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Amrynckuii A. 1.

O MHOXKecTBax pacrpeelieHnii BEpOATHOCTel, COXpaHAEeMbIX OIle-
pamusagMu KOHEYHOTO I10JIst

PaccmaTpuBaroTcs pacupejieieHusT CJYYaiHbIX BEJWYWH HAJ[ KOHEYHBIM I10-
JIEM, TIOJIy9aeMbIX C MOMOIIBIO OMEPalnii TOJIsT U3 HE3aBUCUMBIX CJIyJaiiHbIX Be-
JIMYUH, UMEIOTIUX 3aJaHHble pactpeaenaeansd. CTposaTcs MOJIMHOXKECTBa pacipe/ie-
JIEHUl, KOTOpbIE€ COXPAHAIOTCS ONEPAIUAME CJIOKEHUA U YMHOXKEHUS B KOHETHOM
oJie.

Karoueswvie caosa: ciaydaiinas BeTUINHA, KOHETHOE T0JI€, BEIPAZUMOCTD, CO-
XPaHsieMOe MHOXKECTBO

Alexey Dmitrievich Yashunsky

On probability distribution sets preserved by finite field operations

We consider distributions of random variables over a finite field, obtained
as results of field operations on independent random variables with given dis-
tributions. We construct subsets of distributions that are preserved by finite
field addition and multiplication.

Key words: random variable, finite field, expressibility, preserved set
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Problem statement

Consider a finite field F with k elements that are, for the sake of convenience,
further denoted by {0,1,2,...,k — 1}. For elements i, j € F the addition i + j
and multiplication ¢ - j operations are defined. The element 0 € F is further
considered to be the ,,zero” of multiplication (i.e. 0-7 =7-0 = 0) and the
neutral element of addition (i.e. 0 4+i =17+ 0 =1).

The properties of other elements from the field F are not essential for the
forthcoming results, the only important conditions being that for non-zero i, j €
F the inequality 7 - j # 0 holds and the equation 7 - j = m has unique solutions
both with respect to i and j. We shall denote i = m/j and j = m/i.

For the addition operation for any i, j,m € F the equatlon ?+ 7 = m has

unique solutions both with respect to 7 and j: i =m —j, 7 =m — 1.
We consider random variables over the field .7: . The dlstrlbution of a
random variable X is treated as a vector with k coordinates P(X) = u =

(wo, U1, . .., ur_1), where u; the value of the probability P{X = i}. Naturally,
for all ©+ € F the inequality u; > 0 holds and we have

U+ ur +us+ ...+ up_1 = 1.

For two independent random variables X; and Xs over the field F one can
consider the sum X; + Xy and the product X; - X5, that are also random
variables over the field F. Let P(X;) = u, P(X3) = v. Denote the probability
distributions P(X; + X5) and P(X; - X5) by u + v and u - v respectively. Their
components are given by the following equations:

(u+v); Z:ujvZ i (1)

JEF
(u- v)o = g + Vo — Uy, (2)
i£0: = > wuvy; (3)
jeF\{0}

We consider the problem of obtaining various probability distributions as
distributions of read-once formulas over the field F whose variables are inde-
pendent identically distributed random variables over F, all having a given
,,initial” distribution p = (pg, p1, - - -, Pk—1)-

Previously in [3] family of distributions that can be obtained by read-once
formulas from an arbitrary initial distribution with positive components was
constructed. The present work contains results of a restricting nature: we
construct sets of probability distributions that are preserved by field operations.
Consequently, if the initial distribution p is contained in one of the preserved



sets, no distribution outside the set can be expressed by a read-once formula
over independent random variables having distribution p.

Naturally, the preserved sets contain the distributions from the previously
constructed family of expressible distributions.

Geometry of the distribution space

The set of distributions on elements of the field F may be interpreted ge-
ometrically as a (k — 1)-dimensional simplex in a k-dimensional space with
coordinates (ug, u1, . .., uy), defined by the relations:

uy > 0,u1 >0,...,up_1 > 0,ug+u + ... +up_1 = 1.

