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Неравновесный газ, энтропия и обобщенные биллиарды
Обобщенные биллиарды описывают неравновесный газ, состоящий из конечного чис-

ла частиц, которые перемещаются в сосуде, стенки которого нагревают газ или охлаждают
его. Обобщенные биллиарды могут рассматриваться как в рамках ньютоновской механи-
ки, так и в рамках теории относительности. В ньютоновском случае обобщенный билли-
ард может обладать инвариантной мерой; энтропия Гиббса относительно этой меры есть
константа. В противоположность этому обобщенные релятивистские биллиарды всегда
диссипативные, и энтропия Гиббса при некоторых естественных условиях возрастает как
относительно этой меры, так и относительно фазового объема.

В этой работе находятся необходимые и достаточные условия для обобщенного нью-
тоновского биллиарда, при которых существует гладкая инвариантная мера, не зависящая
от действия границы: соответствующий классический биллиард должен иметь дополни-
тельный первый интеграл специального типа. В частности, обобщенный биллиард Синая
не имеет гладкой инвариантной меры. Далее, рассматриваются обобщенные биллиарды
внутри шара, которые являются одним из главных примеров ньютоновских обобщенных
биллиардов, имеющих инвариантную меру. Эта инвариантная мера явно строится и на-
ходятся условия, при которых у соответствующего релятивистского биллиарда энтропия
Гиббса растет как для монотонного, так и для периодического действия границы.

Ключевые слова: обобщенный биллиард, неравновесный газ
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Nonequilibrium gas, entropy and generalized billiards
Generalized billiards describe nonequilibrium gas, consisting of finitely many particles,

that move in a container, whose walls heat up or cool down. Generalized billiards can be
considered both in the framework of the Newtonian mechanics and of the relativity theory. In
the Newtonian case, a generalized billiard may possess an invariant measure; the Gibbs entropy
with respect to this measure is constant. On the contrary, generalized relativistic billiards are
always dissipative, and the Gibbs entropy both with respect to the same measure and the phase
volume grows under some natural conditions.

In this article, we find the necessary and sufficient conditions for a generalized Newtonian
billiard to possess a smooth invariant measure, which is independent of the boundary action:
the corresponding classical billiard should have an additional first integral of special type. In
particular, the generalized Sinai billiards do not possess a smooth invariant measure. We then
consider generalized billiards inside a ball, which is one of the main examples of the Newtonian
generalized billiards which does have an invariant measure. We construct explicitly this invariant
measure, and find the conditions for the Gibbs entropy growth for the corresponding relativistic
billiard both for monotone and periodic action of the boundary, both with respect to the measure
above and with respect to the phase volume.
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1. Introduction
The description of gas as a system of elastic balls moving inside a container

goes back to Boltzmann and Poincaré [1], [2]. For an ideal gas, the balls, repre-
senting its molecules, are replaced by point masses (particles). The probability of
collision of two particles is zero, so the particles move independently from each
other. Behaviour of such a system is described by billiards that were introduced
by Birkhoff [3]: a particle moves linearly and uniformly inside a closed domain Π
with a piece-wise smooth boundary Γ = 𝜕Π, and bounces off the boundary Γ, such
that the normal component of its velocity changes the sign, while the tangential
component remains the same. The particle energy is a first integral, thus this
classical billiard describes equilibrium gases.

In this paper we consider generalized billiards, which is a model of a nonequi-
librium gas, introduced in [4] and [5]. The essence of the generalization is in the
collision law. Let a function 𝑓(𝛾, 𝑡) be given on the direct product Γ ×R1 (where
R1 is the real line, 𝛾 ∈ Γ is a point of the boundary and 𝑡 ∈ R1 is time). Suppose
that the trajectory of the particle, which moves with the velocity 𝑣, intersects Γ at
the point 𝛾 ∈ Γ at time 𝑡*. Then at time 𝑡* the particle acquires the velocity 𝑣*, as
if it underwent an elastic push from the infinitely-heavy plane Γ*, which is tangent
to Γ at the point 𝛾, and at time 𝑡* moves along the normal to Γ at 𝛾 with the
velocity 𝜕𝑓

𝜕𝑡 (𝛾, 𝑡
*). Here we take the positive direction of motion of the plane Γ* to

be towards the interior of the domain Π. We emphasize that the position of the
boundary itself is fixed, while its action upon the particle is defined through the
function 𝑓(𝛾, 𝑡). A generalized billiard can be both considered in the framework
of Newtonian mechanics and of the relativity theory, see [4–9].

The generalized reflection law is natural: it both reflects the fact that the
walls of the container are at rest, and that the action of the boundary on the
particle is an elastic push. A generalized billiard is an approximation of the model
with real moving boundaries if the initial velocities of the particles are sufficiently
large. From the physical point of view, generalized billiards describe gas consisting
of finitely many particles in a container, where the container walls either heat up
or cool down (a nonequilibrium gas).

A Newtonian generalized billiard in a parallelepiped is a construction that
goes back to Poincaré [1] (Poincaré’s original model is a system of finitely many par-
ticles, that move in a parallelepiped under the influence of external forces, caused
by an external hot body). Relativistic billiards (with moving walls) were considered
by Fermi [10], as a model of particles moving between cosmic objects in the case
when the particles interact with the objects’ (magnetic) fields. Fermi also consid-
ered an ”averaged” model, where the walls did not move, but the particle acquired
some additional energy at every collision. This model is a generalized relativistic
billiard with the ”monotone” action of the boundary, i.e., when 𝜕𝑓

𝜕𝑡 (𝛾, 𝑡
*) ≥ 𝑐 > 0.
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We refer to [5, 9], where the exponential growth of the particle energy (the result
that originally belongs to Fermi) and the existence of attractors in the velocity
phase space were rigorously proved, also in the presence of external fields.

