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Овчинников М.Ю., Ролдугин Д.С. 

Движение спутника с двойным вращением в магнитном и гравитационном 

полях 

Рассматривается спутник, оснащенный магнитной системой ориентации и 

тангажным маховиком. Исследуется быстродействие системы в переходном 

режиме. Находятся приближенные значения характеристических показателей 

Ляпунова. В установившемся режиме гравитационной ориентации 

рассматриваются малые движения в окрестности положения равновесия. 

Исследуется точность ориентации. Исследуется алгоритм произвольной, но 

заданной ориентации спутника в плоскости орбиты. Проводится численное 

моделирование. 

Ключевые слова: магнитная система ориентации, тангажный маховик 

 

Mikhail Ovchinnikov, Dmitry Roldugin 

Dual-spin satellite angular motion in magnetic and gravitational fields 

Attitude motion of a satellite equipped with single flywheel and active magnetic 

attitude control system is considered. Time-response of the system in transient mode 

is studied. Characteristic exponent approximations values are obtained. Small steady-

state motion near the gravitational attitude is considered. Accuracy and time-response 

is studied. An algorithm of arbitrary but given attitude in the orbital plane is proposed 

and studied. Numerical analysis is carried out. 

Key words: magnetic attitude control system, flywheel, dual spin 
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Introduction 

Magnetic control systems are extensively used for attitude stabilization of small 

satellites. The main problem with this control system is underactuation. Control 

torque is always directed perpendicular to the local magnetic induction vector. In this 

paper dual-spin satellite is considered. Satellite is equipped with a flywheel having 

high angular rate and/or mass. This allows the satellite to acquire inherent and ideally 

constant angular momentum. The flywheel is designed for this angular momentum to 

prevail over the satellite’s one. The whole system behaves like a gyro in inertial space 

maintaining flywheel attitude. Dual-spin satellite has particular stable equilibrium 

positions in gravitational field. Flywheel axis tends to align with orbital plane normal. 

Energy dissipation devices transform this position to an asymptotically stable one [1]. 

Passive nutation damping devices may be used to utilize this advantage [2]. Passive 

damping however doesn’t allow on-orbit time-response tuning. Furthermore, only 

gravitationally stable position in orbital plane is available. Gravitational torque value 

may also be insufficient to be considered as the main restoring one for small satellites 

without gravity-gradient boom. Active magnetic control system allows time-response 

tuning and may be even used to provide arbitrary in-plane attitude. 

Present paper deals with transient motion first. Magnetic attitude control system 

is used for angular velocity damping purpose. Flywheel is considered in operational 

mode all the time, since its spinning phase may be omitted and arising angular rate 

dealt with instead. Time-response is characterized with approximate Lyapunov 

characteristic exponent values. Nominal gravitational attitude accuracy is assessed. 

Control algorithm for arbitrary in-plane attitude is proposed and relevant accuracy is 

estimated. This paper is aimed to replace our obsolete work [3] that contains a 

number of mistakes. 

1. Problem statement 

Angular motion of a satellite is considered. Satellite deformations are not taken 

into account. Satellite moves along circular LEO. Gravitational and geomagnetic 

fields influence is considered. Satellite is equipped with a flywheel and three 

mutually orthogonal magnetorquers. They are capable of producing any dipole 

moment within given range. Satellite attitude is known. 

Two reference frames are used: 

- orbital frame OX1X2X3, О is satellite’s center of mass, OX3 is directed along 

satellite’s radius-vector, OX2 is directed along the orbital plane normal, OX1 makes 
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the whole frame right-handed (it is directed along satellite’s orbital velocity in case of 

circular orbit); 

- bound frame Ox1x2x3, its axes coincide with principal axes of inertia of the 

satellite. 