The vertices of this simplex are points with coordinates (1,0,...,0), (0,1,0,...

..,0),...,(0,...,0,1). They correspond to degenerate distributions with the
probability of one of the field elements equal to 1. The uniform distribution
(%, e %) corresponds to the center of mass of the simplex. The fig. 1 represents
the set of distributions for a three-element field.

Figure 1

For our further constructions it is convenient to describe the distributions

by a set of values expressed through components wyg,...,ur_1. De facto, we
consider an alternative coordinate system in the k-dimensional space. For a
point u with coordinates (ug, u1, ..., ug_1) define:
e(u) e(u)
e(u)=1—wug, 0(u)=u ——=,..., Op_1(u)=up_1— :
() = 1w, Oi(w) = — o a(u) =g —

The set of values (e(u), d1(u),...,dk—1(u)) is actually the set of coordinates of
the point u in a different basis; if one supposes that initially (ug, ..., ug_1) were
the coordinates in an othonormal basis, the alternative basis is no longer an
orthonoral one (see fig. 2 for three dimensions).



Figure 2

The coordinates of new basis vectors in the original basis are:

| 1 1
,k—l,...yk’—l Y

(0,1,0,...,0),
(0,...,0,1),
i.e., with the exception of the first basis vector, they coincide with vectors
from the original basis. It is easily seen that this change of coordinates is affine.
Henceforth we shall operate on coordinates (e(u), d1(u), . .., dx—1(u)), keeping in
mind that all results can be easily transferred back to the original coordinates
by the inverse affine transformation.

Substantially, the values (e(u), d1(u), ..., dk_1(u)) have the following mean-
ing for probability distributions. The value £(u) shows how much the probability
of the element 0 € F differs from probability 1, while the values §;(u) show how
much the conditional distribution, for a fixed probability of the element 0 € F
equal to 1 — e(u), differs from uniform on the set F \ {0}.

For the sake of convenience we shall consider the set of values (e(u), 01 (u), . . .
..., 0p—1(u)) as a set of coordinates in some orthonormal basis.

The relations defining the probability distribution simplex in the new coor-
dinate system take the form

€ £
<1l,01 > — cey 0 > —
S(U)_ s U1 ]{3—1’ sy Vk—1 ]{3—1’
0r+...+0.1=0.
These relations also define a simplex in coordinates (g, d1,...,dx_1). The point
of origin (0,...,0) is one of the simplex vertices. The point with coordi-

nates (1,0,...,0) lies on a face of the simplex; the points with coordinates



(0,1,0,...,0),...,(0,...,0,1) lie outside the simplex. Thus the axis € passes
through the simplex, while the axes d1,...,0;_1 pass outside.

The simplex is easily seen to be contained within a (k — 1)-dimensional
hyperplane (further denoted D), orthogonal to the vector with coordinates
(0,1,...,1). The vector €; = (0,...,0,1,0,...,0) can be represented as a sum:

1 1
e, = —(0,1,..., 1)+ ——(0,—-1,...,—1,k—2,—-1,...,—1),
=10 )= )
hence the projection of the vector €; onto the hyperplane D equals
1
o= —(0,-1,...,—1,k—2,—1,...,—1).
e’[, k— 1( Y Y Y Y Y Y Y )

Fig. 3 represents a three-dimensional simplex (for a four-element field), the
basis vector €y and the projections of basis vectors €7, €%, €.

Figure 3

The position vector @ = (e,d1,...,d;—1) of a point in space satisfies the
equality:
wW=c¢c€y+001€1+...+€_1.
For a point within the hyperplane D under projection into D this equality
becomes
W=cey+ € +...+¢_4
Taking the dot product of both sides with & (i > 0), due to (&%, &%) = =2 and

(€%, €]) = — for i # j, we obtain:

—/

(W, €;) = (€, €;) + 01(€1,€5) + ... + (€)_1,€}) =

—/ =/ > =/ —k_2 —1

J7#0,i J7#0i

k—2 1 1
:@E?T+&k—1_k—1%;@:@'




Let [; be the length of the vector’s @ projection onto vector €”, then:

l; l; k—2
- =/ —/ 1 -/ =/ 1
w,e;) =€ = ==(€;,€;) = 57—
Thus we obtain §; = Z % : é—,‘ Consequently, for obtaining the coordinate ;

of a point in space, one needs only to find the ratio between the length of its
position vector’s projection onto the vector €’ and the length of the vector €.
This observation shall be further used to describe subsets of the simplex.

