magnetometer bias, Bη  and Bη  are Gaussian 

magnetometer error and bias rate of change, each with zero mean ( M 0Bη  and 

M 0 Bη ). 

2. Attitude reconstruction using magnetometer 

Kalman filter basics 

Kalman filter is a recursive algorithm that uses dynamical system model and 

sensor readings for actual motion reconstruction. For discrete readings at time steps 

kt  state vector assumption  ˆ ˆ
k ktx x  is calculated. Discrete Kalman filter utilizes 

correction of previous estimate [12,13]. Consider step 1k  along with corresponding 

state vector estimation 1
ˆ

k



x  and covariance matrix 1kP

 . The goal is to find state 

vector estimate for the next step ˆ
k

x . First a priory estimate ˆ
k

x  is formed using 

mathematical model integration. It is corrected using measurements vector kz  to 

obtain a posteriori estimate ˆ k

x . Covariance error matrix kP  is constructed from the 

previous step information using Riccati equation. Measurements allow updated 

covariance matrix kP . 

Kalman filter is designed for linear mathematical models and allows the best 

mean-square state vector estimate. It may be adapted for any non-linear mathematical 

models of both dynamical system and measurements, 

     , ,t t t x f x w  (2.1) 
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     ,t t t z h x v  (2.2) 

where  tw  is Gaussian dynamical model error with covariance matrix Q,  tv  is 

Gaussian measurements error with covariance matrix R . 

Kalman filter requires right-side functions  ,tf x  and  ,th x  decomposition 

into Taylor series in the vicinity of current state vector. Only linear terms are used in 

the filter. Dynamical system and measurements model matrices are  

   

ˆ ˆ, ,

, ,
, .

k k k k

k k

t t t t

t t

    

 
 

 
x x x x

f x h x
F H

x x
 (2.3) 

Discrete extended Kalman filter uses non-linear dynamical and measurements 

models for a priory estimate prediction and a posteriori correction [14]. 

Prediction phase is 

 
1

1

T

1

ˆ ˆ , ,

.

k

k

t

k k

t

k k k k k

t dt



 



 





 

x f x

P Ф P Ф Q

 (2.4) 

Correction phase is 

 

  
 

1
T T ,

ˆ ˆ ˆ , ,

k k k k k k k

k k k k k k

k k k k

t


 

  

 

 

  

 

K P H H P H R

x x K z h x

P E K H P

 (2.5) 

where kФ  is transition matrix between states for steps 1k  and k , E  is identity 

matrix, K  is weighing matrix. 

We now construct Kalman filter to obtain satellite attitude in the orbital 

reference frame. State vector is 

 x qω . 

Dynamical model of controlled satellite angular motion is 
2

0 1 13     Jω m B Ae JAe ω Jω, (2.6) 

so Gaussian disturbance is not taken into account. Quaternion kinematics (1.6) is 

used. 

Equations linearization 

Dynamical equations and kinematics should be linearized in the vicinity of 

current state vector. Rewrite equations (1.6)-(2.6) as 

     
d

t t t
dt
 x F x  (2.7) 

where  tx  is small state vector increment,  tF  is matrix of equations of motion 

linearized in the vicinity of current state. State vector  tx  can be divided into the 

estimated part  ˆ tx  and misalignment  tx , 
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     ˆt t t x x x . (2.8) 

In order to linearize kinematic relations (1.6) note that quaternion sum in (2.8) 

actually means sum of rotations which is represented by quaternion multiplication  
ˆ   . 

Taking derivative and remembering (1.6) leads to 

1ˆ ˆ ˆ
2

        С . 

Introduce kinematics for the quaternion estimate ̂ , 

1 1ˆˆ ˆ ˆ
2 2

       C C . 

The latter expression may be multiplied with inverse quaternion 1ˆ  . Note that 
1ˆ ˆ e    where e  has null vector part. Taking into account ˆ  C C C we get 

1 1 1

2 2 2
e e         C C C  

or  

2
0 0 0T T T

 
   



      
        

       

W Ω W Ω W Ω

Ω Ω Ω
. 

Omitting second order small terms and assuming unit scalar part for  1  q  we 

get linearized kinematic relations 

0

1
,

2

0.q

  



 



q W q Ω
 (2.9) 

Expression (2.9) is further rewritten as 

 
0 0

1 1

2 2
A       ωq W q W q ω Aω  

where 
0AωW is a skew symmetric matrix of vector 0Aω  analogous to (1.5). 

Taking into account constant orbital angular velocity we get 

     0 0
ˆ Aω A q A q ω . 

