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Kokonkov Nikita Igorevich, Nikolaeva Olga Vasilievna 

 Consistent P1 Synthetic Acceleration of Inner Transport Iterations in 3D 

Geometry 

 For the KP1 iterative transport method the production procedure of its “P1” step 

consistent with an arbitrary spatial approximation of the SN transport equation in 3D 

Cartesian geometry is presented. The procedure is applied to the nodal schemes 

approximating the within-group SN transport equation on the unstructured tetrahedral mesh. 

Produced P1 synthetic accelerations are experimentally shown to be numerically effective on 

several model problems. 

 Keywords: transport iterations acceleration, KP1 method, DSA method, nodal scheme, 

3D unstructured mesh 

 

Коконков Никита Игоревич, Николаева Ольга Васильевна 

 Согласованное P1 синтетическое ускорение внутренних итераций при 

решении уравнения переноса в трёхмерной геометрии 

 Для итерационного KP1 метода решения уравнения переноса представлена 

процедура получения “P1” шага, согласованного с любой пространственной 

аппроксимацией угловой SN аппроксимации уравнения переноса в трёхмерной 

декартовой геометрии. Процедура применена к нодальным сеточным схемам 

аппроксимации внутригруппового SN уравнения переноса на неструктурированных 

тетраэдрических сетках. Вычислительная эффективность полученного P1 

синтетического ускорения показана в численных экспериментах с модельными 

задачами. 

 Ключевые слова: уравнение переноса, ускорение простых итераций метода 

источника, KP1 метод, DSA метод, нодальные схемы, неструктурированные 

трёхмерные сетки 
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 Introduction 
 In the computation particle transport the accurate simulation of the particle 

interactions with matter is the most challenging problem. Such processes are usually 

described by a transport equation [1]. To conduct numerical experiments with the 

system described by the transport equations the last should be discretized into a 

system of algebraic equations and the resulting system should be numerically solved. 

The numerical solving of the system is performed by iterative methods. 

 In the early 1960’s were developed the first acceleration methods of the source 

iteration scheme for SN problems [2], i.e. transport problems with the SN (discrete-

ordinates) angular approximation. Nowadays the most popular acceleration methods 

are Goldin’s quasi-diffusion method [3-6], Germogenova’s average fluxes method [7, 

8], and preconditioning methods – Lebedev KP method [9, 10] and introduced by 

Kopp synthetic method [11-20]. Comprehensive information on development of the 

source iteration acceleration techniques could be found in the survey [2] by Adams 

and Larsen. 

 The preconditioning methods were explored independently by Lebedev [9] and 

Kopp [11] in the early 1960’s and became one of the main paths that researchers have 

taken. For the diamond-differenced schemes Alcouffe showed [12] that consistent 

with the SN transport operator discretization of auxiliary acceleration equations is 

rapidly convergent for all spatial mesh thicknesses. In one-dimension planar 

geometry Morel showed [13] that accelerating both the scalar and vector fluxes using 

the solution of the low-order diffusion synthetic method calculations remedies 

degraded performance of DSA applied to problems with highly anisotropic scattering. 

Larsen generalized [14-16] Alcouffe’s ideas and developed a procedure to produce 

consistent low-order equations of the synthetic method for the every standard 

spatially differenced SN transport equations. Khalil applied [17] DSA method to 

accelerate the nodal SN calculations. Turcksin and Ragusa applied [18] it to the 

bilinear discontinuous finite element method. Suslov [19], and also Le Tellier and 

Hébert [20] modified DSA method for the characteristics method transport 

calculations acceleration. Voloshchenko modified [10] Larsen “four step” procedure 

[16] and applied it to produce low-order equations consistent with the weighted 

diamond difference scheme of the “P1” step of the KP1 method. 

 This work is devoted to generalization of that approach to arbitrary spatial 

discretization of the SN transport equations and production of the synthetic P1 

equations consistent with the nodal schemes on the tetrahedral mesh for the transport 

equation [21]. The derived equations are linear system that may be solved by the 

Krylov subspace methods [22-24]. That acceleration of nodal SN calculations is tested 

on the model problems [17, 25, 26]. 

 Base problem formulated in the first section. In the second section P1 equations 

in the additive correction produced regardless of the spatial discretization. Nodal 

spatial approximation applied to the produced equations in the third section. In the 

forth section acceleration algorithm is described. Model test problems and results of 



4 

 

numerical experiments with them are listed in the fifth and sixth sections. Summary 

of the results and conclusions are in the seventh section. 