The sets that are further constructed, are intersections of sets, each of which
is defined by inequalities, relating one of the coordinates d; to the coordinate ¢.
Due to such structure, consideration of these sets is more convenient in terms
of their projection onto a two-dimensional plane, defined by vectors é, and €.

Sums and products of random variables

When passing from distributions v = (ug,...,ux_1) and v = (vg, ..., Vx_1)
to their corresponding values (e(u), d1(u), ...) and (¢(v), d1(v), . ..), we naturally
have to transform the formulas (1)—(3). Since e(u) = 1 — ug and €(v) = 1 — vy,

formula (2) becomes:
e(u-v) =c¢e(u)-e(v). (4)

Expressing u; in terms of §;(u), e(u), and v; in terms of ¢;(v) and e(v), after the
necessary simplifications we obtain:

= Y 5(wdi(v (5)

JjeF\{0}

For the distribution of a sum instead of the relation (1) we have two equalities:

s<u+v>:s<u>+s<v>—kflsw)s(v)— S G, ()

jeF\{0}

( k ) 5:(0) + (1 -2 b 15(1})) 5i(u)+
(v)

Z +% Z 5](’&)5_

eF\{0, } jeF\{0}

(7)

The obtained formulas (4)—(7) may be simply regarded as transformations in
the space with coordinates (g, d1, ..., d;_1), than can also be applied outside the
simplex whose points correspond to probability distributions over the field F.



Further on we shall name the point u-v, obtained according to the formulas
(4), (5) the product of points u and v (possibly located outside the probability
distribution simplex), and the point u + v, obtained according to the formulas
(6), (7) — the sum of points u and wv.

It follows from the formula (4) that a product of several independent random
variables produces a distribution that tends to the distribution with ¢ = 0 (and,
consequently, 0y = ... = §;_1 = 0) as product length grows.

Since addition in the field is a group (and, hence, a quasigroup) operation,
the results of [2] imply that a sum of several independent random variables with
positive distribution components produces a distribution that approaches the
uniform distribution on the field’s elements as sum length grows. It has e = %
and 0 = ... = 0,1 = 0. The value % is used in further constructions and
henceforth denoted by h.

The results of [3] for distributions of finite fields allow a geometric repre-
sentation. Let £ = {0 < e < h,0; = ... = 0,1 = 0} be a segment in the
probability distribution space. For an arbitrary initial distribution © with posi-
tive components and an arbitrary point a € E there exists a read-once formula
consisting of additions and multiplications over the field F, such that substi-
tuting independent random variables with distribution 7 into the formula, one
obtains a distribution arbitrarily close to the point a. Fig. 4 represents the
segment F for the case of a four-element field.

e=20

Figure 4

Multiplication-preserved sets

Let us define a subset H, in the distribution space:

o e
— o 0p) | < = | <
H, Dm{(s,él, , 0—1) Iggoxw—k_l} Dn Q){W—k—l}



Let us alse define H,, = H, N {(s,61,...,05-1) : € < b}. One can easily see
from the definition of the set H,, that its projection onto a two-dimensional
plane of the vectors €, €’ is of the form presented in fig. 5.

—/
Ac€;

Figure 5

The set H,; for a four-element filed is represented in fig. 6. Its sections by
planes with constant values of € are figures defined by inequalities max |§;| < d
(3

with d depending on €. For k£ = 3 the section is a hexagon. The sections of
other sets defined further have a similar structure.