Generalized billiards were originally introduced and studied because of their
importance for foundations of thermodynamics and nonequilibrium statistical
mechanics (Loschmidt reversibility paradox and the justification of the second law
of thermodynamics). A key step in handling these problems is the transition from
the Newtonian to relativistic billiards. For classical billiards, when 𝜕𝑓

𝜕𝑡 (𝛾, 𝑡
*) = 0,

there is no difference between these two cases: it is the same dynamical system.
However, in the general case, when 𝜕𝑓

𝜕𝑡 (𝛾, 𝑡
*) ̸= 0, these two systems become

different. A generalized billiard in the Newtonian case may have an invariant
measure (equivalent to the phase volume), and thus be a conservative system.
Such an invariant measure has been previously found for a parallelepiped [4]. A
generalized relativistic billiard is always dissipative. Thus, the Gibbs entropy is
constant in the Newtonian case, whereas it may increase in the relativistic case.

The proofs of the entropy growth for generalized billiards in a parallelepiped
with the periodic action of the boundary were given in [4], and the case of an
arbitrary domain with the ”monotone” action of the boundary was considered in [5].
In this article we consider generalized billiards in a ball: in the Newtonian case, this
is the main example, when a generalized billiard with a smooth boundary possesses
a ”universal” invariant measure, i.e., the measure with time-independent density,
that is invariant for all actions of the boundary (i.e., for all functions 𝑓(𝛾, 𝑡)). From
the physical point of view, it is natural to consider the Gibbs entropy defined with
respect to a universal measure: the definition of the entropy cannot depend on the
way the vessel walls heat up or cool down.

First we consider Newtonian generalized billiards. We prove a theorem on
necessary and sufficient conditions for a generalized billiard to possess a smooth
universal invariant measure: the corresponding classical billiard should have a first
integral of a special type. Typically, generalized billiards do not have a universal
invariant measure, and in particular, generalized Sinai billiards do not possess such
an invariant measure. In the two-dimensional case, due to the Birkhoff conjecture,
elliptic billiards are the only generalized billiards with smooth boundary, that
possess a universal measure. We show that a universal invariant measure exists
for a Newtonian generalized billiard in a ball, thus its Gibbs entropy, defined with
respect to this measure, is constant. We also introduce the entropy with respect
to an arbitrary measure and show that under some natural conditions it remains
bounded, provided the invariant measure exists.

Then we consider the relativistic case. We find the conditions when the Gibbs
entropy of the generalized relativistic billiard in a ball, taken both with respect to
the same measure, as in the Newtonian case, and with respect to the phase volume
grows. If the action of the boundary is periodic (a ”pulsating” ball), then both
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entropies grow, if a certain integral condition, equivalent to one at [4] is satisfied,
and if the initial probability density is nonzero only near the centre of the ball,
and the initial particles’ velocities are close enough to the velocity of light. The
integral condition determines the time direction, in which the entropy increases.
The physical meaning of this condition is that the walls are hotter than the gas.
In our models it plays the same role as the Boltzmann collision integral, cf. [11].

Results on invariant measure existence for generalized billiards and entropy
grown with respect to the same measure in the relativistic case were announced
in [12].

2. Newtonian generalized billiards
Consider a dynamical system on 𝑀 = {𝑥1, . . . , 𝑥𝑛}, that is given by an

invertible mapping 𝑇 : 𝑀 → 𝑀 . Suppose that this system has an invariant
measure 𝜇 with a density 𝜌(𝑥), i.e.,

𝑑𝜇 = 𝜌(𝑥)𝑑𝑛𝑥, 𝑥 = (𝑥1, . . . , 𝑥𝑛).

Let 𝑇 : 𝑥0 → 𝑥1. Then the Jacobian of this mapping equals

𝐽 =
𝜌(𝑥0)

𝜌(𝑥1)
.

The converse is also true: if for any point 𝑥0, 𝑥1 = 𝑇𝑥0, the Jacobian of an invertible
mapping 𝑇 equals

𝐽 =
𝜌(𝑥0)

𝜌(𝑥1)

for some function 𝜌, then this function is the density of the invariant measure.
Consider now a Newtonian generalized billiard in a 3-dimensional domain Π

with a boundary Γ: a particle 𝑚 of mass 1 moves in the interior of the domain Π
along the straight lines, and reflects from the boundary according to the generalized
billiard law, that we describe in details below. We will here consider a billiard flow
(i.e., a continuous system with the six-dimensional phase space).

First, we introduce the coordinates in the particle phase space. As the particle
mass is 1, and the metric in the domain Π is Euclidean, we can identify the velocities
and the momenta of the particle. The particle position is uniquely determined by
the particle momentum 𝑝, the point 𝛾 ∈ Γ of the latest collision of the particle
with the boundary, and the distance ∆ = 𝑑𝑖𝑠𝑡(𝛾,𝑚) between the particle 𝑚 and
the point 𝛾, see Fig. 1. We will further consider the projection 𝑝𝜈 of the particle
momentum 𝑝 to the normal 𝜈 to the boundary Γ at the point 𝛾, and the projection
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Figure 1. Coordinate system for a billiard flow

𝑝𝜏 of the momentum to the tangent plane to Γ at 𝛾. As the particle coordinates,
we now take 𝑝𝜈, 𝑝𝜏 , 𝛾 and ∆.

Remark. The 2-vector 𝑝𝜏 is defined uniquely. However, to define the compo-
nents of this vector, one has to fix a coordinate system in the tangent plane 𝑇𝛾Γ
first. There is an ambiguity in the choice of basic vectors on the tangent plane 𝑇𝛾Γ
(moreover, they cannot be chosen globally, unless Γ is diffeomorphic to a torus).
However the subsequent results will not depend on the particular choice of these
coordinates. Notice that in the two-dimensional case, 𝑝𝜏 is one-dimensional and is
well-defined.