 Transport equation 
 Base equations for computations is the multigroup approximation of the time-

independent transport equation in the convex region V  
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with the boundary conditions 

    , , , 0g

g V VV V
   

  rΩ r Ω r n Ω . (2) 

 The symbols in the equations (1) and (2) defined as follows: 

g  – the angular flux distribution as a function of the spatial coordinates r , and the 

angular direction Ω for the group g ; 
g  – the macroscopic total cross-section for the group g ; 

g g   – the macroscopic differential (elastic) scattering cross-section from the group 

g  and the angular direction Ω  to the group g  and the angular direction Ω; 

g fg   – the macroscopic differential fission cross-section from the group g  and the 

angular direction Ω  to the group g  and the angular direction Ω; 
g   – the mean number of particles produced due to scattering in the group g ; 
g f   – the mean number of particles produced due to fission in the group g ; 

gq  – the spatial extraneous source distribution in the group g ; 

Vrn  – the outward directed normal of a boundary surface V  of the convex region 

V  in boundary point with the spatial coordinates 
V

r ; 

g
V  – the angular flux distribution at boundary surface as function of the inward 

angular direction Ω for the group g . 

 In the Cartesian system an angular direction is specified by a unit vector Ω that 

may be defined by the azimuth   and polar   angles as demonstrated in the Figure 1 

with the coordinates 

 sin cos , sin sin , cosx y z          . (3) 
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 The transport equation (1) with the boundary conditions (2) must, as a practical 

matter, be numerically solved iteratively. The standard approach to the iterative 

solving is splitting iterative process in the two kinds of iteration circles: inner and 

outer. The inner iterations circle is the sequence of the within-group transport 

iterations. The  th step of the inner iterations started with distribution of zero 

describes a single group particles that undergone   collisions. The outer iterations are 

a wider circle of the inter-group scattering and fission, including inner iterations as a 

sub-circle. The  th step of the outer iterations describes the multigroup particles 

distributions that undergone   interaction events resulted in their emission and 

relocation between energy groups. The urge necessity is the acceleration of the inner 

iterations process which converges rather slowly for problems where the most of the 

particles undergo many collisions. 

 P1 consistent acceleration 
 The first synthetic acceleration equations in additive correction originate from 

the physical grasp of the scattering occurrence in both sides of the transport 

equations. And to eliminate effect of the scattering source integral of the previous 

source iteration solution in right hand side the left hand side scattering hidden in the 

total adsorption may be used. The next idea is reducing order of such equations. It 

may be performed in two ways: reduction of the number of spatial elements for 

discretization and angular order lowering. The second approach is more obvious one 

to get auxiliary low-order accelerating equation consistent with the spatial 

approximation of the base transport equation. Following the Voloshchenko modifica-

tion [10] of the Larsen “four step” procedure [16] low-order P1 synthetic equations in 

additive correction consistent with the arbitrary spatial discretization will be 

produced. 

I Omitting for convenience the group indices for the inner transport iterations the 

within-group transport equation may be written in the operator form 

 ˆL̂ S q   , (4) 

  

  
x  

y  

z  
Ω  

z  

x  

y  

Figure 1 

Angular direction 

and its coordinates 
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where the leakage and collision operator is 

 ˆ
tL  Ω ; (5) 

the scattering source operator applied to an arbitrary angular function   is 

    
4

Ŝ d


      Ω Ω Ω Ω ; (6) 

  – the within-group flux distribution as a function of the spatial coordinates r , 

and the angular direction Ω resulted from the exact solution of the transport 

equation; 

t  – the within-group macroscopic total cross-section; 

  – the within-group macroscopic differential scattering from the angular direction 

Ω to the angular direction Ω  cross-section; 

q  – the within-group spatial extraneous source distribution with the source from 

the outer iterations. 

II Derived from the exact equation (4) the source iterations equation in the 

operator form is 

 
1 2 0

ˆL̂ S q    (7) 

where the actual inner iteration index   is suppressed and 
1 2

  – the within-group angular flux distribution as a function of the spatial 

coordinates r , and the angular direction Ω resulted from a single transport sweep; 
0

  – the within-group angular flux distribution as a function of the spatial 

coordinates r , and the angular direction Ω resulted from previous inner iteration. 

III By subtracting the equation (7) from the equation (4) 

 
1 2 1 2 1 2 0

ˆL̂ S     
      

          
      

 (8) 

the exact equation for the exact additive correction 
1 2 1 2

f     is obtained 

 
1 2 1 2 1 2 0

ˆ ˆL̂ f S f S  
 

   
 

 (9) 

from which the exact solution of the within-group transport equation (4) could be 

obtained in two steps with a single transport sweep (7) as the first step. The idea of P1 

synthetic acceleration is to replace the equation (9) by low order equations with low 

order approximations of the additive correction and the L S  operator. 
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IV By linear in solid angle approximation of the additive correction 

 
1 2

f U  Ω W , (10) 

where the U  and W  are the approximation quotients, the equation (9) may be written 

    ˆ ˆˆ ˆLU L S U S     Ω ΩW W  (11) 

where the flux increment 
1 2 0

    . 

 In the equation (11) in the U  and W  the within-group scattering partly 

eliminated. As it would be desirable for convergence improvement. 

V The last procedure step is the equation (11) order lowering by its integrations 

with weights 1 and Ω  over solid angle. That would obviously lead to the diffusion 

type equation system which coefficients and unknowns do not depend on the angular 

direction. In practice that integrations could be performed only numerically for an 

angular discretization of the (11). The most straightforward way of the angular 

discretization is the discrete directions set usage instead of the continuous one. 