Figure 6

Lemma 1. Let a > 1, b1,by >0, u € Hyp,, v € Hyp,. Thenu-v € Hypyp,.
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Proof. For w € Hyyp,, v € Hyyp, we have e(u) < by, (v) < be, hence due to (4)
we obtain e(u - v) < bybs.
Consider now 6;(u - v) for an arbitrary ¢ # 0. According to (5):

G- o) = |3 85w (0)| < 3 16;(w)] - 8150 )|§Z<Z<g>>1“.<2<g>>f:

J#0 J#0 J#0
_ (e(u) - () _ (e(u-v))”
A (I ) A e

Hence, u-v € Hg,pp,. The lemma is proved.

Addition-preserved sets

Note that the formulas (6) and (7) are linear both in e(u), §,(u) for a fixed v,
and in e(v), 6;(v) for a fixed u. An easy corollary is that for a fixed v a convex
set of distributions wu is transformed by (6) and (7) into a convex set (and for a
fixed u a convex set of distributions v becomes a convex set). These observations
eventually allow to prove that the operation u + v preserves some convex sets.

Let a, b, ¢ be some positive real numbers. Consider the set of points (&, 1y, . . .

., 0x_1) from the hyperplane D satisfying the inequations:

\Mga—%@—m,\M§a+%@—m,i:L”wk—L (8)

+b,Q
€0

(ha _a)

Figure 7
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Denote this set of points by K, .. Thus

a a
Kope =D 0 [ (V{I0] < a= 3= )1l < at e —n)}
i£0 ¢
The set K, is easily seen to be convex. The projection of the set K, . onto

the two-dimensional plane of the vectors éj, €}is represented in fig. 7.
The set K, ;. may be regarded as the solution for the following system

e

%5+61§a—|—%h
%5—(51§a—|—%h
—g€+51§d—gh
c c

9 a a. >
—Ze—6 <a--h
C &

oh+...4+0,1<0
\_51_~~-_5k—1§0

containing 4(k — 1) + 2 inequations.

The set of solutions to this system forms a convex polyhedron, which is a
convex hull of its vertices (extreme points), see [1]. The vertices are the solution
of the system of equations, obtained from (9) by replacing non-strict inequal-
ities either by strict ones, or by equalities in such a way that the subsystem
containing only equalities has exactly rank k.

The last two inequations are easily seen to always become equations. For an
arbitrary ¢ consider four inequations, containing ¢, and €. Among the various
possibilities for changing inequalities to equalities only four are consistent, they
define the vertices of the set represented in fig. 7:

l.e=h-—c¢, 0; =0;
2. e =h, 6, = a;

3. e=h, ;= —a;
4. e=h+b,0; =0.

The choice of either e = h — ¢ or ¢ = h + b transforms two inequalities in
each quadruple of inequations into equalities, binding one of the ¢; with ¢, the
resulting equations being linearly dependent, hence adding only 1 (and not 2)
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to the system’s rank. These equations lead to d; = 0. The total rank of the
equations’ system is 2+ 1 (k —2) = k.

The choice of € = h leads to two of the four inequations binding one of the
0; with € becoming inequations ¢; < a while the two others become d; > —a.
Consequently, only two inequations out of four can become equations, and the
resulting pair of equations adds only 1 to the system’s rank. Generally speaking,
it is possible that none of the inequations binding J; with € become equations.

After choosing some ¢; one has freedom to choose k£ — 3 independent equa-
tions defining the values for various d;. For defining the last undefined ¢6; we
complete the system with the equation d; 4+ ...+ dp_1 = 0. It is clearly inde-
pendent of other equations and allows to define the remaining d;. The resulting
system rank is 2+ 1-(k—3)+ 1 =k.

Hence, we conclude that the vertices of the convex set K, . are:

1. the point (h — ¢,0,...,0);
2. the point (h +b,0,...,0);

3. points of the form (h,dy,...,dx_1), where d; + ...+ dr_1 = 0 and all d;,
with possibly one exception belong to the set {a, —a} (and if d; # +a, it
is zero).

