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Sergey A. Khilkov, Anton V. Ivanov
Numerical simulation of the magnetic moment distribution evolution
for superparamagnetic materials

We present in this paper the high-order local discontinuous Galerkin method
for solution to Fokker–Planck like equation for superparamagnetics on a sphere.
We used the recursively constructed mesh on the sphere which consists of
spherical triangles. In addition we provide the ordering of cells which increases
the locality of data corresponding to mesh cells. Several test calculations were
carried out. They proved the second order of the scheme. In addition, resonant
properties of the system for two different setups were calculated.
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Хилков С.A., Иванов А.В.
Численное моделирование эволюции функции распределения магнитного
момента для суперпарамагнитных материалов

В данной работе построен локальный разрывный метод Галеркина высо-
кого порядка для решения уравнения типа Фоккера–Планка для суперпара-
магнетиков на сфере. В работе использовалась рекурсивная сетка, состоя-
щая из сферических треугольников, обеспечивающая хорошую локальность
хранимых в ней данных. Было проведено несколько тестовых расчетов, под-
твердивших второй порядок точности метода. В качестве примера примене-
ния метода были рассчитаны резонансные свойства суперпарамагнетика для
двух различных постановок.

Ключевые слова: локальный метод Галеркина, суперпарамагнетики,
уравнение Брауна.
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Introduction

Solving the equations of physical kinetic on a sphere is required in a wide
range of problems. In many settings (especially in evolutionary problems) to
obtain an appropriate solution one should use methods which ensure that the
conservation laws inherent for a system are fulfilled. Apart from that, many
problems require high accuracy. High-order methods are commonly used to
increase accuracy without sufficient rise of the computational cost.

To fulfill these demands it is convenient to utilize the results from com-
putational fluid dynamics. Discontinuous Galerkin methods (DG) [1] are the
newest and the most promising computational methods family. These methods
are straightforwardly generalized to any necessary order of convergence and
they possess conservative properties. Also in the recent years the adaptive
modifications of the DG methods were developed [2]. The former monotonize
the generic limiters [3] along with the limiters designed for a specific prob-
lem [4].

Although the DG methods restrict the choice of meshes only to a minor
extent, the accuracy of the solution certainly depends on the quality of the
mesh. In many problems the errors caused by the mesh anisotropy lead not
only to the quantitative distortions but also to the qualitative ones. The tra-
ditional mesh in the spherical coordinates is the simplest for implementation,
but the singularities on the poles appear to be considerable restrictions in its
application. The other approach is called cubed sphere [5] which is constructed
by means of projection of a circumscribed cube on a sphere and subsequent
decomposition of each quadrangle. This mesh is evidently anisotropic and
possesses considerable distortions in the vicinity of the corner of the cube, al-
though it already is viable. There exists a plenty of other choices of the meshes
on the sphere, see for example a mesh based on an icosahedron in the work by
Giraldo [6]. We implement a recursive mesh based on a dodecahedron [7]. The
basic mesh is obtained after the primary decomposition of its faces to almost
equilateral triangles. The subsequent splitting of the triangles and projection
to the sphere provides considerably less distortion than the mesh based on
an icosahedron. To approbate this method we simulate a superparamagnetic,
which is an ensemble of monodomain ferromagnetic microparticles. The su-
perparamagnetics are described by an equation of the Fokker–Planck type on
a sphere, derived by Brown in 1963 [8]. It is among the simplest equations
of the physical kinetic considered on a sphere. For some particular cases a
precise analytical solution to the Brown equation is available and allows us to
test the method. Apart from that the superparamagnetics possess a number of
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interesting resonant properties. In this work we calculated the response depen-
dence on the temperature for two qualitatively different cases, in both apart
from the paramagnetic resonance nonmonotonic dependence of the response
on the temperature (stochastic resonance) could be observed.

The paper describes a local discontinuous Galerkin method (LDG) for the
numerical solution of the Brown equation on a sphere. For a number of sim-
plifications the comparison to the precise solutions are provided. The first
Section defines the mesh and the basis in cells, the second Section describes
mathematical and physical setting, the third Section defines the numerical
method and in the last Section the results of the calculations are presented.