 The SN method [1] also referred as the discrete-ordinates method essential basis 

is that the flux angular distribution is evaluated in the number of discrete directions. 

This enables usage of various quadrature sets in the angular directions domain to 

numerically calculate scattering integrals. The angular quadrature set are specified by 

the set of angular directions  dΩ  and the corresponding set of quadrature weights 

 dw  such that the integrals over solid angle may be suitably approximated by 

summation over the quadrature set 

    
4

d d
d

wd


  Ω Ω Ω . (12) 

 The equations (4)-(10) may be rewritten in the SN form. Thus the SN 

discretization of the equation (11) may be derived, and the final step V may be 

accomplished by the numerical integration. 

I For an arbitrary angular quadrature set the SN approximation of the exact 

transport equation (4) along the angular direction dΩ  from the set is 

 ˆˆ
d d d dL S q   , (13) 

the leakage and collision operator (5) along the angular direction dΩ  is 

 ˆ
d d tL  Ω ; (14) 

the scattering source operator (6) along the angular direction dΩ  applied to an 

arbitrary angular function   is 
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    
4

ˆ
d dS d



      Ω Ω Ω Ω ; (15) 

d  – the within-group flux distribution along the angular direction dΩ  as a function 

of the spatial coordinates r ; 

dq  – the within-group spatial extraneous source distribution with the source from 

the outer iterations along the angular direction dΩ . 

II The SN approximation of the source iterations equation (7) is 

 
1 2 0

ˆˆ
d d d dL S q    (16) 

1 2

d  – the within-group flux distribution along the angular direction dΩ  as a function 

of the spatial coordinates r  resulted from a single transport sweep. 

III For the additive correction 
1 2 1 2

d d df     along the angular direction dΩ  the SN 

approximation of the equation (9) is 

 
1 2 1 2 1 2 0

ˆ ˆˆ
d d d dL f S f S  

 
   

 
 (17) 

IV By the linear in solid angle approximation of the additive correction along the 

angular direction dΩ  

 
1 2

d df U  Ω W  (18) 

the equation (17) may be written 

    ˆ ˆˆ ˆ
d d d d dL U L S U S      Ω ΩW W  (19) 

 The macroscopic differential scattering cross-section from the angular direction 
Ω  to the angular direction dΩ  may be expanded in Legendre polynomial series 

   0 13

4 4
d d

 


 
     Ω Ω Ω Ω  (20) 

with the expansion quotients 0 , 1 , and so forth. Hence due to orthogonality of the 

Legendre polynomials the scattering source operator (15) with the scattering cross-

section (20) applying to the additive correction (10) leads to 

   0 1
ˆ
d dS U U     Ω ΩW W . (21) 
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And the equation (19) finally may be written as 

    0 1
ˆˆ ˆ

d d d d dL U L U S       Ω ΩW W . (22) 

V Summation of the equation (22) over the given angular quadrature set with the 

integration weight 1 leads to equation 

 

0

1
ˆ

d d d
d d

d d d d d d d
d d d

w L U w U

w L W w W w S   
 



 

 
  

 

 
     

 

 

   
 (23) 

and summation of the equation (22) over the given angular quadrature set with the 

integration weight   leads to vector equation 

 

0

1
ˆ

d d d d d
d d

d d d d d d d d d d
d d d

w L U w U

w L W w W w S

 

      
 



 

 
    

 

 
        

 

 

   
 (24) 

where   and   run over x , y , and z . 

 Thus the production of the P1 synthetic acceleration equations consistent with an 

arbitrary spatial approximation has been accomplished in five steps. The equations 

(23)-(24) in the U  and W  system, which coefficients and unknowns do not depend 

on the angular direction, is the low order approximation to the equation (17). Solution 

of this system gives the low order approximation (10) to the additive correction as the 

linear function of the angular direction. 

 Spatial approximation 
 By repeating the same five step procedure for the equations (13)-(19) with the 

spatially approximated starting SN transport equation (13) the consistent spatial 

approximation of the equations (23)-(24) system may be derived. 

 To get spatial approximation of the equations (13)-(19) with the nodal schemes 

[21] an unstructured tetrahedral spatial mesh in the convex region V  may be 

introduced and all spatial functions in the region may be approximated by vectors of 

the functions values in the spatial mesh cells and faces. The vectors size is a sum of 

the mesh cells and faces numbers. The SN approximation of the leakage and collision 

operator (14) along the angular direction dΩ  is then spatially approximated by the 

two square matrices  d1 T  and dG  of the same size as the spatial functions values 

vectors, where the square matrix dT  has zero diagonal elements. Thus the spatial 
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approximation of the SN angular approximation of the transport equation (13) along 

the angular direction dΩ  is 

I    ˆ
d d d d dS  1 T ψ G ψ q , (25) 

and the source iterations equation (16) spatial approximation is 

II  
1 2 0

ˆ
d d d dd S

 
   

