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1. Statement of problem.

The radial components of the wave functions of the D-dimensional isotropic
. . . 2,2, . .. —
oscillator (whose potential is Vp(r) = 22) in the position space 7 € RP, 1 := |7]

are given by

U,,1(r) = Const(n, b, A\, D) rle=Ar?/2 Z(I+D/2—1)()\T,2) 7

n

where ZSf‘)(a;) are the Laguerre polynomials which are orthonormal with respect

to the weight function
Wo(x) = 2% ", (1.1)

The wave functions W, ; with quantum numbers n,[ correspond to the energy
levels

D
En’l:)\<2n+l+§) , n=012,...,1=0,1,2,...

The squared modulus of this wave functions describes the position probability
distribution density pn; = |¥,,|*

J. S. Dehesa has posed a problem to obtain the asymptotics of the entropic
moments

)

o
/pgl(fr’)rD_ldr, n — oo,
0

i.e. the entropic moments for the Rydeberg (high energy) states. Thus, we need
to study the asymptotics of the Ly-norm of the Laguerre polynomials

No(D,p) = 70 ([E;Oé)(m)r wa(a:)>p Pdr, p>o0, (1.2)

where
D
oz:l—l—E—l, [=0,12,..., and B=(p—1)(1-D/2). (1.3)

We note that ((1.3]) and (|1.1)) guarantee the convergence of integral (1.2 at zero,
i.e. the condition

D
5+p@:pl—l—§—1>—1,

is always satisfied for physically meanfull parameters (1.3)).
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2. Statements and discussions of the results.

The asymptotic behavior of N, (D, p) as n — oo essentially depends on the
values of the parameters D and p (i.e. «,f and p). In fact different regions
of integration in for different values of the parameters give the dominant
contribution in the magnitude of the integral N,(D,p). Thus we have to use
various asymptotical representation for the Laguerre polynomials for different
scales.

Roughly speaking in the neighborhood of zero (i.e. the left end point of
the interval of orthogonality) the Laguerre polynomials can asymptotically be
presented by means of Bessel functions (taken for expanding scale of the variable).
Then (to the right) oscillatory behavior of the polynomials (in the bulk region of
zeros location) is modeled asymptotically by means of the trigonometric functions
and at the neighborhood of the extreme right zeros asymptotics is given by Airy
functions. Finally, in the neighborhood of the infinity point the polynomials have
growing asymptotics. Moreover, there are regions where these asymptotics match
each other. Namely, asymptotics of the Bessel functions for big arguments match
the trigonometric function, as well as the asymptotics of the Airy functions do the
same. Altogether, there are five asymptotical regimes which can give (depending
on D and p) the dominant contribution in the asymptotics of N,,(D,p) . Three of
them exhibit the growth of N, (D, p) as some degree of n with an exponent which
depends on D and p. We call these regimes Bessel, Airy and cosine (or oscillatory)
regimes.

We define the constants which stay in front of the degree of n in the asymp-
totics of N(D, p) for these regimes. For the Bessel regime we denote

oo

ommﬁmy:2/ﬁmmkwenﬁ. (2.1)
0

2T t\3/§ 3
s e

2 T(B+1—p/2)T(1L—p/2)T(p+1/2)
2 T(B+2—p)T(1+p) |

Definitions for the Bessel and the Airy functions are given below, see (3.5]), (3.10)
and (310

For the Airy regime we denote

can)= [

For the cosine regime we denote

C(B,p) =

(2.3)
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There are also two transition regimes: cosine-Bessel and cosine-Airy. If these
regimes dominate in integral , then the asymptotics of N (D, p) besides the
degree on n have the factor Inn. It is also curious to mention that if these regimes
dominate then the gamma factors in constant C'(3,p) in for the oscillatory
cosine regime explode. For the cosine-Bessel regime it happens for 5+1—p/2 = 0,
and for the cosine-Airy regime it happens for 1 — p/2 = 0.

Now we are going to state the asymptotics results. We split them in three
theorems.