1 The mesh and the basis

1.1 The mesh

The implementation of the DG method admits meshes of quite a generic
type, for example in the work by Giraldo [6] the mesh consisting of curved
quadrangles is used. We use the tessellation Tℎ = {𝐾𝑖, 𝑖 = 1, 𝑛} on a spherical
region 𝑆2 which consists of 𝑁 spherical triangles 𝐾𝑖. While simulating the
precession of the distribution one has to take into account the curvature of the
cells because on the mesh of plane triangles a systematic phase error inevitably
appears.

The construction of the mesh on a sphere is a separate complicated task.
We have decided to use a recursive algorithm of construction. One of its ad-
vantages is a relative simplicity of local mesh refinement and consequently the
simplicity of the development of the adaptive methods. It is worth mentioning
that the discontinuous Galerkin method also allows to tune the order of accu-
racy in a separate cell without splitting of the cells using the enlargement of
the basis in a given cell of the numerical scheme. Another advantage of recur-
sive mesh structure is a natural locality of the data. Also it is convenient that
the discussed mesh possesses a large number of symmetries. This property is
used in particular to decrease the amount of the geometric data stored and
calculated.

The construction of the mesh was started from a dodecahedron in which
the vertices of a given face are connected with the center of the face. The
starting mesh is obtained by a projection of this polyhedron to the sphere. To
simplify the calculations one can rotate the dodecahedron in such a way that
any of the coordinate planes would contain a pair of the opposite edges of the
dodecahedron. Such an orientation on the space allows to reduce the main
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part of the symmetries to the cyclic permutations of the coordinates and to
the reflections from the coordinate planes. Thus there remain only two unique
vertices of the dodecahedron. The decomposition of the triangle is carried
out by the connection of the centers of its edges (cf. fig. 3). An example of a
tessellation on the sphere is given on the fig. 1.

Figure 1: The mesh after three steps of the decomposition of the triangles.

For the mesh calculations it is important to know how the linear size of
the cell decreases when the number of cells increases. From the fig. 2 one can
see that the linear size is proportional to a square root of the number of cells
which is natural in two-dimensional problems.

For the effective realization of the calculation the locality of the data (i.e.
how closely the neighbouring cells are located in the memory) is rather impor-
tant [9]. To obtain a mesh with high locality we utilize the following indexation
algorithm. All the data are stored in a one-dimensional array. The index of a
given cell in this array is constructed recursively. Any of the pentagons of the
dodecahedron is located in two quadrants, and this pair of quadrants defines it
unambiguously. The indices of the triangles increase clockwise and are ordered
by the indices of pentagons which contain them. In any subsequent level of
decomposition the index of triangles are ordered by entering of the triangle
in the previous triangle (sf. fig. 3). Inside the triangle the indices increase
clockwise and the minimal index is in the center. Thus if we write index for
triangle 𝐾𝑖 in quaternary notation we see that first two digits represent index
for triangle of mesh without decomposition, which contain 𝐾𝑖, first three digits
form the index on the mesh after one step of triangles decomposition and so
on. On each step of decomposition we add one new digit in the end of index.

Such an ordering increases the locality of the data. Also linking the internal
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Figure 2: The dependence of the diameter of the tessellation diam (Tℎ) on the number of
the cells 𝑁 .

ordering allows to construct a simple algorithm of search of neighbouring cells
based on the index of the given cell which does not require any additional
data.

1.2 The basis

Let us start with writing down the basis in the triangle 𝐾𝑖. We construct
the basis from the spherical Bernstein–Bezier polynomials [10]. In principle it
is straightforward to write the basis for any given order of accuracy, but in this
paper we confine ourselves to the second order. For the second-order method
the basis is consisting of a constant 1 and a pair of spherical Bernstein–Bezier
polynomials of the first order 𝑔1 (r) and 𝑔2 (r) is used.

Let a1, a2, a3 be the vectors pointing from the center of the sphere to the
vertices of the triangle 𝐾𝑖. Then the basis functions are as following:

𝑔0 (r) = 1,

𝑔1 (r) =
(r, a1, a2)

(a1, a2, a3)
,

𝑔2 (r) =
(r, a2, a3)

(a1, a2, a3)
.