 
1 T ψ G ψ q . (26) 

dψ  – the vector of the values in the spatial mesh cells and faces of the within-group 

flux distribution along the angular direction dΩ ; 

ψ  – the vector of the values in the spatial mesh cells and faces of the within-group 

angular flux distribution as functions of the angular direction Ω; 

dq  – the vector of the values in the spatial mesh cells and faces of the within-group 

spatial extraneous source distribution with the source from the outer iterations along 

the angular direction dΩ ; 
1 2

dψ  – the vector of the values in the spatial mesh cells and faces of the within-group 

flux distribution along the angular direction dΩ  resulted from the transport sweep; 
0

ψ  – the vector of the values in the spatial mesh cells and faces of the within-group 

angular flux distribution as functions of the angular direction Ω resulted from the 

previous inner iteration step. 

 The approximated equation (17) in vector of the values in the spatial mesh cells 

and faces of the additive correction 
1 2 1 2

d d d f ψ ψ  along the angular direction dΩ  is 

III  
1 2 1 2 1 2 0

ˆ ˆ
d d d d d dS S

 
    

 
1 T f G f G ψ ψ . (27) 

With the angular approximation (10) of the additive correction vector 

 
1 2

 


  f U W , (28) 

and the notation (21) of the scattering source operator along the angular direction dΩ  

the equation (27) may be written 

IV    0 1
ˆ

d d d d d d dS 


       1 T G U 1 T G W G ε  (29) 

where U  and W  are the vectors of the values in the spatial mesh cells and faces of 
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the additive correction approximation quotients, the flux increment vector 
1 2 0

 ε ψ ψ , 

and   runs over x , y , and z . 

 Summation of the equation (29) over the given angular quadrature set with the 

integration weight 1 leads to equation 

V 

 

 

0

1
ˆ

d d d
d

d d d d d d d
d d

w

w w S 






  

    



 

1 T G U

1 T G W G ε
 (30) 

and summation of the equation (29) over the given angular quadrature set with the 

integration weight   leads to vector equation 

V 

 

 

0

1
ˆ

d d d d
d

d d d d d d d d d
d d

w

w w S



   






   

      



 

1 T G U

1 T G W G ε
 (31) 

where   and   run over x , y , and z . The equations (30)-(31) system in the U  and 

W  is the low order approximation to the equation (27). 

 With the notation (20) of the macroscopic differential scattering cross-section 

the scattering source operator applied to the flux increment vector ε  in the right hand 

side of the equations (30)-(31) system may be written 

 
0 1

0

3ˆ
4 4

d dS  


 

 
  ε ε ε  (32) 

where angular moments vectors of the flux increment are 

  0

4

d


 ε ε Ω Ω  (33) 

and 

  
4

d 



 ε ε Ω Ω (34) 

where   runs over x , y , and z . 

 Boundary conditions should be introduced for the spatial approximation 

finalization. This may be performed by applying the step V angular summations to 

the equation (29) with angular dependent coefficients and the same five steps routine 

to the spatial approximation of the SN transport boundary condition for inward and 

outward angular directions respectively. 
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 On boundary mesh face with the outer normal n  summation of the equation (29) 

over the half where 0d n Ω  of the given angular quadrature set with the integration 

weight 1 leads to 

V 

 

 

0
, 0

1
, 0 , 0

ˆ
d

d d

d d d
d

d d d d d d d
d d

w

w w S 






 

   

  

    



  

nΩ

nΩ nΩ

1 T G U

1 T G W G ε
 (35) 

and summation of the equation (29) over that half of the given angular quadrature set 

with the integration weight   leads to 

V 

 

 

0
, 0

1
, 0 , 0

ˆ
d

d d

d d d d
d

d d d d d d d d d
d d

w

w w S



   






 

   

   

      



  

nΩ

nΩ nΩ

1 T G U

1 T G W G ε
 (36) 

where   and   run over x , y , and z . 

 Specular reflection boundary condition with the albedo A for the base transport 

equation (1) in a single group is 

      , , , 2d d dV V
A   

   Ω r Ω r Ω Ω n Ω n , (37) 

where Ω  is the incident ray angular direction and V rn n . 

 

Figure 2 

 By introducing as on the Figure 2 the virtual cell that are the mirror reflection of 

the boundary cell in the boundary face under consideration the specular boundary 

condition (37) could be introduced in a similar to the equation (25) form. Due to 

spatial discretization matrices in mirror reflections pairing the exact equation is 

I    ˆ , 0d d dA A S      1 T ψ G ψ q n Ω  (38) 

dΩ  Ω  

n  



13 

 

on the boundary face, the source iterations equation similar to the (26) one is 

II  
1 2 0

ˆ , 0d d dA A S 

 
     

 
1 T ψ G ψ q n Ω , (39) 

and the equation in additive correction similar to the equation (27) is 

III  
1 2 1 2 1 2 0

ˆ ˆ , 0d d d dA A S A S  

 
      

 
1 T f G f G ψ ψ n Ω , (40) 

where subscript   stands for the magnitudes along the incident ray Ω . 