Theorem 1. Let D € (2,00). Denoting

p = D_1" (2.4)
we have for , as n — 0o
C(B.p) (2n)"PP22 (1 + 0(1)), p € (0,p)
2 I'(p+1/2) .
N,.(D,p) = T Tt D) (Inn+0(1)), p=p . (2.5)
| C(a, B,p)ntP~VP277 (1 4 0(1)), p>p

where the constants C, C'g are defined in (W, (u) respectively and dependence
of the parameters a(l, D), B(p, D) on l,p, D is defined in (1.5).

To comment on this result we note that

) D * 1 D D
)=y (1-5) =gy (15 5) =

therefore from (22.3)) we have C(8,p) = oco. Thus, when D > 2 we have that for
p € (0,p*) the region of R, where the Laguerre polynomials exhibit the cosine
asymptotics contributes the dominant part in the integral (1.2]). For p = p* the
transition cosine-Bessel regime determines the asymptotics of N, (D, p*), and for
p > p* the Bessel regime plays the main role.

The next result is

Theorem 2. Let D = 2. We have for , asm — 00

( C(0,p) (20) ) (1+0(1)), pe(0,2)
Inn + O(1)
No(2,p) =< — =2, p=2 : (2.6)
Cola0D) L 50y), pso2

\ n
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A peculiarity of the case of the dimension D = 2 is in the following. We have
from the Theorems [ and [2

lim N(D,p) =N(2,p), pe(0,2)U(200).
D—2+

However, from the Theorem [1| we have

3(lnn + O(1
lim N(D,2) = ( :( )
D=2+ Amin
At the same time the Theorem [2] states:
Inn 4+ O(1
Voz 1O

TN

(2.7)

Indeed, as we shall prove below, the magnitude of the integral N(2,2) is performed
mainly by two regions of R, (with the same order of contribution). The first
one is at the origin (Bessel-cosine regime), and the second one is around the
right-extreme zeros of the Laguerre polynomials (Airy-cosine regime). The first
region gives the contribution in N(2,2) as in (2.7). The second one gives the rest
of the contribution
Inn + O(1)
472n

Thus, for D = 2 and p = 2 we have the competition of two transition regimes,
namely the Bessel-cosine and Airy-cosine regimes.

The concluding result on the asymptotics of N (D, p) (we recall 3 is defined
in (1.3))) is the following

Theorem 3. Let D € [0,2). We have for (1.3), as n — oo and p € (0,2]

C(8,p) (2n)1P2 (1+6(1)), pe (0,2)

(2.8)

N(D,p) = Inn +Q(1) ) (2.9)
m2(4n)1=6 b=
- —243D
D ' = 2 4 D <2
enoting p 13D’ we have forp > 2 and 4/3 < D <
( 1-2p _
CA) (gm0 1.51)) pe2p)
Nu(D,p) =4 (Calp) jos24p) —p-1 o _ > , (210
( > 4473 +CB(04757p) n y P=D
\ CB(OC,B,]?) niﬂil ) pE (ﬁa OO)
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and we conclude the case p > 2 for D < 4/3
_ Calp)

P

Here we see that the oscillatory regime in for p € (0,2) matches the
same regime in and for p < p*. But for p = 2 the Airy-cosine regime
wins vs Bessel-cosine regime and we have only the contribution of in N(D,p).
For p > 2 we get a new phenomena — the role of the oscillatory regime disappears
and for the first time the Airy and Bessel regimes becomes competitive.

N(D,p) (4n) 5O (1 + 6(1)) pE(2,00) . (2.11)

3. Asymptotics of the Laguerre polynomials
In the proofs of the stated theorems we use the asymptotical representation
for the Laguerre polynomials I (x) defined by |7, 9]

o =3 (1) S 31

v=0

with norm

L2 = T(a+ 1) (”ZO‘> | (3.2)

For the distinct scales of the variable & with respect to n the Laguerre polynomials
have different asymptotics.