We now define the Newtonian generalized reflection law. Suppose that the
particle collides with the boundary Γ at a point 𝛾 at time 𝑡. Then at the collision,
the normal component of the particle momentum transforms like −𝑝𝜈 → 𝑝𝜈 + 𝑃 ,
where 𝑃 = 𝑃 (𝑡, 𝛾) is a given function of time and of a point at the boundary. The
tangential component of the momentum remains the same. This means that at the
impact, the particle momentum transformation is such that as if the (infinitely-
heavy) boundary moved along its normal with the velocity 𝑃/2, see Introduction.
From the physical point of view, generalized billiards describe gas consisting of
finitely many particles in a vessel, where the vessel walls either heat up or cool
down (a nonequilibrium gas).

Let now a particle with coordinates 𝑝𝜈0, 𝑝𝜏0, 𝛾0,∆0 be strictly inside of Π at
time 𝑡0, and suppose that on a time interval [𝑡0, 𝑡1] the particle collides with the
boundary Γ only once, and ∆(𝑡1) ̸= 0. Then for a sufficiently small neighbourhood
of the point 𝑝𝜈0, 𝑝𝜏0, 𝛾0,∆0, all the trajectories that start in this neighbourhood at
time 𝑡0, intersect the boundary Γ on the time interval [𝑡0, 𝑡1] only once. We fix the
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time 𝑡0, and in this neighbourhood we consider a mapping

𝑇 : (𝑝𝜈, 𝑝𝜏 , 𝛾,∆) → (𝑝𝜈 ′, 𝑝𝜏 ′, 𝛾′,∆′)

which is a shift along the phase flow by time 𝑡1 − 𝑡0.

Proposition 2.1. The Jacobian for the mapping 𝑇 equals

𝐽 =
𝑝𝜈

𝑝𝜈 ′ − 𝑃 (𝑡ℎ𝑖𝑡, 𝛾′)

‖𝑣′‖
‖𝑣‖

, (1)

where 𝑡ℎ𝑖𝑡 = 𝑡0 + (𝑑𝑖𝑠𝑡(𝛾′, 𝛾) − ∆)/‖𝑣‖ is the collision time of the particle with
the boundary and 𝑣 is the particle velocity.

We note again that, as the particle mass is 1, in the Newtonian case we can
identify the particle velocity with the momentum, i.e., 𝑝 = 𝑣. In the relativistic
case this, of cause, is not true.

Proof. The mapping 𝑇 can be written as a composition of the following
mappings:

𝑇 = 𝑇4 · 𝑇3 · 𝑇2 · 𝑇1,

where the mapping

𝑇1 : (𝛾,∆, 𝑝𝜏 , 𝑝𝜈) → (𝛾, 𝑡ℎ𝑖𝑡, 𝑝
𝜏 , 𝑝𝜈),

where 𝑡ℎ𝑖𝑡 = 𝑡0 + (𝑑𝑖𝑠𝑡(𝛾′, 𝛾)−∆)/‖𝑣‖, determines the time of the collision of the
particle with the boundary (the distance 𝑑𝑖𝑠𝑡(𝛾, 𝛾′) is expressed as a function of
𝛾 and 𝑝), the mapping

𝑇2 : (𝛾, 𝑡ℎ𝑖𝑡, 𝑝
𝜈, 𝑝𝜏) → (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝𝜈, 𝑝

𝜏 ′)

is a bouncing map for a classical billiard; the mapping

𝑇3 : (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝𝜈, 𝑝
𝜏 ′) → (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝𝜈

′, 𝑝𝜏 ′),

where 𝑝𝜈 ′ = 𝑝𝜈 + 𝑃 (𝑡ℎ𝑖𝑡, 𝛾
′) is the generalized billiard reflection law, and, at last,

the mapping
𝑇4 : (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝𝜈

′, 𝑝𝜏 ′) → (𝛾′,∆′, 𝑝𝜈
′, 𝑝𝜏 ′),

where ∆′ = (𝑡1 − 𝑡ℎ𝑖𝑡)‖𝑣′‖ defines the new phase space coordinate ∆′.
The Jacobian for the mapping 𝑇1 equals 𝐽1 = −1/‖𝑣‖, and the Jacobian for

the mapping 𝑇4 equals 𝐽4 = −‖𝑣′‖. The mapping 𝑇2 is the bouncing map for a
classical billiard, its Jacobian equals

𝐽2 = 𝑝𝜈/𝑝𝜈,
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see, e.g., [13]. At last, the Jacobian for the mapping 𝑇3 equals 1. Thus, the Jacobian
for the mapping 𝑇 is

𝐽 =
𝑝𝜈

𝑝𝜈
‖𝑣′‖
‖𝑣‖

, (2)

where 𝑝𝜈 = 𝑝𝜈 ′ − 𝑃 (𝑡ℎ𝑖𝑡, 𝛾
′). 2

Remark. We have formulated Proposition 2.1 for the 3D case. However, it
is also true in all dimensions.

3. Invariant measure for a Newtonian generalized billiard
We will call a stationary measure (i.e., the density of the measure does not

depend explicitly on time, and neither on boundary action) on the billiard phase
space ”universal”, if it is invariant for any boundary action 𝑃 (𝑡, 𝛾).

We show here that in the general case one cannot expect that a generalized
billiard flow in a given domain has a universal invariant measure.

Theorem 3.1. A universal smooth invariant measure for a generalized billiard
flow exists for all boundary actions 𝑃 (𝑡, 𝛾), if and only if the corresponding classical
billiard has a first integral of the form 𝑝𝜈𝐹 (𝑝𝜏 , 𝛾).

From this theorem follows immediately that an invariant measure exists
for generalized billiards in a ball and in a parallelepiped. For the ball, a first
integral is 𝑝𝜈. For a parallelepiped, given in the Cartesian coordinates 𝑥1, 𝑥2, 𝑥3
by |𝑥𝑖| ≤ 𝑐𝑜𝑛𝑠𝑡, a first integral is the product of projections of the momentum to
the coordinate axes 𝑥1, 𝑥2, 𝑥3, which can always be written as 𝑝𝜈𝑝𝜏1𝑝𝜏2 (𝜈, 𝜏1 and
𝜏2 are coordinate axes obtained from 𝑥1, 𝑥2, 𝑥3 by permutation of indices), cf. [4].