 Introducing the angular approximation (10) and noting the (21) gives 

IV    0 1
ˆ

d d d d dA A A A A S 


         1 T G U 1 T G W G ε . (41) 

where   runs over x , y , and z . 

 Summation of the equation (41) over the half where 0d n Ω  of the given 

angular quadrature set with the integration weight 1 leads to 

V 

  

  

0
, 0

1
, 0 , 0

ˆ
d

d d

d d d
d

d d d d d
d d

w A

w A A w S 






 

 
   

  

    



  

nΩ

nΩ nΩ

1 T G U

1 T G W G ε
 (42) 

and summation of the equation (41) over that half of the given angular quadrature set 

with the integration weight   leads to 

V 

  

  

0
, 0

1
, 0 , 0

ˆ
d

d d

d d d
d

d d d d d
d d

w A

w A A w S



   







 

   
   

   

      



  

nΩ

nΩ nΩ

1 T G U

1 T G W G ε
 (43) 

where   and   run over x , y , and z . 

 Termwise adding the equations (42)-(43) properly to the equations (35)-(36) 

leads to the equations system in the U  and W . Solution of this system with the 

equations (30)-(31) system gives the complete low order approximation (28) to the 

additive correction as the linear function of the angular direction. 

 The SN approximation of the spatially approximated non-reflective boundary 

condition for the transport equation (1) in a single group corresponding to the 

equation (25) 

I , 0V V

d d d

   ψ q n Ω , (44) 
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its source iterations form corresponding to the equation (26) is 

II 
1 2

, 0V V

d d d

   ψ q n Ω , (45) 

where n  is the boundary face dependent outer normal to that boundary face; 
V

d

ψ  – the vector of the values in the boundary mesh faces of the within-group flux 

distribution along the angular direction dΩ ; 
V

d

q  – the vector of the values of the within-group boundary extraneous source 

distribution along the angular direction dΩ ; 
1 2

V

d

ψ  – the vector of the values in the boundary mesh faces of the within-group flux 

distribution along the angular direction dΩ  resulted from the transport sweep; 

sizes of these vectors is an amount of the non-reflective boundary mesh faces. 

 Subtraction the equation (45) from the equation (44) leads to 

 
1 2

, 0V

d d

   f 0 n Ω  (46) 

equation in the additive correction on the boundaries. The equation (46) by 

introducing the angular approximation (28) on the boundary faces may be written 

  


  U W 0 (47) 

where   runs over x , y , and z . Summation of the equation (47) over the half where 

0d n Ω  of the given angular quadrature set with the integration weight 1 leads to 

 
, 0 , 0d d

d d d
d d

w w 
   

    
nΩ nΩ

U W 0 (48) 

and summation of the equation (47) over that half of the given angular quadrature set 

with the integration weight   leads to 

 
, 0 , 0d d

d d d d d
d d

w w   
   

      
nΩ nΩ

U W 0  (49) 

where   and   run over x , y , and z . 

 Termwise adding the equations (48)-(49) properly to the equations (35)-(36) 

leads to the equations system in the U  and W . Solution of this system with the 

equations (30)-(31) system gives the complete low order approximation (28) to the 

additive correction as linear function of angular direction. 

 Derivation of the consistent synthetic “P1” step equations of the KP1 nodal 

transport calculations on the unstructured tetrahedral mesh is hereby finalized. 
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 Acceleration algorithm 
 In the iterative KP algorithms the next, 1  , successive approximation to the 

exact solution of the within-group transport equation 

 
1 2 1 21

d dd

   

 ψ ψ f  (50) 

is obtained in two steps: 

1) “K” step that is a single transport sweep with proper boundary conditions from 

which the vector 
1 2

d



ψ  of the values in spatial mesh elements of the within-group flux 

along the angular direction dΩ  is obtained, 

2) “P” step that is a low order approximation to the equations in the exact additive 

correction to the within-group source iteration equations solution from which the 

vector 
1 2

d



f  of the values in the spatial mesh elements of the within-group additive 

correction approximation along the angular direction dΩ  is obtained. 

 Applying the KP1 method with the consistent synthetic “P1” step to accelerate 

the nodal SN transport calculations on the unstructured tetrahedral mesh [21] is 

reasonably succeeds to the above described two step iterative process. The “K” step 

is performed in the regular manner of the single source iteration (26) implementation 

for the given nodal spatial approximation. After it the flux increment vector 
1 2 0

 ε ψ ψ  angular moments (33)-(34) are calculated numerically by summations over 

the given angular quadrature set. And the “P1” step consists of 

a) the spatial approximation matrices along angular directions  d1 T  and dG  

weighted angular numerical integrations (step V above) which lead to the consistent 

synthetic P1 equations system in the coefficients of the additive correction linear 

approximation, 

b) the produced linear equations system solving by the preconditioned generalized 

minimal residual Krylov method and correction by its solution of the flux values 

vector obtained in the “K” step. 