For the Bessel regime (i.e. when z is small with respect to n there is Hilb
asymptotics (see [9] , eq.(8.22.4))

2 !
e 22 L) () = (”Z—,O‘) (N z)"2J,(2V N z) + e(z,n) | (3.3)
where
af2+2 O( a) 0< < <
x n x
]_ pr— ? n
N=mn 04—2|— : e(x,n) = . (34)

x5/4g(na/2—3/4)7 % <r<C

and the Bessel function is defined by

e —1) 2\ a+2v
LOEDY Ul F(i +>a 1) (5) ' (35)

v=0

For the transition region between Bessel regime and oscillatory regime we
use the asymptotics of the Bessel function [7]

2 am T 1
— .= _ 2 _Z [T 2| -
Jo(2) =1/ — cos <z 5 4> +e @) (z) . |argz| < 7. (3.6)
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The following regimes: oscillatory, growing and Airy are described by the

Plancherel-Rotach asymptotics (see [9]):

for z = (4n + 2 + 2) cos? ¢, sggogg—an_m

/2 L,(f)(x) — (=1)" (rsin 90)_1/2 p—0/2=1/4 pa/2-1/4

(3.7)
x {sin [(n+ %) (sin2¢ — 2¢) + 2] + (nz) Y2 0(1)} ;
for x = (4n + 20+ 2) ch? ¢, e < p < w
e~ /2 Ly(f‘)(x) _ %(_1)11 (7 sh 90)_1/2 pm/2-1/4 pa/2-1/4
(3.8)
xexp [(n+ %) (2p —sh2p)] [1+O0(n1)];
and for x =4n 4+ 2a +2 — 2 (2?”)1/3 t, |t| < Const
e 2L (z) = (1) w127 B3B3 A(E) + O(n2/?)) (3.9)

where A(t) is Airy function (see [9])

- 1/2
a0=5 (3) (L@@ aseErn) . e

the solution of the equation

i + ! ty=20
bounded as ¢ — oo. In (2.2]) we use the following normalization for the Airy

function as -

Alr) = = A ( t/3\/§> . (3.11)
During the last two decades there was a substantional progress in proving global
asymptotical representations for orthogonal polynomials (see papers of Percy Deift
with coauthors|[10], [11], [12], Roderic Wang with coauthors [13], [14] and papers
[3], [2]). In practice it means that the classical asymptotics formulas (like Hilb
and Plancherel-Rotach) hold true in wider domains providing matching of the
asymptotics in the transition zones (for example, see in [I], [3], [IT], [12] for
Hermite polynomials). In our paper we assume that matching of the classical
asymptotics holds true for the Laguerre polynomials as well.



4. Proofs

For all three theorems we use the unified approach. We split in ([1.2)) the
domain of integration R, into nine intervals:

(L (@) w(a)) 2’ dx 0
N.(D,p) = . =n (Z @-)
L2
where
L= (0@ wy e ds, (1)
AY
and
Ay = [OaM/n]a Ay = [M/nal]a Az = [1,(4—5)?1];
Ay =[(4—e)n,dn —n3tf); Ay = [4n — n3+? 4n — Mn3];
(4.2)
Ag = [4n + Mn%,éln + n%w] : Ag = [4n + n%W, ],

for some big M > 0, small ¢ > 0 and # > 0. Then we replace Lﬁf‘) w in (4.1) by

their asymptotics. For j = 1 we use Hilb asymptotics (3.3)-(3.4)); for j = 2 we use
Hilb asymptotics — and Bessel function asymptotics (3.6)); for j = 3,4 we
use oscillatory asymptotics of Plancherel-Rotach ; for j = 5,6,7,8 we use Airy
asymptotics of Plancherel-Rotach ; for 7 = 9 we use growing asymptotics of
Plancherel-Rotach (3.8).

Eventually we estimate the contribution of each integral from {I; }?:1 finding
the dominating terms.

4.1. Proof of Theorem . We have D > 2 and p* = %.

We start with p > p*. For this case in the representation (4.1)) for N, (D, p)

9
by the sum of integrals > I; (see (4.1]), (4.2)) the main contribution is given by
j=1
I,. We have

M/n

I = / (W2 (2) E(2))% o dx =
0



M/n
J

Making the change of the variable ¢ := v/ Nz, we continue

n!