Using relation between small rotation matrix A  and quaternion 

  2    qA q E W  rewrite the latter expression as 

 
0ˆ0 ( )2  A q ωAω W q. 

Omitting difference between   0A q ω  and   0
ˆA q ω  finally leads to the 

linearized kinematics 

1

2
    q W q ω. (2.10) 

Linearization of dynamical equations (2.6) involves gravitational torque (1.9) 

in the form  
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   2

0 1 13gr    M A e JA e . 

We use small rotation in the vicinity of current estimate given with the direction 

cosines matrix, 

       ˆ ˆ      A A A A . 

This leads to 

 
1 1 1 1

2

03gr   e e Je eM W JW W W λ . 

Finally linearized gravitational torque is 
2

06gr gr  M F λ  (2.11) 

where 

      

      

      

2 2

2 2

2 2

y z x y z x

gr x y z x z y

x z y z x y

e e B C e e B C e e B C

e e C A e e C A e e C A

e e A B e e A B e e A B

     
 
      
 
      

F , 

, ,x y ze e e  are unit radius-vector components in bound frame.  

Gyroscopic torque is 

gir  M ω Jω. 

Linearization leads to 

gir gir M F ω (2.12) 

where  

   
   
   

3 2

3 1

2 1

0

0

0

gir

B C B C

C A C A

A B A B

 

 

 

  
 

   
   

F , 

Control torque M  is the last one to be linearized in the vicinity of current 

estimate ̂ , 

 ˆ ˆ
orb      M M M m A B . 

Note that rotation matrix of two quaternions multiplication is a multiplication of two 

rotation matrices, 

     ˆ ˆ     A A A . (2.13) 

Suppose that   has unit scalar part,  1  q . This allows approximate 

expression 

( ) 2    qA E W  (2.14) 

and control torque 

      ˆ ˆ
ˆ ˆ2 2 2 2orb            q q mB B

M m W A B m W B m W q W W q  (2.15) 
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where mW  and 
B̂

W  are skew symmetric matrices of control dipole moment and 

geomagnetic induction vector estimates.  

Linearized equations are finally 

     
d

t t t
dt
 x F x  

where dynamics matrix F  is introduced using (2.10), (2.11), (2.12) and (2.15) as 

 1 2 1
ˆ0

1

2

6 2gr gir 

 
 

  
  m B

W E
F

J F W W J F

. (2.16) 

Magnetometer measurements model is 

orb  Bz AB η  (2.17) 

where Bη  is Gaussian geomagnetic induction vector error with zero mean. Linearized 

measurements model (2.17) is 

 ˆˆ
orb    z z z A B . 

Using (2.13) and (2.14) we get 

ˆ
ˆ2 2  q B

z W B W q. 

and measurements matrix is 

ˆ2
B

H W . (2.18) 

Kalman filter simulation 

Kalman filter performance is modelled with control taken into account. Kalman 

filter initialization requires covariance matrices of measurements errors R , model 

errors Q and initial matrix of state vector estimation errors 0P . 

Magnetometer error is initially limited to meas =100 nT. This error should be 

increased to take into account possible geomagnetic field model error that is about 

200 nT [15] for IGRF model. This leads to the error meas =300 nT. Measurements 

error covariance matrix is 

 2 2 2, ,meas meas measdiag   R . 

Unaccounted disturbing torque is supposed to be of the order of 
45 10D N m   . Consider it to have Gaussian distribution with zero mean. The 

satellite dynamics is subjected to the error  
1I D t
    (2.19) 

where I  is the smallest inertia moment, t  is measurements sampling interval. 

Kinematic relations are subject to the error 
1 2 / 2q I D t    . 

Assuming no correlation between these errors we introduce mathematical model 

errors covariance matrix 
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 2 2 2 2 2 2, , , , ,q q qdiag        Q . (2.20) 

Initial state vector estimate is arbitrary. Suppose it to be zeroed (unit quaternion 

for no rotation and no angular velocity). Consider maximum angle error 
0

/ 2q   

and knowingly big velocity error 
0

10   deg/s. Initial error matrix is 

 
0 0 0 0 0 0

2 2 2 2 2 2

0 , , , , ,q q q        P . 

Chosen set of actuators and sensors involves important addition into control 

cycle. Magnetorquers induce magnetic field thus spoiling magnetometer readings. 

Two possible solutions exist. Control system may be calibrated prior to flight in order 

to assess magnetorquers influence on the magnetometer readings. Strong dipole 

moment from magnetorquers nevertheless induces errors. Another way is widely 

used: control and attitude determination receive their own steps in control cycle. 