Corrected flux becomes the next successive approximation to the nodal SN transport 

calculations result and used in the next single source iteration of the “K” step. For 

memory saving purposes the numerical angular integrations of the spatial 

approximation matrices are performed on the each KP1 iteration step  . 

 In general, the nodal SN transport calculations result in the polynomial spatial 

approximations of the fluxes along the given angular directions. In the spatial mesh 

cells and faces the two nodal schemes under consideration [21] “ThetraC” and 

“ThetraL” are approximate flux along an angular direction by constant and linear 

functions respectively. But for further order lowering the derived consistent P1 

synthetic acceleration is used to additively correct only zero spatial moments of the 

nodal SN transport calculations results for the both schemes. 
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 Test problems 
 The effectiveness of the proposed inner iterations acceleration algorithm is 

tested on the model one group test problems. Their descriptions with materials 

properties and geometry are listed below. 

A The EIR-2a (named after Swiss research facility Eidgenössisches Institut für 

Reaktorforschung) problem [25] 3D generalization describes particle transport in a 

uniform prism with vacuum (non-reflective with V

d

 q 0) boundary conditions on all 

its faces consisting of scattering medium 5 with adsorbing inclusions 1, 2, 3 and 4. 

Materials properties and geometry for this problem are presented in the Table 1 and 

the Figure 3. The problem is solved on the S8 [27] angular quadrature set and on the 

six unstructured tetrahedral spatial meshes sequence with increasing fineness. 

Table 1 

Materials properties for the EIR-2a problem 

Material 1 2 3 4 5 

t  ( 1cm ) 0.60 0.48 0.70 0.65 0.90 

  ( 1cm ) 0.53 0.20 0.66 0.50 0.89 

Source (cm) 1.0 0.0 1.0 0.0 0.0 

 

Figure 3 

Geometry for the EIR-2a problem 
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B The Iron-Water problem is the 3D generalization of the model shielding 

problem [15] 2D generalization [17]. In the problem the neutron transport in PWR is 

simulated. Materials properties and geometry for this problem are presented in the 

Table 2 and the Figure 4. Reflective boundary conditions with 1A  are used at the 

boundary planes 0x , 0y  , and 0z  , and vacuum (non-reflective with V

d

 q 0) 

boundary conditions at all other outer boundaries. The problem is solved on the S8 

[27] angular quadrature set and on the seven unstructured tetrahedral spatial meshes 

sequence with increasing fineness. 

Table 2 

Materials properties for the Iron-Water problem 

Material 1 2 3 

t  ( 1cm ) 3.3333 3.3333 1.3333 

0  ( 1cm ) 3.3136 3.3136 1.1077 

1  ( 1cm ) 0.9256 0.9256 0.9367 

Source (cm) 1.0 0.0 0.0 

 

Figure 4 

Geometry for the Iron-Water problem 

C The Dog Leg problem [26] is a well-known benchmark problem with void 

region where a dog leg void is ducted through an adsorbing uniform prism. Reflective 

2 

2 

3 

1 

30 

21 

15 

12 

30 
21 15 

30 

z  (sm) 

x  (sm) 

y  (sm) 

12 
15 

21 

12 



18 

 

boundary conditions with 1A  are used at the boundary planes 0x , 0y  , and 

0z  , and vacuum (non-reflective with V

d

 q 0) boundary conditions at all other 

outer boundaries. The problem is solved on the S12 [27] angular quadrature set and on 

the unstructured tetrahedral spatial mesh of the 8990 cells and the 18959 faces with 

the nine various settings of the total and scattering cross-sections in the adsorbing 

material 3. Materials properties and geometry for this problem are presented in the 

Table 3 and the Figure 5. 

Table 3 

Materials properties for the Dog Leg problem 

Material 1 2 3 

t  ( 1cm ) 
As in 3 

0.001 As per 

setting   ( 1cm ) 0.0005 

Source (cm) 1.0 0.0 0.0 

 

 

Figure 5 

Geometry for the Dog Leg problem 

 Features of the sequentially with fineness increase enumerated meshes for the 

test problems A and B and the decimally enumerated settings for the test problem C 

are listed below along with numerical results. 
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 Numerical results 
 The model test problems angular discretizations are spatially approximated on 

the unstructured tetrahedral meshes by the two nodal schemes [21] “ThetraC” or 

“ThetraL” and numerically solved by the plain source iteration (SI) method or the 

above produced KP1 method. To estimate the KP1 method efficiency in comparison 

to the source iterations method for the both numerical iterative methods their run 

times for convergence are measured for the each statement of the each problem. The 

KP1 method “P1” steps summarized calculating time are measured to estimate 

immediately the P1 synthetic acceleration efficiency. 