If a classical billiard is nonintegrable, then the corresponding generalized
billiard has no universal invariant measure, as the kinetic energy integral cannot
be put into the above form. Notice that a billiard flow has the same integrals
as the billiard bouncing mapping (first integrals for billiard flows, expressed in
coordinates 𝛾,∆, 𝑝, cannot depend on ∆).

Proof. For any point in the interior of Π, consider a shift along the billiard
phase trajectory 𝑇 : (𝑝𝜈, 𝑝𝜏 , 𝛾,∆) → (𝑝𝜈 ′, 𝑝𝜏 ′, 𝛾′,∆′), defined in Section 2. One
can show that it is enough to prove the theorem for the mapping 𝑇 only.

Assume that a universal invariant measure exists, 𝜌 being its density. In this
case, the Jacobian for the mapping 𝑇 should equal

𝐽 =
𝜌(𝑥)

𝜌(𝑥′)
, 𝑥 = (𝛾,∆, 𝑝𝜈, 𝑝𝜏)
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(the expression of 𝑥′ as a function of 𝑥 contains function 𝑃 , its arguments are
determined in Proposition 2.1).

We first notice, that, as the measure is universal, the density 𝜌 is also a density
of invariant measure for the corresponding classical billiard, i.e., when function
𝑃 ≡ 0. Let

𝜌 =
𝑝𝜈

‖𝑣‖𝑓(𝑝𝜈, 𝑝𝜏 , 𝛾,∆)
.

As 𝜌 is the density of an invariant measure for the classical billiard, and ‖𝑣‖ = ‖𝑣′‖
for 𝑃 ≡ 0, the equality

𝑝𝜈

𝑝𝜈 ′
≡ 𝜌(𝑥)

𝜌(𝑥′)
=
𝑝𝜈

𝑝𝜈 ′
𝑓(𝑝𝜈 ′, 𝑝𝜏 ′, 𝛾′,∆′)

𝑓(𝑝𝜈, 𝑝𝜏 , 𝛾,∆)

should hold for any two points 𝑥, 𝑥′ = 𝑇𝑥 on the trajectory of the classical billiard
(cf. (1)). Thus,

𝑓(𝑝𝜈 ′, 𝑝𝜏 ′, 𝛾′,∆′) = 𝑓(𝑝𝜈, 𝑝𝜏 , 𝛾,∆),

which means that function 𝑓 is a first integral for a classical billiard (and it does
not depend on ∆).

The condition for 𝜌 to be the density of the invariant measure for the gener-
alized billiard is:

𝑝𝜈

𝑝𝜈
‖𝑣′‖
‖𝑣‖

≡ 𝑝𝜈

𝑝𝜈 ′
‖𝑣′‖
‖𝑣‖

𝑓(𝑝𝜈 ′, 𝑝𝜏 ′, 𝛾′)

𝑓(𝑝𝜈, 𝑝𝜏 , 𝛾)
(3)

for any function 𝑃 , where 𝑝𝜈 ′ = 𝑝𝜈+𝑃 , see (2). Take now 𝑃 = 𝑐𝑜𝑛𝑠𝑡. We substitute
the equality 𝑝𝜈 ′ = 𝑝𝜈 + 𝑃 into identity (3) and differentiate it by 𝑃 at 𝑃 = 0:

0 =
𝑝𝜈

𝑝𝜈
𝜕𝑓(𝑝𝜈, 𝑝𝜏 ′, 𝛾′)/𝜕𝑝𝜈

𝑓(𝑝𝜈, 𝑝𝜏 , 𝛾)
− 𝑝𝜈

(𝑝𝜈)2
𝑓(𝑝𝜈, 𝑝𝜏 ′, 𝛾′)

𝑓(𝑝𝜈, 𝑝𝜏 , 𝛾)
,

thus

𝜕𝑓(𝑝𝜈, 𝑝𝜏 ′, 𝛾′)

𝜕𝑝𝜈
=
𝑓(𝑝𝜈, 𝑝𝜏 ′, 𝛾′)

𝑝𝜈
.

This is a differential equation for a function 𝑓 = 𝑓(𝑝𝜈), where 𝑝𝜏 ′ and 𝛾′ are
parameters. Solving it, we get 𝑓(𝑝𝜈, 𝑝𝜏 , 𝛾) = 𝑝𝜈𝐹 (𝑝𝜏 , 𝛾). Thus, if the measure
exists, then a first integral should necessarily have the form 𝑓 = 𝑝𝜈𝐹 (𝑝𝜏 , 𝛾).

One can check by direct computations that the converse is true – by substi-
tuting this integral into relation (3). 2



10

Corollary 3.2. For two-dimensional generalized Newtonian billiards a universal
invariant measure exists for billiards in ellipses.

Proof. Theorem 3.1 is also true in the two-dimensional case, cf. Remark in
Section 2. For the classical billiards in ellipses, there is a first integral

cos2 𝜃 − 𝜖2 cos2 𝜑

1 − 𝜖2 cos2 𝜑
,

where 𝜃 is the angle between the momentum and the tangent line to the ellipse
and 𝜑 is the coordinate on the ellipse, which is the angle made by the same tangent
line with the fixed vertical axis, and 𝜖 is the eccentricity of the ellipse. Thus, sin 𝜃
is the projection of the unit momentum to the normal vector. Rearranging this
expression, we get

− sin2 𝜃 + (1 − 𝜖2 cos2 𝜑)

1 − 𝜖2 cos2 𝜑
= − sin2 𝜃

1 − 𝜖2 cos2 𝜑
+ 1.