(1)

Also for brevity we use the notation:
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Figure 3: On figures (a) and (b) the decimal indices for two different decomposition steps are
shown. On (a) there is no triangles decomposition, and on (b) one step is performed. Figures
(c) and (d) represent indices for decompositions of triangle 7 from figure (a) in quaternary
notation.

𝑔3 =
(r, a3, a1)

(a1, a2, a3)
. (2)

These first-order Bernstein–Bezier polynomials are in some sense the barycen-
tric coordinates for the spherical triangles,

r = 𝑔1 (r) a3 + 𝑔2 (r) a1 + 𝑔3 (r) a2. (3)

Also the axial part of gradients ∇∘ of basis functions that utilized to construct
the numerical method have a quite simple form:

∇∘𝑔1 (r) =
[a1 × a2]

(a1, a2, a3)
− r𝑔1 (r) . (4)

We omit the centering constants in the basis declaration. Those constants we
subtract from 𝑔1 and 𝑔2 to made them orthogonal to 𝑔0 in 𝐿2.

In the implementation of LDG method there are several integrals over cells
and their boundaries we ought to compute. To calculate those integrals we first



8

project a spherical triangle to a plane one, and then use the known technique
of the Gaussian quadrature for the plane triangle. We introduce the notation
P𝑖 for the plane triangle constructed from the same vertices a1, a2 and a3 as
the spherical one 𝐾𝑖 ∈ Tℎ. We get the following expression for the integral
over the spherical triangle of some function 𝑓(m):

∫∫
𝐾𝑖

𝑓(m)dm =
∫∫
P

𝑓

Ñ
r

|r|

é
(a1, a2, a3)

|r|3
dr. (5)

The integration over the plane triangle P𝑖 is done using the four-point quadra-
ture formula.

To calculate the integrals over the boundary of the spherical triangle the
projection to the plane triangle is used too. The boundary 𝜕𝐾𝑖 consists of
the three arcs ˚�a1, a2, ˚�a2, a3 and ˚�a3, a1. Consider the integral of the function
𝑓(m) over the arc ˚�a1, a2. The straight line connecting the points is denoted by
a1, a2. Then the integral over the arc can be expressed in terms of the integral
over the line:

∫
ă1,a2

𝑓(m)dm =
∫

a1,a2

𝑓

Ñ
r

|r|

é
| [a1 × a2] |

|r|2
dr. (6)

To compute the integrals in the boundaries we use the three-point Gauss–
Legendre quadrature rule.

2 The setting of the problem

The superparamagnetic material is an ensemble of non-interacting mon-
odomain ferromagnetic microparticles. At the temperature below the Curie
temperature this systems behaves as a paramagnetic with a large susceptibil-
ity. Superparamagnetics possess a whole range of interesting properties, in
particular superparamagnetics provide the phenomena of the stochastic reso-
nance, i.e. a non-monotone dependence of the response on the temperature at
a constant frequency of the external alternating field. To simulate superpara-
magnetic we use the Fokker-Planck equation which describes the evolution of
the distribution of the magnetic momentum of the monodomain particle. This
equation was introduced by Brown in 1963 [8]:

𝜕𝑓 (m, 𝑡)

𝜕𝑡
+ 𝛼

(
∇∘,

[
m×H

eff
]
𝑓 (m, 𝑡)

)
=

𝛾
(
∇∘,

[
m×

[
m×

(
H

eff − 𝑇∇∘
)]]

𝑓 (m, 𝑡)
)
, (7)
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where

H
eff = H0 +A sin (Ω𝑡) +𝐾a3(a3,m)3,

𝑓 (m, 𝑡) is the distribution function of the magnetic momentum of the sample
particles depending on the direction m and the time 𝑡, ∇∘ denotes the axial
part of the gradient, 𝛼 is the speed of the precession, 𝛾 is the dissipation co-
efficient, H0 is the constant external field, A is the amplitude of the periodic
external magnetic field, 𝐾, a3 are correspondingly the coefficients and the di-
rections of the cubic anisotropy and 𝑇 is the temperature of the thermostat
which contains the sample.