Satellite attitude is represented with Euler angles , ,    (rotation sequence 2-3-

1) and angular velocity components, either in inertial space 1 2 3, ,    or relative to 

orbital frame 
1 2 3, ,   . Quaternion is used for numerical simulations.  Transition 

matrix between orbital and bound reference frames is 

cos cos sin sin cos

cos sin cos sin sin cos cos sin sin cos cos sin

sin cos cos sin sin cos sin sin sin sin cos cos

    

           

           

 
 

   
 
     

A . (1.1) 

Dynamical equations of motion for a three-axial satellite with inertia tensor 

( , , )diag A B CJ  are 

gr ctrl

d

dt
     

ω
J ω Jω ω h M M         (1.2) 

where  0, ,0hh  is flywheel’s angular momentum, ,gr ctrlM M  are gravitational and 

control magnetic torques. Absolute angular velocity ω  is related to the relative one 

Ω  according to 

orb ω Ω Aω  

where  00, ,0orb ω  is orbital reference frame angular rate. Dynamical equations of 

motion may be written using relative angular velocity, 

orb rel gr ctrl

d

dt
         

Ω
J Ω JΩ Ω h Aω h M M M    (1.3) 

where  rel orb orb orb orb      M JWAω Ω JAω Aω J Ω Aω , 

3 2

3 1

2 1

0

0

0

  
 

  
 
   

W . 

Dynamical equations are supplemented with kinematic relations  

 

 

2 3

2 3

1 2 3

1
cos sin ,

cos

sin cos ,

tg cos sin .

d

dt

d

dt

d

dt


 




 


  

  

 

   

        (1.4) 
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Geomagnetic field is represented using direct dipole model. Induction vector in 

orbital reference frame is 

   0 0 1 2 3cos sin , cos , 2sin sin , ,
TT

B u i i u i B B B B  B  

where i  is orbit inclination, u is argument of latitude. 

2. Transient motion 

Transient motion is first studied in order to assess control system time-response. 

We assume relations 

0A C  , 0 0B A h    ,   04 0B C h         (2.1) 

for the satellite moving in gravitational field. This ensures stable equilibrium 

corresponding to orbital and bound reference frames coincidence. Massive or fast 

flywheel satisfies two last conditions regardless of satellite inertia moments. This 

means that flywheel axis (Ox2 in our case) tends to align along the orbital plane 

normal (OX2 axis). First relation in (2.1) represents orbital and bound frames first axis 

coincidence. In-plane stability is provided with gravitational torque only. 

Transient motion is mainly characterized by flywheel axis stabilization time. In-

plane stabilization using gravitational or magnetic torques corresponds to nominal 

operations mode. Control system time-response in transient motion may be 

represented using characteristic exponents of linearized equations of motion (1.3)-

(1.4). Dimensionless form for these equations is 

  

  

12

0

22

0

32

0

1
,

1
,

1

A A

C C

h M
A

M
B

h M
C

    





    


    



    

        (2.2) 

where A

B C

A



 , C

B A

C



 , 

0

A

h
h

A
 , 

0

C

h
h

C
 . Dot represents derivative with 

respect to argument of latitude (dimensionless time). We should take into account 

gravitational torque 

 

 2 2

0 3 3 03 3

0

gr

B C

A C



  

  
 

    
 
 

M e Je   

and magnetic control torque. We use angular velocity damping algorithm in transient 

motion, 
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 

 

 

 

2 2

1 3 2 3 1 2

2 2 2

0 0 1 2 1 3 2 3

2 2

2 3 2 1 1 3

ctrl

B B B B B B

k k B B B B B B B

B B B B B B

  

   

  

   
 
         
 
   
 

M m B Ω B B . (2.3) 

Linearized equations of motion are finally 

     

  

     

2 2

1 3 2 3 1 2

2 2

1 2 1 3 2 3

2 2

2 3 2 1 1 3

3 ,

,

A A A

C C

h B B B B B B

C
B B B B B B

B

h B B B B B B

          

    

        

        

   

       

   (2.4) 

where 
C

A
  , 

2

0

0

kB

C



 . 

Transient motion corresponds to the flywheel axis tendency towards orbital 

plane normal. Therefore angles   and   are of interest. Equations (2.4) should be 

simplified by separating in-plane motion. In order to do this we need to get rid of   

in the first and third equations in (2.4). This may be achieved when 2 0B   and 

therefore 90i  . Further analysis is performed for the satellite moving on polar orbit. 

This analysis is also valid for near polar orbits. Introducing another small parameter 

does not change the solution since only higher-order small terms are added in (2.4). 