All of these points, naturally belong to the hyperplane D, but, strictly
speaking, are not necessarily inside the simplex that corresponds to probability
distributions.

Let us show that a certain relation between the parameters a, b, c guarantees
that the set K, is preserved by transformations defined by (6) and (7).

Lemma 2. Let 0 < a < %, k(k—1)a*> <b<c<h Letuve Kyp.. Then
ut+ve Kype.

Proof. By convexity of the set K, and bilinearity of the u + v transform it
suffices to prove that for any pair of vertices u, v of the set K, . the resulting
u + v belongs to K, ;.. Let us consider all the possible pairs.

Let first w = (h 4+ 2,0,...,0), v = (h+y,0,...,0). Then by (6), (7) we
obtain:

1 Ty

h(h+x)(h+y):h——

e(u+v) = (h+z)+ (h+vy) B (10)

di(u+v) = 0.

Using these relations we find e(u+v) for the following combinations of vertices:

2

L. u=(h—-c0,...,0),v=(h—¢c0,...,0): e(ut+v)=h—5.
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. _ be
2. u=(h—¢c0,...,0),v=(h+0b,0,...,0): e(u+v)=h+7F.
) _ b
3. u=(h+0,0,...,0),v=(h+b,0,...,0): e(u+v)=h— 7.

Since under the lemma’s conditions the inequations b < ¢ < h hold, we have
%C <, % < cand % < ¢. Hence, in all of the considered combinations we have
uU+v e Ka,b,c-

Let now u = (h + x,0,...,0), v = (h,dy,...,dr_1). Then by (6), (7) we
obtain:

5(u+v):(h+:z:)+h—%(h+x)h:h,

) (1)
5Z(U + U) = <1 — %(h + SU)) d; = _ﬁdz

Both in the case of u = (h —¢,0,...,0) and in the case of u = (h+b,0,...,0),
by inequations b < ¢ < h we have:

‘5Z(U+U)‘ < |dz‘ < a,

which easily implies that u +v € K.
Finally, let us consider u = (h,d},...,d;_ ;) and v = (h,d{,...,d;_;). Then
by (6), (7) we obtain:

1
c(utv)=hth—oh? =3 dd';=h-) dd";
j#0 j70
1
Oilutv) =) didl j+— > did;.
770, j70
The obtained relations imply inequations |e(u + v) — h| < (k — 1)a® and

G+ v)| < (k — 2)a? + ﬁ(k C1)a? = (k- 1),

Thus, the point u + v is located inside the convex set defined by inequations:

h—(k—1a*<e<h+(k—1)d%
—(k—1Da* <6< (k—1d* i=1,....k—1.

The projection of this set onto the two-dimensional plane of the vectors éj, €,
is represented in fig. 8.

Let us show that this entire set lies within K, .. For this it suffices to show
that its vertices are located inside K, i.e. satisfy the inequations (8).
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Figure 8

For the considered vertex points we have ¢ = h & (k — 1)a?, hence ¢ — h =
+(k — 1)a®. Besides, these points have |§;| = (k — 1)a?. Consequently, we have
to show that the following inequations hold:

(k—1)a* < a=+ %(k “Da?, (k—1Da® <a+ (k- 1)d
C

By positivity of a, b, ¢, the inequations
a

(k—l)a2§a+g(k—1)a2 and (k—l)a2§a+b
c

(k — 1)a®
follow from

(k—1)a*<a-— g(k; —1)a? and (k — 1)a® < a — %(k —1)a’.
c

By lemma’s conditions b,c¢ > k(k — 1)a*, wherefrom we obtain ¢(k —1)a* < ¢
and 2(k — 1)a® < ¢. Hence

a a a

2

— (k — > — — — 2 (} —

a b(k Da*>a p k(k: 1),
a a a
——(k-1a*>a—=-=—-(k—1).

T - ()

Together with the inequation a < % provided by lemma’s conditions, this leads
to the necessary inequations. The lemma is proved.