Magnetorquers are turned off for the duration of magnetometer sampling, and its 

filtered reading are used for control input until next attitude determination phase. 

Suppose control phase to last 5 seconds while attitude determination requires only 

one second with magnetometer sampling rate 1 Hz. Initial angular velocity is 1 deg/s. 

Fig. 2.1 introduces satellite stabilization which is necessary for proper Kalman filter 

convergence. Stabilization time is about 5 hours. Fig. 2.2 and 2.3 bring estimation 

errors of angles and angular velocity. Kalman filter convergence time is about 4 

hours. Satellite stabilization allowed attitude determination accuracy to exceed 

0.2  ° and 47 10    deg/s.  

 
Fig. 2.1. Satellite stabilization  
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Fig. 2.2. Euler angles estimation errors 

 

 
Fig. 2.3. Angular velocity estimation error 
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Consider now disturbing torque with constant value 45 10D N m   . This 

change is unaccounted in the Kalman filter. Fig. 2.4 and 2.5 represent attitude 

determination error for Euler angles and angular velocity. Filter convergence time 

increases to 7 hours. Terminal determination accuracy remains almost unchanged 

however with errors close to 0.3  ° and 48 10    deg/s. 

 
Fig. 2.4. Euler angles errors, constant disturbance 

 
Fig. 2.5. Angular velocity errors, constant disturbance 
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Inertia moments of the satellite are known with maximum error of ±10% which 

may hinder Kalman filter performance. Following simulation is run with nominal 

inertia tensor  diag 5750, 2450, 4000J  kg∙m2. It is used in Kalman filter for the 

dynamical model of the satellite. However the simulation itself uses adjusted inertia 

tensor. At least one principal moment differs by 10% from nominal. This error has 

negligible impact on Kalman filter performance, both convergence time and 

accuracy. Even singular inertia tensor  diag 5836, 2468, 3600J  kg∙m2 (one 

principal moment is greater than the sum of two other) leads to error of only 

0.3  °, 48 10    deg/s. Introducing constant disturbing torque of the value  
45 10D    N∙m with singular inertia tensor leads to error 0.4  ° and 

31 10    deg/s and convergence time 8 hours. 

Magnetometer bias has almost no effect on Kalman filter performance. Bias is 

not taken into account in Kalman filter measurements model (2.17). Consider full 

model (1.11) with bias B=100 nT for each channel. Fig 2.6 and 2.7 introduce 

angles and angular velocity estimations errors. These are around 0.4  ° and 
48 10    deg/s. These errors are not Gaussian and have periodic nature. 

Convergence time is about 6 hours. 

 
Fig. 2.6. Angles estimation errors with magnetometer bias 



15 

 

 
Fig. 2.7. Angular velocity estimation error with magnetometer bias 

3. Attitude control using magnetorquers and magnetometer readings 

Sliding mode three-axis control 

Underactuation issue has one important trait for magnetorquers. Geomagnetic 

induction vector rotates in the inertial space. No  inaccessible direction in inertial or 

bound reference frames exists. Any inaccessible at a moment direction will become 

available, but after some time. This feature allows accessible path to be constructed. 

This path requires perpendicular to geomagnetic induction vector torque at each 

control step. Finally satellite acquires necessary attitude with necessary angular 

velocity. Sliding control [16] may be used to obtain the above mentioned path.  

Sliding control is constructed in two steps [2]. First sliding manifold 

 , , 0t x Ω A  is constructed in phase space. Satellite motion should satisfy this 

relation: the satellite moves on the manifold. The manifold is constructed in such a 

way that necessary attitude is asymptotically stable. Sliding manifold for satellite 

angular motion is  

 , , 0t  x Ω Λ ΩS S         (3.1) 

where  23 32 31 13 12 21

T
a a a a a a   S  ( 0S  corresponds to diagonal direction 

cosines matrix) ,Λ  is a positive-defined variable matrix and   is a positive value (it 

could be a positive-defined matrix also and even state vector function). Satellite 

motion on the sliding manifold is represented by 0x . In this case attitude 0Ω , 

A E is asymptotically stable [2].  



16 

 

Control should ensure motion on the sliding manifold according to the equation 
1x J Px            (3.2) 

where P  a is positive-defined matrix. Inertia tensor is introduced to simplify further 

reasoning. Taking into account (3.1) we rewrite (3.2) as 

      JΩ JΩ JΛS JΛS PΩ PΛS . 