Table 4 

Numerical results for the EIR-2a problem 

M
es

h
 

Amount of SI and KP1 run 

times ratio 

P1 calculating time 

percentage 

C
el

ls
 

F
ac

es
 Iterations 

ThetraC ThetraL 
ThetraC ThetraL ThetraC ThetraL 

SI KP1 SI KP1 

1 576 1232 275 5 278 5 4.5 24.6 0.47‰ 0.33‰ 

2 1059 2342 279 6 281 4 22 31 0.6‰ 0.5‰ 

3 3276 6851 309 5 317 5 11.5 30.2 9.10% 10% 

4 6912 14144 361 8 372 7 9.1 26.1 15.40% 9.30% 

5 12708 26312 374 6 395 5 10.9 32.7 10.60% 9.10% 

6 24206 50603 350 6 365 6 9.4 24.6 13.40% 11.40% 

 

Table 5 

Numerical results for the Iron-Water problem 

M
es

h
 

Amount of SI and KP1 run 

times ratio 

P1 calculating time 

percentage 

C
el

ls
 

F
ac

es
 Iterations 

ThetraC ThetraL 
ThetraC ThetraL ThetraC ThetraL 

SI KP1 SI KP1 

1 384 832 745 7 753 7 63 49.5 1‰ 0.7‰ 

2 1622 3495 764 6 774 7 35.3 52.9 15% 1.1‰ 

3 4608 9472 909 10 931 11 16.7 37.8 25% 17% 

4 6299 13104 816 7 832 8 14.1 31.4 33% 19% 

5 13854 28713 882 8 907 9 9.4 25.3 46% 35% 

6 18295 38142 925 7 962 8 11.7 32 35% 27% 

7 26787 55254 961 8 1002 9 9.6 25.7 42% 34% 
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Table 6 

Numerical results for the Dog Leg problem 

S
et

ti
n

g
 Material 3 Amount of iterations 

SI and KP1 run 

times ratio 

P1 calculating time 

percentage 

t  

( 1cm ) t




   

( 1cm ) 

ThetraC ThetraL 
ThetraC ThetraL ThetraC ThetraL 

SI KP1 SI KP1 

1.1 0.5 0.9 0.45 128 14 139 15 1.8 4.1 35% 22% 

1.2 0.5 0.95 0.475 197 13 209 16 2.6 5.4 42% 20% 

1.3 0.5 0.99 0.495 431 14 456 17 3.9 9 43% 33% 

2.1 1 0.9 0.9 175 16 188 19 2.3 4.7 16% 11% 

2.2 1 0.95 0.95 268 14 282 18 3.5 7.1 23% 16% 

2.3 1 0.99 0.99 616 15 639 18 5.6 12.7 59% 29% 

3.1 1.5 0.9 1.36 215 17 228 20 2.9 5.7 24% 16% 

3.2 1.5 0.95 1.425 318 16 330 19 4 8.2 31% 19% 

3.3 1.5 0.99 1.485 734 16 752 18 7.1 15.8 49% 34% 

 

 For the each model test problem and the each spatial discretization scheme 

numbers of iterations for convergence of the both numerical iterative methods, ratios 

of the SI and KP1 run times, and percentages of the “P1” steps in the KP1 method 

calculations time are listed in the Table 4, Table 5, and Table 6 above. 

 Numerical solving of the “P1” step equations is performed by the open 

realization [24] of the preconditioned [23] generalized minimal residual [22] Krylov 

method with the tolerance 810  and the Krylov subspace dimensionality equals to 5  

for the test problems A and B. The same tolerance and Krylov subspace of a size 20  

are used for the test problem C. This increases memory usage as compared to the 5  

vectors subspace but does considerably affect the neither KP1 method nor 

immediately P1 synthetic acceleration efficiencies. 

 The number of iterations for convergence of the plain source iterations (SI) 

method increases along with the fineness of the spatial mesh for the test problems A 

and B, or with the total cross-section t  and the ratio t   of the scattering and total 

cross-sections for the test problem C. On the contrary, the number of iterations for 

convergence of the KP1 method remains rather persistent with the statements and 

spatial difference schemes change for the each test problem. That indicates that the P1 

synthetic acceleration at the each KP1 iteration provides quite a good approximation 

of the additive correction for its “K” step. 

 Due to order lowering of the polynomial spatial approximation in the procedure 

of the consistent synthetic “P1” step equations production, the SI and KP1 run times 

(speeding-up) ratios of the ThetraL scheme calculations multiply greater than the 
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ThetraC ones. In the KP1 method calculations the “P1” steps summarized time could 

come to a slightly more than half of a full calculation run time. 

 The run time speeding-up of the both spatial schemes calculations increases 

along with the number of iterations for convergence of the source iterations (SI) 

method. The Iron-Water problem number of iterations for convergence of the SI 

method is the greatest one along with the calculation run time speeding-up for this 

problem. The run time speeding-up of the both spatial schemes calculations decreases 

along with rise of the number of iterations for convergence of the KP1 method. Due to 

high anisotropy of the Dog Leg problem solution and the additive correction angular 

approximation linearity in the “P1” step, for this problem the number of iterations for 

convergence of the KP1 method and the calculation run time speeding-up are is the 

greatest and the least ones respectively. 