<M> 2 (Nz)™J2(2vV/Nz) + O (wa/2+2na>] p 2P dy

VI
Iy = e N-pa-f-1 [ op2pat2ftly=2pa) J2p| (2t) dt ~
0

(4.3)
Navi
o~ pPamAL [ 20| T2 (2t) dt

0
The last integral converges at zero. Indeed the integrand has there the order of
singularity 2p a+26+1 > —1 due to (3)). The order of singularity of the integrand
at infinity is 26 + 1 — p < —1 due to p > p*. Since the parameter M is arbitrary
in our partition of Ry in (4.2))), we take M — oo and obtain

e.¢]

n Pl ~p Pl / 2029 T, 1P (2t) dt . (4.4)
0
In fact, the contribution in MV, of the remaining integrals I;, j = 2,...,9 for

D > 2, p> p*is less (we will see it latter). Thus (due to (3), (4)) asymptotics

(4.4]) is the same as in (2.5 for p > p*.

Now p = p*. For this case the dominant behavior have two integrals I and
I3. Indeed, we have from (4.3))

Ca MPpotstl MpotB+3
We note, that from we have
P ‘ D p
N S D1 =-=)—=—=_-1. 4.6
p-L = -na-2)-L (1.6

Estimating I we use the asymptotics of the Bessel function (3.6

1
n Py = / J¥*(2V/Nz) 2’ dx + 6, =
M/n

1

[ s { o (v o) o

M/n

2p _
)} 2P dx + 6, .

2=



Using ([4], Lemma 2.1) we continue for n — oo

o7 P28 dy _
n Py = /|cos 0% df / N (14+0(1)) .
M/n

The first integral is

/|cos€|2pd9 = Vil +1/2) :

L(p+1)

Computing the second integral for p = p* (see (4.6))) we obtain

. [(p* +1/2) (Inn + O(1))
n?el ==
P+1/2 C(p*+1) NP/2

2 = (4.7)

The Plancherel-Rotach asymptotics (3.7) for ¢ = arccos /4% can be transformed
to

(i) -

/)/La

2 sin? [—\/m — 2N arccos /15 + 3”} +0 ( m)
/AN ) i

Substituting it in I3 and using (4], Lemma 2.1) we have for I3, as n — oo

(4—e)n

. ap* 2p*
nPL = / X . (633/2[/,(10[)(1')) Y Pdr =

nep
1

(4—e)n

= |81n9\ P df - x” P dx
TV 4n ™ / J

Thus I3 gives the same contribution in N, (D, p* as I5 in (4.7)

* D(p* + 1/2) (Inn + O(1))

—p o
n I 7Tp*+1/2 F(p* —I— 1) Np/2 (49)

3:

We see from (4.5) that for p = p* the contribution from I in N, (D, p*) is less
than that from I and I3. The same can be shown for the contribution of other

integrals. Thus summing up (4.7) and (4.9) we arrive at (2.5) for p = p*.



[t remains to consider the case p € (0,p*). The dominant contribution here
is given by I3. Substituting in I3 asymptotics (4.8), making change of variable
t:= /7~ and using ([4], Lemma 2.1) we arrive to

mdn (1 —1¢2

T 1
2 \” 1 , 25+ dt _
NP = (T) (2\/5)2ﬂ+2%/\sm<9|2pd9-/tp TE (1+0(1)) .
0 0

The last integral can be evaluated explicitly

[ 1T+ 1—p/2)T(1—p/2)
/tpl—t2p/2_§ L(B+2—p) '
0

Thus we obtain

27 T(B+1—p/2)T(1 - p/2) (L +p/2)

BT o I'(B+2—-p)T'(1+p)

(2n)' 777 (1 +0(1)) -

(4.10)
It is clear, that the contributions of I; and I is less than I3. The same can be
shown for the contribution of other integrals. Theorem is proved.