Scalar   characterizes damping part in control. Matrix Λ  characterizes positional 

control part. Matrix P  represents the time-response of sliding manifold acquiring. S  

is found using (1.7). Taking into account dynamical equations (1.4) we obtain 

   rel            m B JΩ Ω JΩ M M ΛJS Λ JS PS PΩ . (3.3) 

Expression (3.3) governs magnetorquers dipole moment. Altering values of   

and Λ  should allow the latter relation for each time and satellite attitude and velocity. 

The main problem is to find matrix Λ  and its derivative. Iterative approach is 

considered below. 

Matrix Λ  derivative is written as 

   1k k

t

 




Λ Λ
Λ  

where t  is control implementation step. Suppose we know satellite attitude, angular 

velocity and geomagnetic induction vector for 1k   step and previous matrix  kΛ . 

Our purpose is to find  1k Λ . Rewrite (3.3) as 

 1k   a Λ b m d          (3.4) 

where 

    rel t            a JΩ Ω JΩ M M Λ JS PS PΩ ΛJS , 

b JS,  t d B 

Here all indices except in  1k Λ  are omitted. Set reference frame with basis 

vectors 

1 
d

e
d

, 3






d b
e

d b
, 2 3 1 e e e . 

Scalar product of (3.4) and d is 

  1k  Λ b d ad. 

Taking into account  1,0,0
T

dd  and  1 2, ,0
T

b bb  we get 

   11 1 12 2 11 1k b k b a     .       (3.5) 

Matrix  1k Λ  construction is performed in a few steps. First   11 1 0k    should 

be chosen. For example,    11 111k k   . This allows using (3.5) to find 

 12 1k   and  21 1k  , 

      12 21 1 11 1 21 1 1k k a k b b        . 

 22 1k   should satisfy 
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     2

11 22 121 1 1 0k k k       .       (3.6) 

For example  
 
 

2

12
22 0

11

1
1

1

k
k

k

 
   

 
, 0  is some constant value. It characterizes 

overall positional control part. However if  22 k  satisfies (3.6) previous step value 

may be used. Finally    33 331k k   . Matrix  1k Λ  is then transformed to the 

bound frame. Expression (3.4) is used to find control torque and dipole moment. First 

step values may be set as     01k k  Λ Λ E. 

This reasoning cannot be used in the vicinity of necessary attitude since 1b  and 

2b  are close to zero. To mitigate this problem element  12 1k   is constructed 

according to 

 
 1 11 1

12

2 2

1
1

a k b
k

b b

 
  


 

where 2b  is small positive constant. This artificial error leads to slight discrepancy 

between control torque direction and possible plane perpendicular to the geomagnetic 

induction vector. Control torque is projected on this plane to construct dipole 

moment. 

Iterative approach allows good results for small satellites [2]. Fig. 3.1 presents 

simulation results with parameters 4

0 10  , 2 10b  , 0.07  , 5P E, maximum 

control dipole moment is 2500 A∙m2, control iteration step 1t   s. These parameters 

are derived from results obtained in [2].  

 
Fig. 3.1. Sliding control simulation 
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Magnetorquers incapable of 2500 A∙m2 dipole cannot provide necessary attitude. 

Furthermore initial angular velocity is  0.001,0.001,0.001Ω  s-1 since faster 

rotation cannot be mitigated with sliding control.  These drawbacks make sliding 

control unacceptable for three-axis magnetic attitude of big satellite.  

PD-controller based control 

Consider control torque based on the PD-controller [1] 

ak k   m B ω B S. (3.7) 

Control parameters have decisive influence on the algorithm performance. They 

are adjusted manually in the vicinity of optimal ones obtained using Floquet theory 

[17]. Equations of motion (1.4)-(1.8) are linearized in the vicinity of necessary 

attitude, 

 

   

 

   

2
2 21 0
2 3 1 1 2 2 1 3 32

0

2
2 20

1 2 1 3 2 3 2 22

0

2
2 22 0

1 2 1 1 3 2 2 3 32

0

2
2 20
1 3 2 3 1 2 1 12

0

3

2 ,

2 4 ,

a

a

d B
k B B B B B B

du A

B B C
k B B B B B B

A A

d B
k B B B B B B

du B

B C A
k B B B B B B

B B

d B
k

du









   




   



          


          


           


         


   

 

2
2 20

1 3 1 2 3 2 1 2 32

0

2
2 20

2 3 1 2 1 32

0

2 3 1

2 3 ,

, , .

a

B B B B B B
C

B A B
k B B B B B B

C C

d d d

du du du



   


  

         


       

