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Овчинников М.Ю., Пеньков В.И., Ролдугин Д.С. 

Трехосная магнитная система ориентации спутника в инерциальном 

пространстве 

Рассматривается магнитная система ориентации спутника, 

обеспечивающая его произвольную наперед заданную ориентацию в 

инерциальном пространстве. На примере плоского движения рассматривается 

логика формирования алгоритма управления, схожая с конструированием ПД-

регулятора. Работа алгоритма затем анализируется при помощи методов 

осреднения, показывается демпфирование угловой скорости аппарата и 

устойчивость требуемой ориентации. При помощи теории Флоке подбираются 

оптимальные по быстродействию параметры алгоритма  

Ключевые слова: магнитная система ориентации, трехосная ориентация 

 

 

Michael Ovchinnikov, Vladimir Penkov, Dmitry Roldugin 

Active magnetic attitude control system providing three-axis inertial attitude 

Active magnetic attitude control system providing arbitrary inertial attitude is 

considered. An algorithm that closely resembles the PD-controller is constructed on 

the basis of a planar model problem. System behavior is analyzed using averaging 

technique. Angular velocity damping and the desired attitude stability are proven. 

Optimal algorithm parameters are found. 
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Introduction 
A three-axis active magnetic attitude control system and related algorithms are 

of great interest and importance if one considers small satellites. Being the low-cost, 

reliable and small, magnetorquers are especially attractive for these satellites. 

However, magnetic control is limited due to the underactuation problem. It is 

impossible to implement control torque along the geomagnetic field induction vector. 

As a result, it is impossible to implement an arbitrary in terms of the direction torque 

at each moment. Therefore it seems impossible to achieve necessary three-axis 

attitude using numerically simple locally optimal algorithms.  

Nevertheless, the work is underway to overcome the underactuation issue. We 

can outline only one paper with a comprehensive analytical approach to the problem 

[1]. It is shown that the three-axis magnetic attitude is achievable, though only small 

vicinity of the necessary attitude is taken into account, the satellite is considered to be 

a spherically-symmetrical one, and the whole analysis can be hardly interpreted in 

order to implement on a spacecraft. Similar assumption on a spherically-symmetrical 

satellite was made in [2]. An asymptotical stability of the necessary attitude is shown 

using the Lyapunov function approach, however the analysis shows that the 

assumption on the satellite inertia tensor is key to its overall success. The analysis is 

not valid for a three-axial satellite and therefore is of limited technical importance. 

There is a bunch of papers on the numerical analysis of the problem, we can outline 

only interesting works [3] and [4]. Probably the most important paper on the three-

axis magnetic control apart from [1] is [5]. Performance of the three-axis magnetic 

attitude control system of the Gurwin-Techsat small satellite is present. Only the 

necessary attitude maintenance is shown, however, the work is of great importance, 

showing the possibility to overcome the underactuation issue. 

Present paper deals with this issue analytically. The control used is a PD-

controller inspired one that is the common way to construct a three-axis magnetic 

control algorithm. Another construction approach is present. The control is studied 

analytically in order to prove the asymptotical stability of the necessary attitude. 

Optimal control parameters (in terms of the degree of stability) are found, numerical 

analysis is carried out. Control limitations are assessed and overall recommendations 

for the implementation are provided. 

1. Problem statement 

The choice of the geomagnetic field model is one of the most crucial points for 

the success of the work. We use the averaged geomagnetic field model (simplified 
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direct dipole model) since it allows the most compact and simple, though rather 

accurate geomagnetic field model approximation. It does not allow us to take into 

account the non-uniformity of the geomagnetic induction vector motion (as the right 

dipole model does) and its diurnal change (as the inclined dipole model does) but it is 

considered as a good trade-off between the accuracy of modeling geomagnetic field 

and the possibility to get analytical result. To introduce this model we need to notify 

a reference system OaY1Y2Y3 where Оa is the Earth’s center, the OaY3 axis is directed 

along with the Earth’s axis, OaY1 lies in the Earth’s equatorial plane and is directed to 

the ascending node of the satellite’s orbit, the OaY2 axis is directed so the system is 

right-handed. If the magnetic induction vector source point is translated to the Oa 

then the cone is tangent to the OaY3 axis, its axis lies in the OaY2Y3 plane (Fig. 1). The 

cone half-angle is given [6] by 

 2 2

3sin2
tg

2 1 3sin 1 3sin

i

i i
 

  
       (1.1) 

where i  is the orbit inclination. The geomagnetic induction vector moves uniformly 

on the cone side with the doubled orbital angular speed, 02u    where u  is the 

argument of latitude, 0  is the orbital angular velocity. Without loss of generality we 

can assume 0 0  . 

 
Fig. 1. Averaged geomagnetic field model 

 

Let us introduce the reference frames. 

OaZ1Z2Z3 is the inertial frame, got from the OaY1Y2Y3 turning by the angle   

about the OaY1 axis. 
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OL1L2L3 is the frame associated with the angular momentum of the satellite. О is 

the satellite’s center of mass, the OL3 axis is directed along the angular momentum, 

the OL2 axis is perpendicular to OL3 and lies in a plane parallel to the OaZ1Z2 plane 

and containing O, OL1 is directed such that the reference frame is right-handed. 

Ox1x2x3 is the bound frame, its axes are directed along the principal axes of 

inertia of the satellite. 

Reference frames’ mutual orientation is described with the direction cosine 

matrices , ,Q A D expressed in the following tables 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

L L L

Z q q q

Z q q q

Z q q q

, 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

x x x

L a a a

L a a a

L a a a

, 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

x x x

Z d d d

Z d d d

Z d d d

. 