3 The numerical method

3.1 The space integration

To simplify the further calculations let us introduce the flux:

𝑄 (𝑓) = 𝑓,

F (𝑓) = 𝛼
[
m×Heff

]
𝑓 − 𝛾

[
m×

[
m×Heff

]]
𝑓,

G = 𝛾𝑇 [m× [m× q]] .
(8)

After the substitution of the fluxes in the equation (7) we rewrite the second-
order equation as a system of the convection equations in the divergent form,

q (m, 𝑡) = −∇∘𝑄 (𝑓) ,
𝜕𝑓 (m, 𝑡)

𝜕𝑡
+ (∇∘ · F (𝑓)) = (∇∘ ·G (q)) .

(9)

We have obtained a system of four first-order equations which we solve
using the discontinuous Galerkin method. We look for the solution (𝑓ℎ,qℎ)
given by a linear combination of the basis functions 𝑔𝑗 in any of the cells of
the mesh with the coefficients of the combination depending only on time.
Thus into the cell 𝐾𝑖 we look for the solution in the following form:


𝑓ℎ (m, 𝑡) =

2∑
𝑗=0

𝑓𝑗 (𝑡) 𝑔𝑗 (m) ,

qℎ (m, 𝑡) =
2∑

𝑗=0

q𝑗(𝑡)𝑔𝑗 (m) .
(10)

Let us write down the semi-discrete Galerkin method for the equation (9) and
a probe function 𝜈ℎ (m) which is an arbitrary linear combination of the basis
functions 𝑔0, 𝑔1, 𝑔2:
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

∫∫
𝐾𝑖

qℎ𝜈ℎdm = −
∮

𝜕𝐾𝑖

𝑄 (𝑓ℎ)n𝜈ℎdΓ +
∫∫
𝐾𝑖

𝑄 (𝑓ℎ)∇∘𝜈ℎdm,

d

d𝑡

∫∫
𝐾𝑖

𝑓ℎ𝜈ℎdm+
∮

𝜕𝐾𝑖

(F (𝑓ℎ)−G (qℎ)) · n𝜈ℎdΓ−∫∫
𝐾𝑖

(F (𝑓ℎ)−G (qℎ)) · ∇∘𝜈ℎdm = 0.

(11)

The index 𝑛 takes values from 0 to 2. We used here the curvilinear version
of Ostrogradsky–Gauss theorem to evolve the integrals. Without loss of gen-
erality the equation (11) can be substituted by a system in which the probe
function 𝑣ℎ is substituted in turn by each of the basis functions 𝑔0, 𝑔1 and 𝑔2.

2∑
𝑗=0

q𝑗

∫∫
𝐾𝑖

𝑔𝑗𝑔𝑛dm+
∮

𝜕𝐾𝑖

𝑄(𝑓ℎ)n𝑔𝑛dΓ−
∫∫
𝐾𝑖

𝑄(𝑓ℎ)∇∘𝑔𝑛dm = 0,

2∑
𝑗=0

d𝑓𝑗
d𝑡

∫∫
𝐾𝑖

𝑔𝑗𝑔𝑛dm+
∮

𝜕𝐾𝑖

(F(𝑓ℎ)−G(qℎ)) · n𝑔𝑛dΓ−∫∫
𝐾𝑖

(F(𝑓ℎ)−G(qℎ)) · ∇∘𝑔𝑛dm = 0.

(12)

The introduction of the q variable does not require storage of additional
data in each of the mesh cells and can be computed locally. This very property
explains the origin of the name of the LDG methods family.

Generically on the boundaries of the cells the solution experiences disconti-
nuity hence there is no unique way to calculate the flux through the boundary.
This is a reason why we introduce the numerical fluxes.