4.2. Proof of Theorem . We have D = 2. Then 8 =0 and p* = 2.

We start with p > 2. Like for the case p > p* for D > 2, we see that
dominant contribution in N, (D, p) is given by I, see (4.1)) — (4.2). Indeed, we

have
M/n

/ (wl/Q(sL‘) E;a)(x))% dr =

0

M/n P
_ n (4 N Vo 120 Y 4 gt | pe g
0/ (n+a)!< il )Wx) SOk )] T
1 i
~ = 2t 1| (2t) dt + 6(1)
n !

Since M is an arbitrary constant, we let M — oo. At the same time, we see that



the sum Jg + J; also gives a perceptible contribution

AN +Mnt/3 ~ . M . »
/ (wl/z(ac) L;@(az)) dr = / [(Zn) 2/3 42 (—%ﬂ a3 de (14 5(1) .
AN —Mnl/3 -M
(4.11)
However, for p > 2
1/3—p2/3<—1. (4.12)

Thus the only contribution of I; plays the role, and we obtain for p > 2.
Now p = 2. In comparison with the case p = p* for D > 2, not only the
transition zone for the Bessel-cosine regimes (i.e. integrals I and I3) plays the
role, but the transition zone for the cosine-Airy regimes (i.e. integrals I, and Ij)
plays the role too.
For I, and I3, substituting p* = 2 in and , we get

3lnn+O(1)

472n
The second transition zone is [(4 — &)n, 4n — n'/3H0]Uldn — /30 4n — M - n'/3].
For the oscillatory Plancherel-Rotach asymptotics (3.7)) we have

n_2a(12 + I3) =

(4.13)

4N—]‘,1/3+0 [281112 (% (4N —z)—2N arccos &+%’“)+O(ﬁ) 2 dr —
(4-e)N 77\/1:(4N—x)
(4.14)
T 4N_n1/3+0
- % JSinZL ¥ d(p ' 4!\; ﬂx(i%c—x) - 87732n ((§ o 6) Inn + Q(l)) )
For I5 using (3.9) and asymptotics for the Airy function (see in [12])
_ t (1 + sin(t3/2/3))?
4 —_ ~Y
Al ( 24/3> EECTeys Ty LA
we obtain
dn—Mnt/3 n? 9
[ (w2(2) L' (2))2dx ~ [ [(2n)"2B3AP (—55)] n'/3dt ~
AN —n(1/3+86) M
(4.15)

[ 2d¢fdt 30 Inn+O(1))

8m2n

0
Summing , and - we get (2.6 . for p = 2.

The remaining case is p < 2. Here we proceed in the same manner as for the
case p < p*, D > 2, and we get (4.10)) for 5 = 0. Theorem is proved.
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4.3. Proof of Theorem . We have D € [0,2), § > 0 for p > 1, therefore
p* = 2, as in the previous case.

We start with p > 2. Now the competition between I; and Is + I7 becomes
crucial. We already know for I; from (4.4)) that

n Pl = Cgn P71,

To get the asymptotics for n=?%(Is + I7) we substitute 27 in the left-hand side of
(@ 11)

4n+Mnl/?
/ (w1/2(a:)z7(1a)(x))2pa:6dx ~ 220 T O,
dn—Mn1/3

Now instead of inequality (4.12)), we have for D > 4/3 the solution p = p of the
equation (where f is from (3)))

2 243D
B-l=1-THB==

- —4+3D°
Thus we have obtained (2.11)) and ({2.10)).

Now p = 2. In comparison with the previous cases, we have that the only
the transition zone for the cosine-Airy regimes plays the role. Substituting z” in

the left-hand sides of (4.14)) and (4.15) we arrive at (2.9), p = 2.

Finally for p € (0,2), we have

1+8—p>—-0p—1,

and 1—9
— ap
3 + 0.

Thus only the oscillatory integral I3 gives the contribution to the asymptotics of
N,(D,p), and from (4.10) we complete proof of (2.9)).
Theorem is proved.

1+8—p>
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