    

(3.8) 

Control parameter k  is substituted with 0k k   . This allows both parameters 

to have the same physical dimension. iB  are geomagnetic induction vector 

components in orbital reference frame, i  are dimensionless relative angular velocity 

components, equations (3.8) utilize derivative with respect to the argument of 

latitude. Direct dipole model is used for geomagnetic field representations since this 

allows the equations (3.8) to be 2 -periodic. Floquet theory can therefore be used to 

analyze (3.8). Fig. 3.2 represents characteristic multipliers in the vicinity of stability 

area of (3.8). 
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Fig. 3.2. Stability area 

 

Results depicted on Fig. 3.2 are valid for dynamical model with a number of 

restrictions (linearized equations of motion, direct dipole model, unlimited dipole 

moment of magnetorquers). Control parameters can be found from Fig 3.2 only 

approximately. Manual adjustment is necessary. For the satellite considered good 

control parameters are 
7

2

0

4 10 N m
k

T




 
 , 7

2
1.5 10a

N m
k

T


  . Both control parameters 

are about twice as optimal ones from Fig. 3.2. Fig 3.3. bring numerical simulation 

result with these parameters but with accurate attitude information. Gravitational and 

Gaussian unaccounted disturbances are taken into account. 
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Fig. 3.3. Three-axis attitude, Gaussian disturbance 

 

Attitude accuracy is better than 0.1°. Kalman filter simulation leads to 

significant accuracy decay. Worsened attitude estimation accuracy is not the only 

reason. Control and measurement phases rotation further hampers estimation 

accuracy since results valid for estimation phase are used for a number of control 

phases. Finally, control is completely unavailable during measurements phase. Fig 

3.4 brings simulation result for Gaussian disturbance. Attitude determination phase 

takes 1 second, control is implemented for 5 seconds. 

 
Fig. 3.4. Three-axis attitude, Kalman filter, Gaussian disturbance 
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Accuracy is about 1.5°. Fig. 3.5 brings the same result for combined constant 

and Gaussian disturbance. 

 

 
Fig. 3.5. Three-axis attitude, Kalman filter, constant and Gaussian disturbance 

 

Accuracy is about 4°. Finally Fig. 3.6 represents simulation results with 

maximum constant disturbance. 

 
Fig. 3.6. Three-axis attitude, Kalman filter, constant disturbance 
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Attitude accuracy falls to 15°. Transient time is about 6 hours in all cases.  

Inertia tensor inaccurate knowledge may lead to significant errors in attitude. 

Almost singular inertia tensor may lead to accuracy of 80°. Gaussian inertia moments 

with means set as nominal ones and with 10% difference for at least one inertia 

moment normally worsen accuracy only slightly. However some inertia tensors may 

lead to unacceptable accuracy. For example inertia tensor 

 diag 5836, 2468, 3600J  kg∙m2 allows accuracy of 60°. The same goes to inertia 

tensor  diag 6325, 2491, 4122J  kg∙m2 if constant and Gaussian disturbances are 

taken into account. Inertia tensor error itself is not the main source of problems. PD-

controller based control is very sensitive to control parameters. So parameters 

adjusted for some inertia tensor may turn inappropriate for even slightly different 

one. Fig. 3.7 represent simulation results for inertia  diag 5440, 2241, 3600J  

kg∙m2 with Gaussian disturbance. 

 
Fig. 3.7. Three-axis attitude, Kalman filter, Gaussian disturbance, inertia tensor error 

Accuracy falls to 2.5°. Fig 3.8 presents the same result for constant and 

Gaussian disturbance. 
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Fig. 3.8. Three-axis attitude, Kalman filter, constant and Gaussian disturbance,  

inertia tensor error 

 

Accuracy is about 10° for “real” inertia tensor  diag 6325, 2351, 4035J  

kg∙m2. Maximum constant disturbing torque can easily make the satellite 

uncontrollable. In most cases however even inertia tensor uncertainty does not 

severely hampers control algorithm performance. 

Conclusion 

Fully magnetic control system consisting of magnetorquers and magnetometer is 

shown to be capable of providing three axis orbital attitude. Accuracy is 1.5-15 

degrees depending on disturbing torques acting on the satellite. Accuracy worsens as 

disturbing torque constant component rises. Inertia tensor uncertainty of 10% level 

generally leads to accuracy degradation by a factor of 1.5 however uncontrollable 

motion may occur. Constant disturbing torque due to aerodynamic or solar radiation 

pressure necessitates inertia tensor and/or control parameters in-flight adjustment. 
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