3.2 The numerical fluxes

For the fluxes describing the convective part we use the notations intro-
duced in [1] for the jump value and the average value of some function 𝑝 on
the cell’s boundary:

[𝑝] = 𝑝out − 𝑝in,

{𝑝} = 𝑝in + 𝑝out

2 .
(13)

We substitute the flux (F(𝑓ℎ) · n) with the numerical Lax–Friedrichs flux
𝐹 (𝑓ℎ), defined by the formula:

F̂(𝑓ℎ) = {F(𝑓ℎ)} · n− 𝐶

2
[𝑓ℎ] , (14)

where 𝐶 = max
𝑓∈[𝑓 in,𝑓out]

ß
𝜕
𝜕𝑓F (𝑓) · n

™
is the maximal characteristic speed.
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To reach the optimal convergence order the fluxes for the diffusion terms
should be substituted by the special numerical fluxes [11]. The calculation
of these fluxes does not present a considerable complication but requires the
introduction of a new entity: for each boundary we must define which of the
adjoining cells is the right one. The other cell we call the left one.

To define the direction for every edge we choose the special axis o con-
necting two mesh vertices on the sphere. We use two opposite vertices for
additional symmetry. In each point of the quadrature formulae on the cell
boundaries the direction of the vector product of the radius-vector of the point
and the axis l = r× o is computed. If the resulting vector l points inside the
cell then the cell is left, otherwise right.

It is certainly not the unique way to distinguish between left and right
cells but it guarantees absence of the cells which have no right neighbours and
which correspondingly are not accounted for in the calculation of the diffusion.
The absence of the left neighbours also leads to the absence of the diffusion
through the cell’s boundary.

Having defined the left and right cells we finally can write down the nu-
merical fluxes for the diffusion through their common boundary, 𝑄̂ (𝑓ℎ)n = 𝑓𝑅

ℎ n,

𝐺̂ (qℎ) · n = q𝐿
ℎ · n.

(15)

3.3 The time integration

Having substituted the quadrature formulae for the space integration into
the equations (12) we arrive to the system which can be written in a compact
form d𝜉

d𝑡 = 𝐿𝜉, where 𝜉 = (𝑓0, 𝑓1, 𝑓2,q0,q1,q2), and 𝐿 is a certain operator, in
our case linear. To integrate this ODE system over time we use the second-
order TVD Runge–Kutta method, also known as Heun’s method [12]. If we
take time step to be equal to ℎ, then the time integration looks as following:

𝜉(1) = 𝜉(0) + ℎ𝐿(𝜉(0)),

𝜉(2) =
1

2
𝜉(1) +

1

2
ℎ𝐿(𝜉(1)).

(16)

Since we use the explicit time integration the time step is subject to the CFL
condition. In our case this condition is quadratic in space. Hence using of
such approach is sensible only in the convection dominated problems. For all
setups where we have the positive diffusion we can obtain the monotonicity of
the scheme without introduction a limiter. For settings without the diffusion
we used the WENO limiter introduced in the paper [3]. That completes the
definition of the computational method.
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4 The results of the simulations

For the Brown equation in absence of the periodic external field or anisotropy
the stationary distribution is available which reads as (up to normalization fac-
tor):

𝑓 * (m) = exp
ÇmH

𝑇

å
. (17)

By means of this function the coordinate momentum along the field can be
calculated (without loss of generality assume that the field is directed along 𝑧
axis),

⟨𝑚𝑧⟩ = cth

Ñ
|H|
𝑇

é
− 𝑇

|H|
. (18)

Another setting to test the method is 𝑇 = 0. In this setting the character-
istics are available [7]:


𝜙 (ℎ) = 𝜙0 − 𝛼|H0|ℎ,

𝜃 (ℎ) = 2 arctg

(
tg

𝜃0
2
exp [−𝛾|H0|ℎ]

)
,

(19)

where 𝜙 and 𝜃 are the spherical coordinates and the 𝜃 angle is counted from
the magnetic field direction.

We consider these two settings without anisotropy and in presence of the
unit constant field to estimate the convergence.

1. At 𝑇 = 0.1, 𝛾 = 0.1, 𝛼 = 1 and the stationary distribution is chosen as
an initial distribution. The duration of the calculation is taken to be
sufficient for the distribution to settle. In this case the duration is 3𝜋

2𝛾 .
In this setting we measured the deviation of the first momentum of the
coordinate along the field |𝛿 ⟨𝑧⟩ | in the stationary distribution from the
theoretical values given by the formula (18).