This allows practically important sun-synchronous orbits to be cover with following 

results. Out of plane motion equations are 

 

   

2

2

cos 2 sin cos 1 0,

2 sin cos 1 4 sin 3 0

C C

A A A

u u u

u u u

       

        

     

      
    (2.5) 

where ,A A A C C Ch h       . Designate  , , ,   x . Equations (2.5) has a 

form 

 0 1 u x A x A x          (2.6) 

where 

0

0 1 0

1 0 0 3

1 0 0 0

0 1 0 0

C C

A A A

 

  

  
 

  
 
 
 
 

A ,  
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2

2

1

cos 2sin cos 0 0

2 sin cos 4 sin 0 0

0 0 0 0

0 0 0 0

u u u

u u u 

  
 
  
 
 
 

A . 

Consider equation 

0 0 0x A x  

representing satellite motion in gravitational field with installed flywheel but without 

energy dissipation mechanism. Characteristic exponents equation is 

   4 23 1 3 0A A C A A C                    (2.7) 

leading to 

    

    

2

1,2

2

3,4

1
3 1 3 1 12 1 ,

2

1
3 1 3 1 12 1

2

A A C A A C A C A

A A C A A C A C A

i

i

         

         

        

         

  

where i  is imaginary unit. Eigenvectors corresponding to k  are 

 

2 2

1
1 1

T

C k C k
k k k

C k C

A
   


  

  
     

φ  

where kA  are arbitrary constants. Equations (2.5) solution in case 0   is 

       

       

0 1 1 2 1 3 3 4 3

0 1 1 2 1 3 3 4 3

exp exp exp exp ,

exp exp exp exp

A u A u A u A u

B u B u B u B u

    

    

     

     
   (2.8) 

where j jB A , 
 

2

1

C k

k C

 


 





. Solution (2.8) may be refined to take into account 

angular velocity damping. Represent equations (2.6) solution as 

     

   

4
1 1

1 1 1

4
1

1 1 1

exp

exp .

n n
j n j n

k kj k kj

k j j

n n
j j n

k kj k kj

k j j

u O O u

u u O

     

    

 

  



  

   
        

   

   
      

   

  

  

x φ ψ

φ ψ

  (2.9) 

Substituting to (2.6) and grouping terms with similar   power, 

0    0 0,k k k  φ E A φ  

1    1 0 1 1 1 ,k k k k k k     ψ E A ψ φ Aφ  

2    2 0 2 1 1 2 1 1,k k k k k k k k       ψ E A ψ ψ φ A ψ  
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j      0 1 1 1 1, ,...., , , ,..., .kj k kj j k kj k k kju      ψ E A ψ f φ ψ ψ  

Note that  
1

n
j

k kj

j

u


φ ψ  is not an eigenvector since 1A  depends on time. 

Every next approximation 
kjψ  may be found after corresponding differential equation 

is solved. These equations are not necessarily easier than initial equations of motion. 

Lyapunov characteristic exponents are found from periodicity condition 

   2kj kju u  ψ ψ . In some cases we can state [4] that these periodic solutions can 

be found and series (2.9) converges. Sufficient condition is 
kj kl im    for j l  

where m  is an integer. These differences are eigenvalues of  0k E A . This is 

homogeneous part matrix in equations for kjψ . This means that general solution 

period differs from 2 . Partial solution should ensure proper periodicity for kjψ . 

Generating solution characteristic exponents satisfy sufficient condition so we can 

find characteristic exponent approximations for equations (2.6). Equations (2.5) 

solution corresponding to k th characteristic exponent approximation is  

    

    

exp ,

exp .

k k k k

k k k k

A u u

B u u

   

   

  

  
  

Substituting to (2.5) provides 

     

      

2 2cos

2 sin cos 1 0,

k k k k k k k k k k

C k k k k k C k k

A u A

u u B A

        

       

         

          

  

       

     

2

2

2 sin cos 1

4 sin 3 0.

k k k k k A k k k k k

k k k k k A A k k

B u u A

u B B

         

       

           

         

Grouping terms with 0  leads to 

   

   

2

2

1 0,

1 3 0.

k C k C k k

A k k k A A k

A B

A B

   

    

   

    
       (2.10)  

Consider (2.10) as equations with respect to solution parameters. Its determinant 

coincides with the one of characteristic equation (2.7) and equals zero. Grouping 

terms with   provides 
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   

 