Thus, the function
sin2 𝜃

1 − 𝜖2 cos2 𝜑

is a first integral, and we can take its square root, as sin 𝜃 ≥ 0 for all 𝜃 ∈ [0, 𝜋],
to get the form of the first integral, required by Theorem 3.1. 2

The famous Birkhoff conjecture states that in 2D, the only integrable bil-
liard with a smooth convex boundary is a billiard in an ellipse (see [3]). From
this conjecture and Corollary 3.2 follows, that in the 2-dimensional case, among
generalized billiards in compact smooth convex domains, billiards in ellipses is the
only case, when the universal invariant measure exists.

4. Invariant measure and Gibbs entropy for Newtonian
generalized billiard in a ball
Let now the domain Π be a ball. A classical billiard in a ball has a first

integral 𝑝𝜈 , thus, by Theorem 3.1, the ”universal” invariant measure for a generalized
Newtonian billiard in a ball exists and has the density

𝜌 =
1

‖𝑣‖
(4)

in the coordinates defined in Section 2. We assume that the particle velocity
tangential component 𝑣𝜏 is not zero (otherwise the system becomes essentially
one-dimensional; this case was considered in details in [4]). Then, the measure
with the density (4) is well-defined: for a given trajectory, the particle velocity
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‖𝑣‖ ≥ 𝛿 > 0, where the constant 𝛿 = ‖𝑣𝜏‖, as at every impact the tangential
component 𝑣𝜏 of the particle velocity is preserved.

We now remind the definition of the Gibbs entropy. Let a dynamical system
be given on a phase space 𝐾:

�̇� = 𝑋(𝑥), (5)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) are local coordinates on 𝐾, and let 𝜇 be some measure on
𝐾. Following Gibbs [14], we introduce a probability measure on 𝐾, which at the
initial instant 𝑡 = 0 has density 𝜓(𝑥) ≥ 0:∫︁

𝐾

𝜓 𝑑𝜇 = 1.

We assume that this measure is transferred by the phase flow 𝑔𝑡 of System (5)
(and thus its density 𝜓𝑡(𝑥) depends on time 𝑡):∫︁

𝑔𝑡𝑉

𝜓𝑡 𝑑𝜇 =

∫︁
𝑉

𝜓 𝑑𝜇 (6)

for any domain 𝑉 ⊂ 𝐾.
Remark. While the probability measure is transferred by the phase flow

𝑔𝑡, the density function 𝜓𝑡(𝑥) may not be a first integral of System (5). Let, for
example, 𝑥1, . . . , 𝑥𝑛 be the Cartesian coordinates, and 𝑑𝜇 = 𝑑𝑥1∧ · · · ∧𝑑𝑥𝑛. Then
relation (6) is equivalent to the Liouville equation

𝜕𝜓𝑡

𝜕𝑡
+ div(𝜓𝑡𝑋) = 0 =

𝜕𝜓𝑡

𝜕𝑡
+

𝑛∑︁
𝑖=1

𝜕𝜓𝑡

𝜕𝑥𝑖
𝑋𝑖 + 𝜓𝑡div𝑋,

and one can see that 𝜓𝑡 ̸= 0 is a (time-dependent) first integral of System (5) if
and only if div𝑋(𝑥) = 0.

The Gibbs entropy of System (5) with respect to the measure 𝜇 is by definition
given by

𝐻(𝑡) = −
∫︁
𝐾

𝜓𝑡 log𝜓𝑡 𝑑𝜇. (7)

The statement below belongs to Poincaré [1]:

Theorem 4.1. Let the measure 𝜇 be invariant for dynamical system (5). Then
the Gibbs entropy 𝐻(𝑡) is constant.

The proof of the theorem is straight-forward: under the conditions of the
theorem, 𝜓𝑡 is a first integral of System (5) (cf. the Remark above), and it can
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be written as 𝜓𝑡(𝑥) = 𝜓(𝑔−𝑡𝑥). Thus, as the measure 𝜇 is invariant, the Gibbs
entropy (7) is constant. We refer to [4] for details and application of the Poincaré
theorem to generalized billiards.

To apply the Poincaré theorem to a dynamical system, we only have to check
that this system possesses an invariant measure. For the Newtonian generalized
billiard in a ball, such invariant measure exists, and is given by the density (4).
Thus the Gibbs entropy 𝐻(𝑡), defined with respect to this measure, is constant.

It is possible (and straight-forward) to define an entropy with respect to an
arbitrary measure, which defines a probabilistic structure consistent with dynamics
in sense of (6) (see, e.g., [4], [15]). Let 𝜇* be such measure, equivalent to 𝜇 (we
remind that two measures are called equivalent if they are defined on the same
𝜎-algebra of sets, and one of these measures of some set is zero if and only if the
other measure of the same set is zero). Let 𝜓*

𝑡 be the density defined similary to
density 𝜓𝑡 above. Then the entropy with respect to measure 𝜇* is

𝐻*(𝑡) = −
∫︁
𝐾

𝜓*
𝑡 log𝜓*

𝑡 𝑑𝜇
*. (8)

As the measure 𝜇* needs not to be invariant, one cannot guarantee the
conservation of the entropy 𝐻*(𝑡). However, if the invariant measure exists, then
the entropy with respect to an arbitrary equivalent measure will remain bounded
under certain natural conditions. More precise, the following result is true.

Let a subset 𝐾0 ∈ 𝐾 be such that there exists a compact set 𝐵 ∈ 𝐾, such
that 𝑔𝑡𝐾0 ∈ 𝐵 ∈ 𝐾 for all 𝑡 (i.e., all trajectories that start in 𝐾0 are bounded).

Theorem 4.2. Let 𝜇 be an invariant measure for System (5), and 𝜇* be some
other equivalent measure, such that 𝑑𝜇 = 𝜆𝑑𝜇*, where 𝜆 is a continuous positive
function. Let one of the following conditions be fulfilled: (1) a manifold K is
bounded; (2) at the initial moment of time, the probability density 𝜓* is not equal
to zero only in 𝐾0 ∈ 𝐾. Then the entropy 𝐻*(𝑡) is bounded: there exist constants
𝐶 ≥ 𝑐 > 0, such that for any 𝑡 ∈ R, 𝑐 ≤ 𝐻*(𝑡) ≤ 𝐶.