2. At 𝛾 = 0, 𝛼 = 1 let us consider the error in calculation of oscillation
frequency. This parameter is crucial for long-duration calculations be-
cause the phase error is accumulated due to the deviation of frequency.
The duration of the calculation was taken to be no less than 50 periods.
From the formula (19) the theoretical value of the oscillation frequency
could be derived. It equals to 𝛼.
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The figure 5 shows that the deviation of the second momentum decreases
linearly when the number of the cells is increased. Taking into account the
connection of the cell diameter with the number of cells (cf. fig. 2) we obtain
the second order of accuracy for this quantity.

The results for the second setting are presented on the fig. 4. We see
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Figure 4: The dependence of frequency error
𝛿𝜔 on the number of mesh cells 𝑁 .
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Figure 5: The dependence of the deviation
of the first momentum along the field in the
stationary distribution 𝛿 ⟨𝑧⟩ on the number of
cells 𝑁 at 𝛾 = 0.1, 𝑇 = 0.1, 𝛼 = 1.

that the phase errors depend on the diameter of the tessellation as quadratic
function and they are sufficiently small for long-duration calculations. As you
can see there is no diffusion in this setting, therefore we were forced to use the
WENO limiter. Nevertheless it does not sufficiently affect the phase errors.

We also simulate two anisotropic settings. The light axis type of anisotropy
which was used in this work had it’s axis directed parallel to the external
field. The direction of the periodical external field A was perpendicular to
the constant external field H and its value was chosen to be 0.1. The first
setup had value of external field |H| equals 2 that greater than the anisotropy
constant 𝐾 which value was chosen to be 1 in both settings. So in this setting
we have one-well the unharmonic magnetostatic potential 𝑈 defined by the
following equation Heff = −∇m𝑈 +A sin (Ω𝑡).

In the other setup the external field |H| = 0.5 was lesser than anisotropy
coefficient 𝐾 = 1. Here we had double-well potential.

For both setups we calculated the response 𝐼 on the periodical external field

A sin (Ω𝑡). We define the response as the amplitude of equilibrium oscillations
in projection on the direction of periodical field and evaluate it according to
the formula (20) as an amplitude of Fourier transformation of average mag-
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netic moment projection on the direction of the driving force on it’s frequency
calculated on 40 periods of oscillations.

𝐼 =
2Ω

|A|80𝜋

∣∣∣∣∣∣∣∣∣
5
𝛾+

80𝜋
Ω∫

5
𝛾

∫
∘

(m ·A)

|A|
𝑓 (m, 𝑡) dm 𝑒𝑖Ω𝑡 d𝑡

∣∣∣∣∣∣∣∣∣ (20)

Results for the first setting are represented on the fig. 6. On this figure we
see that the paramagnetic resonance frequency decreasing if the system tem-
perature increasing. The cause of this effect is that our system is unharmonic
and therefore the period of precession depends on it’s energy. By increasing
the temperature of the system we enlarging the average energy of the system
hence reducing it’s frequency. The response dependence for the other setting
displayed on the fig. 7. In this case |H| < 𝐾 and magnetostatic potential be-
come double-well potential. For each of potential wells we have fundamental
frequency. So we can clearly see two maximums on fundamental frequencies
for the each well.

On the both figures we can see nonmonotone dependence of response on
the temperature.

Concluding remarks

The purpose of this work was the construction and the verification of the
LDG method on the sphere on a recursive mesh consisting of spherical trian-
gles. As an example for the simulation the Fokker–Planck equation was chosen
which describes the evolution of the magnetic moment distribution for a super-
paramagnetic system. The accuracy of the method was proven by two variants
of the setting which confirmed the convergence of the system to be of the sec-
ond order. The value of the phase error proved to be sufficient for simulation of
the resonance properties of the superparamagnetic materials. The frequency
error of the implemented method appeared to be sensibly small therefore we
can use this method for calculations of resonant phenomena. The response
dependence on the frequency of driving force and the temperature for two
systems with qualitatively different magnetostatic potentials was calculated.
Stochastic resonance was observed in each case.
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Figure 6: The dependence of the response on the frequency Ω and the temperature 𝑇
for 2 = |H| > 𝐾 = 1
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