     

2 2

2

2

2 cos 2sin cos

1 1 0,

2 2 sin cos 1

1 1 4 sin 3 0.

k k k k k k k k k k

C k k C k k C k

k k k k k k k k A k

A k k A k k k k A A k

A uA u uB

B

B u uA

A uB

      

      

        

         

    

     

     

       

  (2.11) 

These equations may be written as 

1 1 1

2 2 2

0,

0

k

k

F f C

F f C





  

  
          (2.12) 

where 

     

     

2

1

2

2

1 1 ,

1 1 3 ,

k C k C k k C k k

k A k A k k A A k k

F

F

        

         

      

       
  

 

 

2

1

2

2

cos 2sin cos ,

4 sin 2 sin cos ,

k k k k

k k k k

f u uA u uB

f u uB u uA

 

   

  

  
  

 

 

1

2

2 1 ,

2 1 .

k k C k

k k A k

C A B

C B A

 

 

  

  
  

First equation in (2.12) is multiplied with 2

k C  , second is multiplied with 

 1C k    and the result is summed. Similarly they are multiplied with 1 A  and 

 2 3k A A      and then summed. Resulting equations are 

      

      

2

1 1 1 2 2 2

2

1 1 1 2 2 2

1 0,

1 3 0.

k C k C k k

A k k k A A k

F f C F f C

F f C F f C

     

      

       

        
   (2.13) 

Equations (2.13) determinant coincides with determinant for (2.10) and equals zero. 

Equations (2.13) have non-zero solution. Specifically for each non-zero 

2 2 2 kF f C    we can find 1 1 1 kF f C   satisfying  

      2

1 1 1 2 2 21 0.k C k C k kF f C F f C                 (2.14) 

This relation can be used to find first order characteristic exponent 

approximation k . First order approximation of corresponding eigenvector is of no 

importance here. However we will use its properties. Functions  k  and k  and their 

derivatives are periodic. This property should be ensured by proper integration 

constants of  (2.11) and characteristic exponent approximation k . Integration of 

(2.14) from 0 to 2  leads to 

      2

1 21 22 1 2 0k C k C k kf C f C                
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where 

   

   

2 2

11

0 0

2 2

22

0 0

1
1 cos2 sin 2 ,

2

2 1 cos2 sin 2 4 .

k k k k k k

k k k k k k

f f u du A u B u du A

f f u du B u A u du A

 

 

   

    

 
       

 

        

 

 

  

This allows first-order k th characteristic exponent approximation to be found as 

   
       

2 2

2

4 11

2 2 1 1 2 1

k C k k C

k

k C k C k C k A

    


        

  


          

.  (2.15) 

Time-response is represented with real part of 
k . Denoting 

k ki   and 

 

2

1

C k
r

k C

i i
 

 
 


 


 leads (2.15) to be rewritten as  

   
       

2 2

2

4 11

2 2 1 1 2 1

r k C k k C

k

C k k r C k C r k A

     


         

  


          

 

and 1 2 3 4,     . Characteristic exponent approximations are real. Finally first-

order characteristic exponent approximations for equations (2.5) are 

 
 

  

 
 

  

 
 

  

 
 

 

2 2

1 1

1 1 4 2 2

1 1

2 2

1 1

2 1 4 2 2

1 1

2 2

3 3

3 3 4 2 2

3 3

2 2

3 3

4 3 4

3

1
1 4 ,

2 3 2 1 1

1
1 4 ,

2 3 2 1 1

1
1 4 ,

2 3 2 1 1

1
1 4

2 3 2 1

C

C A C C

C

C A C C

C

C A C C

C

C A C

i

i

i

i

  
   

     

  
   

     

  
   

     

  
   

   


  

       


   

       


  

       


   

      2 2

31 C    

   (2.16) 

where 

    

    

2

1

2

3

1
3 1 3 1 12 1 ,

2

1
3 1 3 1 12 1 .

2

A A C A A C A C A

A A C A A C A C A

i

i

         

         

       

        

  

Equations’ (2.5) degree of stability (the rightmost real part of characteristic 

exponents) equals either 1  or 3  depending on satellite and control parameters. 