Proof. For any domain 𝑉 ∈ 𝐾,∫︁
𝑉

𝜓*
𝑡 𝑑𝜇

* =

∫︁
𝑉

𝜓𝑡𝑑𝜇,

thus under conditions of the theorem, 𝜓*
𝑡 = 𝜆𝜓𝑡. Now one can see readily check

that
𝐻*(𝑡) = −

∫︁
𝐾

𝜓𝑡 log𝜓𝑡𝑑𝜇−
∫︁
𝐾

𝜓𝑡 log 𝜆𝑑𝜇.

The first summand is constant by the Poincaré theorem, and the second summand
is bounded if at least one of the conditions of the theorem is fulfilled. We refer
to [15] for details and to [4] for further results. 2
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In [4] another important case was considered, when the Gibbs entropy is un-
bounded with respect to two equivalent measures. In the next section we consider
the Gibbs entropy of the relativistic generalized billiard in a ball, both with respect
to the same measure, and with respect to the phase volume. We show that under
some natural conditions the entropies with respect to both measures grow.

5. Relativistic generalized billiards in a ball
We now consider a relativistic generalized billiard in the 3-dimensional

(space-)domain Π with the boundary Γ. From the physical point of view, it is
natural to consider a nonequilibrium gas, which consists of particles that move
fast enough, in the framework of the relativity theory. We measure the velocities
proportional to the velocity of light 𝑐, i.e., here we take 𝑐 = 1. We refer to [10]
(and to [4] and [8] for details and proofs) for definitions and expressions for the
relativistic billiard reflection laws. Here we give expressions for the momentum
and velocity transformations. The particle velocity 𝑣 and momentum 𝑝 are related
as

𝑝 =
1√︀

1 − ‖𝑣‖2
𝑣,

Here ‖ · ‖ is the usual Euclidean norm.
Let the particle fall to the infinitely-heavy horizontal wall, which in turn moves

in the vertical direction with the velocity 𝑉 . After the impact the projection of
the momentum to the tangent plane to the wall remains the same: 𝑝𝜏 ′ = 𝑝𝜏 , while
the projection to the normal to the wall 𝑝𝜈 ′ after the impact equals

𝑝𝜈 ′ = (−𝑝𝜈)1 + 𝑉

1 − 𝑉
+

2𝑉

1 − 𝑉 2

(︁√︀
‖𝑝‖2 + 1 − 𝑝𝜈

)︁
(9)

(‖𝑝‖ is the 3-dimensional Euclidean length of the momentum vector). We have
assumed that 𝑝𝜈 < 0, which means that the particle falls to the wall.

The velocity transformation at the collision with a moving wall is given by
the following expression, see, e.g., [9]. Let the particle hit the infinitely-heavy wall
with the velocity 𝑣, with the normal component 𝑣𝜈 < 0, and, as above, the wall
moves along its normal with the velocity 𝑉 . Then after the impact the particle
velocity 𝑣′ equals

𝑣′𝜈 = −𝑣𝜈 − 2𝑉 + 𝑉 2𝑣𝜈
1 − 2𝑉 𝑣𝜈 + 𝑉 2

, 𝑣′𝜏 =
𝑣𝜏(1 − 𝑉 2)

1 − 2𝑉 𝑣𝜈 + 𝑉 2
, (10)
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𝑣𝜏 is the tangential component of the velocity. It is interesting to note, that, while
the tangential component of the momentum is preserved, the tangential component
of the velocity changes at the impact with the moving wall.

We remind again, that the essence of the generalization is that at the collision
of the particle with the boundary Γ, the particle momentum and the velocity are
transformed as above, as if the particle undergoes an elastic push by an infinitely-
heavy wall, which moves with the velocity 𝑉 , while the boundary Γ itself does
not move. The function 𝑉 (𝑡, 𝛾) will be refereed to as the boundary action velocity.
We notice that |𝑉 | < 1, i.e., the boundary action velocity cannot be equal to the
speed of light.

Now, let the domain Π be a ball of diameter 𝑙. For a classical billiard, both the
normal and the tangential components of the momentum are preserved along the
billiard trajectory. We assume that the boundary action velocity 𝑉 is a function
of time 𝑡 only.

Let ∆, 𝛾, 𝑝𝜈 and 𝑝𝜏 be the coordinates introduced in Section 2. Take a point
∆0, 𝛾0, 𝑝𝜈0 and 𝑝𝜏0 strictly inside the ball Π, and fix a moment of time 𝑡0. We
consider the same mapping 𝑇 as in Section 2: suppose that on a time interval
[𝑡0, 𝑡1] the particle collides with the boundary only once, and ∆(𝑡1) ̸= 0. Then the
same is true for all trajectories which start in a small neighbourhood of the initial
point ∆0, 𝛾0, 𝑝𝜈0, 𝑝𝜏0, and in this neighbourhood we define the mapping

𝑇 : (𝛾,∆, 𝑝𝜈, 𝑝𝜏) → (𝛾′,∆′, 𝑝𝜈 ′, 𝑝𝜏 ′)

which is a shift by time 𝑡1 − 𝑡0 along the phase trajectory.

Proposition 5.1. Let 𝑝𝜏 be bounded. Then the Jacobian 𝐽 for the mapping 𝑇 at
𝑝𝜈 → ∞ tends to

𝐽 → 𝐽∞ = (1 + 𝑉 (𝑡∞ℎ𝑖𝑡))/(1 − 𝑉 (𝑡∞ℎ𝑖𝑡)),

where 𝑡∞ℎ𝑖𝑡 = 𝑡0 + (𝑙 − ∆).