 The listed in the Table 7 mean run time speeding-ups of the both nodal schemes 

calculations for each model problem are rather high. 

Table 7 

Test problems mean run time speeding-up 

Problem EIR-2 Iron-Water Dog Leg 

Run time 

speeding-up 

ThetraC 10 15 4 

ThetraL 28 35 8 

 

 The relative scalar flux increment is 

 
th

1

meshcell
max 1 j d j dd d

j
d d

w w
 

 
   

    
   
  , (51) 

where 

j d



  – the value in the mesh cell j  of the within-group flux distribution along the 

angular direction dΩ  resulted from the SI or KP1 iteration number  . 

The relative scalar flux increment (51) values dependencies on iteration number   of 

the SI or KP1 methods is plotted below for the each spatial discretization of the most 

difficult calculation statements of the each model test problem. 

 The SI convergence oscillatory for the ThetraL scheme spatial approximation of 

the EIR-2, Iron-Water, and Dog Leg problems is depicted in the Figure 7, Figure 9, 

and Figure 11 respectively. The Figure 6 and Figure 7, Figure 8 and Figure 9 depict 

the KP1 convergence non-oscillatory for the ThetraC and ThetraL spatial difference 

schemes of the EIR-2 and Iron-Water problems respectively. On the contrary, the KP1 

convergence oscillatory for both spatial difference schemes of the Dog Leg problem 

is depicted in the Figure 10 and Figure 11. That behavior may be explained by the 

insufficiency of the linear angular approximation of the additive correction in the 

“P1” step due to the high anisotropy of the Dog Leg problem solution. 



22 

 

1 10 100

10
-3

10
-1

10

10
3

R
el

at
iv

e 
S

ca
la

r 
F

lu
x
 E

rr
o
r

Iteration

 Source Iteration

 KP
1

 

Figure 6 

Relative scalar flux increment for the EIR-2a problem S8 ThetraC 

source iterations (SI) and KP1 calculations on the spatial mesh 6 
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Figure 7 

Relative scalar flux increment for the EIR-2a problem S8 ThetraL 

source iterations (SI) and KP1 calculations on the spatial mesh 6 
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Figure 8 

Relative scalar flux increment for the Iron-Water problem S8 ThetraC 

source iterations (SI) and KP1 calculations on the spatial mesh 7 
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Figure 9 

Relative scalar flux increment for the Iron-Water problem S8 ThetraL 

source iterations (SI) and KP1 calculations on the spatial mesh 7 



24 

 

1 10 100

10
-3

10
-1

10

10
3

10
5

10
7

R
el

at
iv

e 
S

ca
la

r 
F

lu
x
 E

rr
o
r

Iteration

 Source Iteration

 KP
1

 

Figure 10 

Relative scalar flux increment for the Dog Leg problem S12 ThetraC 

source iterations (SI) and KP1 calculations with setting 2.3 
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Figure 11 

Relative scalar flux increment for the Dog Leg problem S12 ThetraL 

source iterations (SI) and KP1 calculations with setting 2.3 
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 Conclusions 
 For the iterative KP method the production procedure of the consistent low-

order P1 synthetic equations system in the additive correction is presented. This 

system may be applied to accelerate the inner transport iterations in 3D geometry. 

The derivation is based on the linear in solid angle approximation of the additive 

correction and requirement of the spatial approximations consistency of the base 

within-group SN transport equation and the resulting synthetic ones. The latter 

condition is necessary for the resulting KP1 method solution convergence to the 

solution of the within-group SN transport equation. 

 To obtain the KP1 nodal transport calculations algorithm, the constant nodal 

schemes for the SN transport equation spatial approximation is numerically integrated 

over solid angle. Usage of the only constant schemes leads to the spatial order 

lowering of the produced P1 synthetic equations consistent spatial approximation. In 

the algorithm at the each iteration of the KP1 method the low-order P1 synthetic 

equations system in the additive correction linear angular approximation coefficients 

is produced by the base equation spatial approximation integration over solid angle 

and solved by the preconditioned generalized minimal residual Krylov method. 

 The developed algorithm is tested on the three well-known model heterogeneous 

one-group neutron transport problems. The 3D modifications of the problems were 

previously triangulated, thus base model transport problems are approximated on 

several unstructured tetrahedral meshes by the two nodal schemes. Performances on 

the model test problems of the developed iterative KP1 method algorithm and the 

plain source iteration (SI) method algorithm are compared to each other. 

 The KP1 nodal calculations demonstrate oscillatory for the problem with highly 

anisotropic solution but high efficiency of the nodal transport iterations acceleration 

on all problems. The worst performance acceleration is demonstrated on the Dog Leg 

benchmark problem with void region. The best performance acceleration is 

demonstrated on the Iron-Water problem that simulates PWR. 
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