Consider example satellite with inertia tensor  diag 1.5, 1.8, 1.1J  kg∙m2 (several 
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tens kilograms) orbiting at altitude of 1000 km and implementing damping algorithm 

with gain 55 10k    N∙m∙s/T2 ( 0.18  ). Fig. 1 presents the degree of stability   (in 

this case 3   ) with respect to the flywheel angular momentum. 

 
Fig. 1. Degree of stability with respect to flywheel angular momentum 

 

As the flywheel angular momentum rises degree of stability falls, corresponding 

to increased transient motion period. It is hard to stabilize stronger flywheel. For 

example flywheel angular momentum 0.01 N∙m leads to the degree of stability 

0.02  . Numerical simulation shows the angle between axes OaX2 and Oax2 to fall 

from 9.2° to 1.1° in 105 seconds. Theoretical estimate of terminal angle is 0.8°. 

Angular momentum 0.05 N∙m decreases degree of stability to 0.005  . The same 

angle falls to 5.6° in numerical experiment and equals 5.8° according to theoretical 

estimate. Approximate result (2.16) may be used for quite accurate prediction of 

control time-response in transient motion. 

3. Nominal motion in gravitational attitude 

Nominal motion with prevailing gravitational restoring torque corresponds to 

small relative angular velocity and close coincidence of reference frames Ox1x2x3 and 

OX1X2X3. Stability conditions (2.1) are satisfied. Adding energy dissipation through 
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magnetic damping control makes this equilibrium position asymptotically stable. 

However in-plane stability is ensured only with gravitational restoring torque. Its 

value is barely adequate for precise pointing for most satellites. In case no 

disturbances are taken into account and damping control (2.3) is used necessary 

attitude is achieved with precision. However damping algorithm may be replaced 

with a simplified one  

xd
k

dt
 

B
m .          (3.1) 

This control is related to (2.3) through geomagnetic induction vector derivative in 

bound frame,  

x X
x

d d

dt dt
  

B B
A Ω B .         (3.2) 

Algorithm (3.1) is extensively used for fast rotation damping. In this case the first 

term on the right side in (3.2) may be neglected. Geomagnetic induction vector 

rotation rate in orbital frame is of the order of the orbital velocity. Nominal motion 

corresponds to slow rotation of the satellite, so we cannot omit this term. Our aim is 

to define this term influence (attitude accuracy) on the satellite motion in nominal 

regime. Write equations (1.2)-(1.4) in dimensionless form 

 1
13 2 3 23 333 ,xA A

d C
h a a M

du A


         

 2
21 3 13 333 ,xB

d C
a a M

du B


      

 

 

3
31 1 2 13 23

2 3

3 ,

1
cos sin 1,

cos

xC C

d
h a a M

du

d

du


   


   



    

  

      (3.3)  

2 3sin cos ,
d

du


      

 1 2 3tg cos sin
d

du


         

where A

B C

A



 , B

C A

B



 , C

B A

C



 , 

0

A

h
h

A
 , 

0

C

h
h

C
 , 

2

0

0

kB

C



 , 1xM  

are damping torque dimensionless components. Notations introduced in (2.2) are the 

same. Note also that angular velocity components are dimensionless here. 

Equations (3.3) allow stationary solution 1 3 20, 0, 1            in 

case no magnetic control is implemented. This solution corresponds to the necessary 
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attitude. We will find periodic solutions arising from this one due to small magnetic 

control torque using Poincare method [5]. Equations (3.3) have form 

    x f x g x  

where  1 2 3, , , , ,     x . Solution can be found as  2

0 1 O   x x x  where 

 0 0,1,0,0,0,0x  is stationary generating solution. Substituting solution to the 

equations of motion leads to 

        20 1
0 0 1 0

d d
O

du du
      

x x
f x F x x g x  

where i
ij

j

f
F

x





 and in our case 

 0

0 0 0 0 3

0 0 0 3 0 0

0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1

1 0 0 0 1 0

A A

B

C

 





 
 
 
 

  
 
 
 

 

F x . 

Function  0g x  can be easily found from (3.2) taking into account Ω 0 , 

A E  leading to x Xd d

dt dt


B B
, x XB B  and finally 

  2

0 2 cos sin cos , 2 sin ,sin sin cos ,0,0,0

T
С C

u i i i u i i
A B

 
   
 

g x . 