Lemma 3. Let Ky = K, p-1)a2e, K2 = Ky pi—1)a2,0, where 0 < a,a’ < %,

k(k—1)a?> <c<h, k(k—1)a? < < h. Then for any u,v € Ky U K, holds
u+v e KiUKs.
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Proof. Without loss of generality, let us consider a > a'. If, besides that, we
have ¢ < ¢, then Ky C Ky, K1 U Ky = K; and the lemma’s statement follows
directly from lemma 2. Further we suppose ¢ > ¢. The projections of the
sets K and K3 onto the two-dimensional plane of the vectors €, €’ in this case
are represented in fig. 9.

Figure 9

Let u,v € K; U K. Supposing that moreover u,v € Kj (respectively,
u,v € Ks), we obtain by lemma 2 that u + v € K; (respectively, u + v € Kj)
holds, which implies the lemma’s statement. Thus the only remaining cases to
consider are the ones with u € Ky, v € K.

Let us show that for any fixed © € K7 and all possible v € K5 the sum u-+v
belongs to K. By convexity of the sets K; and K5 it suffices to show that all
possible combinations with v being a vertex of K7 and v being a vertex of Ky
lead to u +v € Kj.

Due to the relations a > a’ and ¢ < ¢ between the parameters of the sets
K and K>, all of the vertices of Ky with the exception of (h — ¢/,0,...,0) are
located within K7, thus having u + v € K by virtue of lemma 2. Let us show
that for v = (h — ¢,0,...,0) we also have u + v € K; for all vertices u of the
set K.

The relations (10) and the inequation ¢ < h imply that for vertices u =
=(h—-1¢,0,...,0) and u = (h + k(k — 1)a?,0,...,0) we have u + v € K.

For u = (h,dy,...,d;_1) the relations (11) and the inequation ¢ < h imply
that u + v € K;. Thus, the lemma is proved.
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Preservation theorems

Theorem 1. Let 0 < a < % Then for any u,v € K, -1y, N {e < 1} we
have u - v,u +v € K, pr—1)q2,n N {e < 1}

Proof. By virtue of lemma 2 under the theorem’s conditions u+v € K p—1)a2,n,
thus it suffices to prove that u-v € K, px—1)a2,n-

Let us consider some u,v € K px—1)q2,, and, without loss of generality, let
e(u) < e(v). Define:

d= m?x{\éz\ : (5(u), 01,. .. ;5k—1) S Ka,k;(k:—l)aQ,h}'

Due to a < § one may chose such an « that d = %, namely o = —hﬁkg_(i))d > 1
(see fig. 10).

Figure 10

By choice of d and « we obtain that H, ) C Kqpk—1)a2,n- Besides that,
u € Hyo(u), v € Hyy o(v)- Hence, by virtue of lemma 1 and due to e(u),e(v) < 1
we obtain:
u-ve Ha@(u)a(v) - Ha,s(u) - Ka,k(k—l)a27h'

The inequations e(u - v) < 1 and e(u + v) < 1 are an easy implication of the
theorem’s conditions. The theorem is proved.

Theorem 2. For any k > 3 there exists such an ay(k) that for all o > ap(k)
the sets

I, = (Ha,h U Ka7k(k—1)a2,k(k—1)a2) N {5 < 1}7
ha

where a = 1, are preserved by both addition and multiplication, i.e. for any
u,v € I, we have u-v,u+v € I,.
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Proof. Given the relation a = =, let us consider the reciprocal location of the

—1
set H, and the set K p—1)a2 k(k—1)a2- We shall show that for big enough values
of o we have

[(a,k(k:f1)(12,Ic(lffl)a2 C H,.

Consider the projections of those sets onto the two-dimensional plane of the

vectors €, €; (see fig. 11). The point with ¢ = h and §; = khTa is easily seen to

1
lie exactly on the boundary of both sets.

~/
Ac€;

Figure 11
The points from the set K, j(r—1)a2 k(k—1)a> satisfy the inequation

6;] < a+ — h).

R D

We further consider only points with ¢; > 0 (for ; < 0 the argument is ana-
loguos).