We represent the mapping 𝑇 as 𝑇 = 𝑇4 · 𝑇3 · 𝑇2 · 𝑇1, where

𝑇1 : (𝛾,∆, 𝑝𝜈, 𝑝𝜏) → (𝛾, 𝑡ℎ𝑖𝑡, 𝑝
𝜈, 𝑝𝜏),

with 𝑡ℎ𝑖𝑡 = 𝑡0+(𝑑𝑖𝑠𝑡(𝛾, 𝛾′)−∆)/‖𝑣‖, determines the impact moment, the mapping

𝑇2 : (𝛾, 𝑡ℎ𝑖𝑡, 𝑝
𝜈, 𝑝𝜏) → (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝

𝜈, 𝑝𝜏), 𝛾′ = 𝛾 +𝐺(𝑣)

defines the new value of the boundary coordinate 𝛾,

𝑇3 : (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝
𝜈, 𝑝𝜏) → (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝

𝜈 ′, 𝑝𝜏 ′),
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where 𝑝𝜈 ′ is defined by relation (9) and 𝑝𝜏 ′ = 𝑝𝜏 , is the relativistic reflection law,
and the mapping

𝑇4 : (𝛾′, 𝑡ℎ𝑖𝑡, 𝑝
𝜈 ′, 𝑝𝜏 ′) → (𝛾′,∆′, 𝑝𝜈 ′, 𝑝𝜏 ′), ∆′ = (𝑡1 − 𝑡ℎ𝑖𝑡)‖𝑣′‖

determines the spacial coordinate ∆′. The relation 𝛾′ = 𝛾 + 𝐺(𝑣) makes sense,
since any billiard trajectory in a ball always belongs to some plane, which passes
through the centre of the ball. This place crosses the boundary sphere by the
circle, and 𝛾 can be expressed through the angle coordinate on this circle.

The Jacobians for the mappings 𝑇1 and 𝑇4 are −1/‖𝑣‖ and −‖𝑣′‖ corre-
spondingly. The Jacobian for the mapping 𝑇2 equals 1, while the Jacobian for the
mapping 𝑇3 is

𝐽3 =
1 + 𝑉

1 − 𝑉
+𝑂

(︂
1 + ‖𝑝𝜏‖2

(𝑝𝜈)2

)︂
.

Thus, when 𝑝𝜈 → ∞, the Jacobian for the mapping 𝑇 tends to (1 + 𝑉 (𝑡∞ℎ𝑖𝑡))/(1−
𝑉 (𝑡∞ℎ𝑖𝑡)). The limit value of the impact moment 𝑡∞ℎ𝑖𝑡 equals 𝑡0 + (𝑙 − ∆), as, when
𝑝𝜈 → ∞ and 𝑝𝜏 being fixed, the velocities tend to 𝑣𝜏 → 0, 𝑣𝜈 → 1. 2

6. Gibbs entropy for generalized relativistic billiards
in a ball
The Jacobian 𝐽 of the mapping 𝑇 plays the key role in the proof of the Gibbs

entropy growth, see [4]. Take the measure 𝜇 with the density 𝜌, defined by relation
(4). From (4) and (6) we get, that under the mapping 𝑇 ,

𝜓′ =
1

𝐽

‖𝑣′‖
‖𝑣‖

𝜓. (11)

Thus,

𝐻 ′ −𝐻 =

∫︁
𝐾

𝜓 log𝜓 𝑑𝜇−
∫︁
𝐾

𝜓′ log𝜓′ 𝑑𝜇′ =

∫︁
𝐾

(log𝜓 − log𝜓′)𝜓 𝑑𝜇 =

=

∫︁
𝐾

(log ‖𝑣‖ − log ‖𝑣‖ + log 𝐽)𝜓 𝑑𝜇 (12)

Suppose that the limit Jacobian 𝐽∞ > 1. Then, obviously, the Gibbs entropy
grows, if the normal component of the velocity 𝑣𝜈 is close enough to the velocity
of light 1.

Let 𝜉1, 𝜉2, 𝜉3 be the Cartesian space-coordinates, such that the ball is given
by

𝜉21 + 𝜉22 + 𝜉23 ≤
𝑙2

4
.

Consider first the ”monotone” action of the boundary: 𝑉 ≥ 𝑉0 > 0.
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Theorem 6.1. For the generalized relativistic billiard in a ball with the monotone
action of the boundary, the Gibbs entropy, defined with respect to the measure with
the density (4), grows faster than some linear function of time, provided at 𝑡 = 0,
the probability density 𝜓 is positive only in a sufficiently small neighbourhood of
the subset ‖𝑣‖ = 1, 𝜉 = 0.

Proof. Under conditions of the theorem, 𝑣𝜏 → 0, ‖𝑣‖ → 1 as 𝑡→ ∞ (see [9]),
thus ‖𝑝𝜏‖/𝑝𝜈 → 0 and 𝑝𝜈 → ∞. From Proposition 5.1 follows that if the normal
component of the velocity 𝑣𝜈 is close enough to 1, then the Jacobian 𝐽 ≥ 𝛿 > 1.
The theorem follows now from relation (12). 2

Suppose now that the boundary action velocity may change the sign, and is
periodic: 𝑉 (𝑡+ 1) = 𝑉 (𝑡). To ensure the Gibbs entropy growth, one has to claim
that a certain integral condition must be fulfilled.

Theorem 6.2. Let the integral

𝐼 =

∫︁ 1

0

log
1 + 𝑉 (𝑡)

1 − 𝑉 (𝑡)
𝑑𝑡 ≥ 𝛿 > 0 (13)

Then there exists a constant 𝑁 ∈ N such that if the ball diameter 𝑙 ≠ 𝑝
𝑞 , where

𝑝, 𝑞 ∈ N, 𝑝/𝑞 is an irreducible fraction, such that 𝑞 < 𝑁 , then there exist constants
𝐶1 > 0, 𝐶2, such that the Gibbs entropy 𝐻, defined with respect to the measure
with the density (4), satisfies the following estimate:

𝐻(𝑡) ≥ 𝐻(0) + 𝐶1𝑡+ 𝐶2

for all 𝑡 ≥ 0, provided that at 𝑡 = 0, the probability density 𝜓 is positive only in a
sufficiently small neighbourhood of the subset ‖𝑣‖ = 1, ‖𝜉‖ = 0.