Grouping terms with   we find equations for 1x   

1
3 63 2 sin cos cosA A

dx C
x x i i u

du A
    , 

22
4

3
1

3 2 sin ,

sin cos sin ,

B

C

dx C
x i

du B

dx
x i i u

du





 

  

        (3.4) 

4
2

dx
x

du
 , 5

3 6

dx
x x

du
  , 6

1 5

dx
x x

du
  . 

Equations for 2x  and 4x  (in-plane motion) are separated and represented as 

2

4 43 2 sinB

C
x x i

B
   . 
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Conditions of stability (2.1) lead to 0B  . General solution is oscillation in the 

vicinity of necessary attitude. Attitude accuracy is determined mainly by partial 

solution 

 

2

2

2 sin

3

C i
x

C A



.          (3.5) 

Homogeneous equations for 1 3 5 6, , ,x x x x  has matrix 

0 0 3

0 0 0

0 1 0 1

1 0 1 0

A A

C

 



 
 

 
 
 

 

Q  

whose characteristic exponents are found from equation 

  4 2det 0a b      Q E  

where 1 3 A A Ca      ,  3C A Ab     . 

Flywheel with sufficient angular momentum allows to satisfy 

    2 2 2 24 1 3 2 6 2 0A C A A C A A Ca b                 and 0a  . All four 

characteristic exponents are imaginary. General solution is oscillation again. Partial 

solution may be found in a form  

5 1 2sin cosx A u A u  , 6 1 2sin cosx B u B u  . 

Substituting to (3.4) and grouping terms with sinu  and cosu  leads to 

   1 21 1 3 2 sin cosA A A

C
A B i i

A
         , 

   2 11 3 1 0A A AA B         , 

   2 11 1 0C CA B       , 

   1 21 1 sin cosC CA B i i      . 

Solving this equation we finally find partial solution for (3.4) 

1

1
sin cos sin

1C

x i i u





, 

 

2

2

2 sin

3

C i
x

C A



, 

3

1
sin cos cos

1C

x i i u





, 

4 0x  , 
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5

1 1
2 3 sin cos sin

3 1

A
A

A C

C
x i i u

A




 

 
   

 
, 

6

1 1
2 sin cos cos

3 1

A

A C

C
x i i u

A



 

 
  

 
. 

Magnetic control influence is now found. The main part is constant deviation 

from necessary attitude in orbital plane. This deviation rises as control torque 

magnitude rises (parameter  ), inclination rises (inclination governs general 

magnetic control system effectiveness [6]) and falls as gravitational torque increases 

(difference between inertia moments). Apart from this constant deviation small 

oscillations with orbital frequency occur. These oscillations may cause resonance 

effect if matrix Q  characteristic exponent equals i . This is valid if 

 2 21
4 1

2
a a b        and therefore 1 0C   . This is not the case for the 

appropriate flywheel. 

Fig. 2 brings numerical simulation for the satellite with inertia tensor 

 diag 1.5, 1.8, 1.1J  kg∙m2 on circular orbit with 1000 km altitude and 60° 

inclination, control gain is 55 10k    N∙m∙s/T2. 
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Fig. 2. Attitude accuracy 

 

jj  are angles between axes of orbital and bound reference frames. In-plane attitude 

accuracy is about 14.5°, while theoretical result (3.5) predicts accuracy of 13.6°. 

Relation (3.5) may be quite useful instrument for attitude accuracy estimation. Fig. 2 

reveals time-response problem. Transient motion takes more than 80 hours. This can 

be mitigated by increasing control gain. However tenfold increase in gain to 
65 10k    N∙m∙s/T2 leads to satellite alignment with geomagnetic field. According to 

(3.5) accuracy is about 130°. Increased gain should be accompanied either with better 

damping control (2.3) without term Xd dtB  or with gravity-gradient boom (Fig. 3).  

 
Fig. 3. Attitude accuracy with gravity-gradient boom 

 

Gravity-gradient boom with 1.5 m length and 1.5 kg tip mass allows increased 

control gain with terminal accuracy of about 15.5° (theoretical prediction 14.5°). 