The points of the set H, satisfy the inequation 9; < kg—jl Let us consider
the tangent to the graph of the function ]f—_al at the point ¢ = h. The function is
convex downward, hence the points that are below the tangent are also below
the function’s graph.

The tangent intersects the line a + W(E — h) at the point € = h. If
the tangent’s slope is smaller than the line’s slope then all of the points from
the set K p—1)a2,k(k—1)e2 With € < h lie below the tangent, and consequently
within the set H,. Also the points from the set K, jx—1)a? k(k—1)a> With € > h
obviously belong to the set H,.

Let us write the relation between slopes as an inequation:

aht! < a
k—1 = k(k— 1)a2'
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%, it is equivalent to ah?@*=1) < 1. Because lim ah*®D =
a—00

holds, there exists such an oy (depending on h and, consequently, on k), that
for any a > «g the inequation is satisfied. For those values of « the inclusion
Ka,k(k—l)aQ,k(k—l)az C H, holds.

Let now u,v € I,, where a > «y.

If e(u) < hore(v) <h,thenu-ve Hyp C 1, If, otherwise, e(u),e(v) > h,
then there exists such an o/ > «, that

Since a =

u,v € Ha’,max{a(u)ﬁ(v)} C I,.

Hence u - v € Ha/,max{g(u)’g(v)} C I,.
Let us now show that v +v € I,. If u € K,pp_1)a2k(h—1)a2, let K1 =
Ko k(k—1)a2,k(k—1)a2- Otherwise let us choose for K such a set Ky p(x—1)a2 ., that:

a _ ofe(u)”
L. c 2—1 ’
2. mlax{éi c(e(w), 81, ..., 0p1) € Kq} = (5;53)1)&7

i.e. that is tangent to the boundary of the set H, at the point € = e(u). It
is easily seen that u € Ky C [I,. Similarly, let us choose K, according to the
location of v. Then u,v € K; U K5, and by virtue of lemma 3 we obtain that
u+veKiUKyCl,.

The theorem is proved.

Theorems 1 and 2 allow us to construct a series of nested subsets of the
probability simplex, each of which is preserved by both addition and multipli-
cation. Projected to the plane of the vectors €y, €7, these sets are represented
in fig. 12.

Complementary remarks

Besides addition and multiplication operations in the field F, one may con-
sider their inverse operations of subtraction and division. From the point of
view of probability distribution transformation it is equivalent to considering
unary operations of negation and inversion.

For a finite field the operation of negation is, in fact, a permutation on the
set of the field’s elements, and it is a permutation that preserves the element
0 € F. It is easily seen that all of the above-constructed sets, preserved by both
multiplication and addition, are also preserved by permutations of the field’s
elements, that preserve the element 0, hence they are preserved by the unary
negation operation.
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Figure 12

The inversion operation z~' is not defined for 0 € F, yet we can extend

the definition by letting 0~! = 0, which will make z=! also a permutation of
the field’s elements that preserves zero and, therefore preserves all of the sets
constructed above.

It is worth noting, that the proved theorems do not require all of the field
properties in the structure F. The constructs remain valid if instead of F
one considers a set with a quasigroup operation of ,,addition” having a neutral
element 0 € F, and an operation of ,,multiplication” which is a quasigroup on
F\{0} and satisfies 0-z = -0 = 0 for all z € F. Such structures, in particular,
may contain an arbitrary finite number of elements &k (not necessarily a power of
a prime, as in the case of a field). By analogy with quasigroups, R. V. Goncharov
in a private communication suggested to name these structures ,,quasifields”.

The sets constructed in theorems 1 and 2 do not cover the entire simplex
of probability distributions. Only in the special case of k£ = 3 for every point
of the simplex there exists a preserved set containing this given point. Already
for kK = 4 one may explicitly indicate points of the simplex that do not belong
to any of the constructed sets. Moreover, as k grows infinitely, the fraction of
the constructed preserved sets’ volume in the simplex volume tends to zero.

The author expresses his gratitude to O. M. Kasim-Zade for the attention to
this work and fruitful discussions.
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