Remarks. 1. Formally, Theorem 6.1 is not a corollary of Theorem 6.2, as
for the monotone action of the boundary we do not need any condition on the
ball diameter 𝑙. Notice that, unlike [4], here the integral condition (13) itself does
not depend explicitly on the ball diameter 𝑙. The physical meaning of the integral
condition (13) is that the walls are hotter than the gas.
2. Theorem 6.2 is especially interesting (and physically important), when∫︁ 1

0

𝑉 (𝑡)𝑑𝑡 = 0,

i.e., the wall’s ”motion” is periodic (a ”pulsating” ball). For almost all choices of
such function 𝑉 (𝑡), the integral 𝐼 ̸= 0. As an example of such function one can
take

𝑉 (𝑡) = 𝜖(𝑄1 cos 2𝜋𝑘𝑡+𝑄2 cos 4𝜋𝑘𝑡),
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see [4], where it was proved than Inequality (13) is satisfied for such boundary
action velocity. Here 𝜖 > 0 is a small parameter, 𝑘 is an integer, and 𝑄1 ̸= 0, 𝑄2

are constants, such that 𝑄2𝑘 > 0.

Proof. The proof is similar to the proofs in [4], [9]. Let us denote

𝐴(𝑡) =
1 + 𝑉 (𝑡)

1 − 𝑉 (𝑡)
.

If 𝑙 is an irrational number, then the rotation of the circle 𝑡→ 𝑡+ 𝑙 (mod 1) is a
uniquely ergodic mapping, and by the ergodic theorem, the sum

1

𝑛

𝑛−1∑︁
𝑘=0

log𝐴(𝑡+ 𝑘𝑙)

converges uniformly to the integral 𝐼.
Suppose now that 𝑝

𝑞 ∈ 𝐿 is an irreducible fraction. Then the sum

1

𝑞

𝑞−1∑︁
𝑘=0

log𝐴(𝑡+
𝑘𝑝

𝑞
). (14)

is exactly an integral sum of the integral 𝐼, as all the 𝑞 points 𝑡+ 𝑝𝑘/𝑞 (mod 1)
are different on the circle 𝑆1 (𝑘 = 0 . . . 𝑞 − 1). If the value of 𝑞 is large enough
(𝑞 ≥ 𝑁 ≫ 1), then the sum (14) approximates the integral 𝐼 with a given precision
for all such 𝑝/𝑞 ∈ 𝐿, as 𝐿 is compact. Notice, that if we fix the value 𝑝/𝑞, then
obviously the sum

1

𝑞

𝑞−1∑︁
𝑘=0

log𝐴(𝑡+
𝑘𝑝

𝑞
+ 𝑔𝑘), (15)

where 𝑔𝑘 are arbitrary values, that satisfy inequalities |𝑔𝑘| ≤ 𝜖, approximates the
integral 𝐼 with the same precision, provided 𝜖 is small enough.

Thus, for a given diameter 𝑙, that satisfies the conditions of the theorem, and
for 𝑡 (mod 1), there are constants 𝐶1 > 0, 𝐶2, such that for any 𝑛 ∈ N

𝑛∑︁
𝑘=0

log𝐴(𝑡+ 𝑘𝑙) > 𝐶1𝑛+ 𝐶2. (16)

The transformation of the velocities can be separated from the transformation
of the configuration space variables 𝛾 ∈ Γ, as the values ‖𝑣𝜏‖, |𝑣𝜈| after a collision
and before the next collision are exactly the same: the boundary Γ of our domain
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is a sphere. Let |𝑣𝜈| = 1 − 𝑤2. Obviously, 𝑤 = 0, 𝑣𝜏 = 0 is an invariant manifold
for the generalized billiard (notice explicit time dependence).

Let 𝑡 be a moment of time, when the particle hits the boundary, and let 𝑤, 𝑣𝜏
be the particle velocity before this collision. Consider a mapping 𝑇 , that sends a
point 𝑤, 𝑣𝜏 , 𝑡 to �̂�, 𝑣𝜏 , 𝑡, where 𝑡 is the moment of the next collision, and �̂�, 𝑣𝜏 is
the velocity before the next collision.

Using (10), one can immediately see that in the linear approximation,

�̂� =
1 − 𝑉 (𝑡)

1 + 𝑉 (𝑡)
𝑤, 𝑣𝜏 =

1 − 𝑉 (𝑡)

1 + 𝑉 (𝑡)
𝑣𝜏 , 𝑡 = 𝑡+ 𝑙.

Consider the mapping 𝑇 𝑛 for a big value of 𝑛. Due to (16), the product

𝑛−1∏︁
𝑘=0

1 − 𝑉 (𝑡+ 𝑘𝑙)

1 + 𝑉 (𝑡+ 𝑘𝑙)
=

𝑛−1∏︁
𝑘=0

1

𝐴(𝑡+ 𝑘𝑙)
< 1.

Thus, the mapping 𝑇 𝑛 is contracting in the velocities in the linear approximation,
and one can show that its invariant manifold𝑤 = 0, 𝑣𝜏 = 0 is indeed asymptotically
Lyapunov-stable (cf. [9]): the key point is that if the values of the velocities 𝑤 and
𝑣𝜏 are small enough, then this cannot influence convergence due to (15).

The theorem now follows, as when the velocity |𝑣𝜈| → 1, the momentum
components 𝑝𝜈 → ∞ and ‖𝑝𝜏‖/𝑝𝜈 → 0 as 𝑡→ ∞. 2

Let now 𝐻*(𝑡) be the entropy with respect to the phase volume in the
(∆, 𝛾, 𝑝)-space. Similarly to [4], one can prove the following result:

Theorem 6.3. Under conditions of Theorems 6.1 and 6.2, the entropy 𝐻*(𝑡)
grows faster than some linear function of time.
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