Transient motion takes a couple of hours.  
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4. Arbitrary in-plane attitude 

Magnetic control system may be used to provide any equilibrium position 

0   in orbital plane and its asymptotical stability. Gravitational torque becomes a 

disturbing one in this case. Assume that after transient motion , 0  , 1 2, 0  , 

2 1 . Equations (1.3)-(1.4) are 

   

 

2
1

2

3

1 3 sin cos cos ,

3 sin cos ,

1 3 sin cos

A A A

B

C C C

C
M

A

C
M

B

M

           

    

        

      

 

     

    (3.6) 

where small parameter   is not yet defined since control is not defined. 

Second equation in (3.6) representing in-plane motion is separated if second 

control torque component is independent on ,  . Suppose this control torque 

component to be 

 2 0sinrM k    .         (3.7) 

Introducing notation 0     in-plane motion becomes 

   0 0sin 3 sin cosr B

C
k

B
           .     (3.8) 

In case gravitational torque is not acting on the satellite ( 0B  ) equation (3.8) 

represents oscillations in the vicinity of necessary attitude 0  . Asymptotic stability 

of this position (tendency exactly to zero) is provided by energy dissipation according 

to (2.3). Gravitational torque changes equilibrium position to (linear approximation) 

 
0 0

0 2 2

0 0

sin cos

sin cos 3rk C C A

 


  


  
.      (3.9) 

Control (3.7) implementation encounters a number of problems. Magnetic 

control system induces disturbing torque out of orbital frame since 2 3 1 1 3M m B m B  . 

Assume that only the first magnetorquer is used and 2 3 0m m  . Control restoring 

torque in this case is 

    2
0 0

3

0, sin , sin

T

x
r r r

x

B
k k

B
     

 
    
 

M .     (3.10) 

Another magnetorquer may be used if 3xB  is close to zero. However the satellite 

moves almost in orbital plane and 3 0 0sin cos sin cos cosxB B u i B i   . Angle   is 

far from both 0 and π/2, 3xB  is close to zero only for polar orbit and 2u   . 
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Control (3.10) may be used without additional conditions. Control (3.10) involves 

disturbing third component. Its influence in equations (3.6) is assessed numerically. 

Another problem is utilization of Euler angle in control (3.10). Numerical and 

onboard control implementation requires quaternion or direction cosines matrix 

elements. Taking into account direction cosines matrix in case  , 0   and omitting 

small terms control (3.10) may be rewritten as 

    2
0 11 0 13 0 11 0 13

3

0, sin cos , sin cos

T

x
r r r

x

B
k a a k a a

B
     

 
    
 

M .  (3.11) 

This control is used for numerical simulation even in transient motion with 

angles ,   being not close to zero. Control construction requires one more 

operation. Since restoring and damping components are implemented simultaneously 

they should differ by magnitude. Both restoring and damping dipole moments are 

scaled in such a way that each has its maximum component at some defined value. 

This one is greater for the restoring part. Control (3.11) has clear disturbing effect in 

transient motion in this case. However flywheel and energy dissipation ensure proper 

transient motion result regardless of disturbing torques. This allows straightforward 

control cycle without additional switching conditions.  

Fig. 4 brings numerical simulation result for necessary attitude angle 0 40   

(far from gravitationally stable equilibrium), restoring control dipole moment is 3.2 

A∙m2 (maximum component value), damping moment is 1.2 А∙м2, other parameters 

hold. Relation (3.9) should be adapted to link ideal control parameter rk  with 

magnetorquers dipole moments used in numerical simulation. After this adaptation 

accuracy of about 0.45° is anticipated while numerical simulation results show 

accuracy of 0.6°. Out of plane accuracy is about 1.5° due to disturbing control 

component. 



19 

 

 
Fig. 4. Arbitrary in-plane attitude 

Conclusion 

Transient and nominal motions are considered for a dual-spin satellite. Active 

control is provided by magnetorquers. Approximate formulae for characteristic 

exponents are found for transient motion of polar satellite. This result may be used to 

estimate control system time-response during satellite and its attitude control system 

design. Attitude accuracy estimate is found for nominal gravitationally stable motion 

in case coarse angular velocity damping algorithm is used. Control algorithm is 

proposed to provide arbitrary attitude in orbital plane. Attitude accuracy due to 

disturbing gravitational torque is found. Numerical simulation results are presented. 
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