We introduce subscripts , ,Z L x  to denote the vector components in frames 

OaZ1Z2Z3, OL1L2L3 and Ox1x2x3 respectively. For example, for the first component of 

a torque in these frames we write 1 1 1, ,Z L xM M M . 

We use the Beletsky-Chernousko variables and the Euler equations to represent 

the motion of the satellite. The first set of variables are , , , , ,L       [7] where L  is 

the angular momentum magnitude, angles ,   represent its orientation with respect 

to the OaZ1Z2Z3 frame (Fig. 2). Orientation of the frame Ox1x2x3 with respect to 

OL1L2L3 is described using the Euler angles , ,   .  

 
Fig. 2. Angular momentum attitude in the inertial space 
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Direction cosine matrices Q  and A  take form 

cos cos sin sin cos

cos sin cos sin sin

sin 0 cos

    

    

 

 
 


 
  

Q       (1.2) 

cos cos cos sin sin sin cos cos cos sin sin sin

cos sin cos sin cos sin sin cos cos cos sin cos

sin sin sin cos cos

           

           

    

   
 

    
 
 
 

A  (1.3) 

Inertia tensor of the satellite is ( , , )x diag A A CJ . Angular motion of the 

satellite in a circular orbit is described [7] by the equations 

 

 

 

3 1 2

2 1

1 2

1 2

1 1
, , ,

sin

1
cos sin ,

1 1 1
cos cos sin ,

sin

1 1
cos ctg ctg sin ctg .

L L L

L L

L L

L L

dL d d
M M M

dt dt L dt L

d
M M

dt L

d
L M M

dt C A L

d L
M M

dt A L L

 




 


  




    

  

 

 
    

 

   

    (1.4) 

where 1 2 3, ,L L LM M M  are the torque components in OL1L2L3 frame. 

In case of the Euler equations we use variables 1 2 3, , , , ,       where i  are 

angular velocity components in the bound frame, Euler angles , ,    introduce the 

Ox1x2x3 frame attitude with respect to the OZ1Z2Z3 one. The direction cosine matrix 

D  is 

cos cos sin sin cos

cos sin cos sin sin cos cos sin sin cos cos sin

sin cos cos sin sin cos sin sin sin sin cos cos

    

           

           

 
 

   
 
     

D  (1.5) 

The equations of motion for the three axial satellite (inertia tensor 

( , , )x diag A B CJ ) are 
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 

 

 

1
2 3 1

2
1 3 2

3
1 2 3

3 2

2 3

1 2 3

( ) ,

( ) ,

,

1
sin cos ,

cos

sin cos ,

tg cos sin ,

x

x

x

d
A B C M

dt

d
B A C M

dt

d
C B A M

dt

d

dt

d

dt

d

dt


 








   




   


     

  

   

   

  

 

  

       (1.6) 

where 1 2 3, ,x x xM M M  are torque components in the Ox1x2x3 frame. 

2. Control construction 

Consider model problem of a body rotating along the fixed in the inertial space 

axis. The body is subjected to the torque M . The position is characterized using only 

one angle  . The equation of motion then is of the form 

M  .  

The inertia moment is omitted. The problem is to find the torque that provides the 

asymptotic stability of 0  . In order to do so we introduce the misalignment  

  22 21
1 cos sin

2
       . 

This misalignment gives an insight into the positional error and the angular velocity 

of the model body. It can be used to find the control providing this misalignment 

tendency to zero. That means the torque must provide the negative derivative of the 

misalignment. First we divide the misalignment into two parts 2  and 1 . These will 

be considered as positional and differential ones. Their variations are 

1 t   , 2 sin t   . 

Differential misalignment part can be minimized since its variation contains the 

second derivative of the angle   and therefore the torque. This part becomes 

controllable. This is not valid for the positional misalignment part, so we decompose 

the misalignment with respect to the time increment, 

   
   2

2

2
...

d t d t
t t t t t

dt dt
  

 
       
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Since the differential misalignment part can be minimized the angular velocity 

  tends to zero. The first variation of the positional part then tends to zero also and 

we can consider its second variation after the last expression being rewritten in a 

form 

   
 2

2

1 2
...

d t
t t t t

dt
  


         

Positional misalignment part second variation is  

 2 2 2

2

1
cos sin

2
t      . 

The first part in this expression is small again (it contains the angular velocity). 

The misalignment part 2  change is therefore governed by the second part in the last 

expression if the control is considered on the enough time interval (  becomes 

small). The misalignment increment can be written as   

    21
sin ...

2
t t t t t         

So in order to minimize the misalignment   the torque should satisfy two 

conditions 

0, sin 0.M M            (2.1) 

We construct the torque as the sum of two components each satisfying only one 

of conditions (2.1), 

sinaM k k             (2.2) 

where ak  and k  are positive control gains. The equation of motion with this control 

torque takes the form 

sin 0ak k     .         (2.3) 

Equation (2.3) corresponds to the damped oscillations. Necessary position 0   is 

asymptotically stable. 

This reasoning can be generalized for the satellite movement around its center of 

mass. In this case the misalignment components are  

 2 2 2

1 1 2 3

1

2
      , 

     
22 22 2 2 2 2 2

2 11 12 13 21 22 23 31 32 33

1
1 1 1

2
d d d d d d d d d             

 
. 

Clearly, 

2 11 22 333 d d d     . 

The equations of motion are written in the form 
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,cntrl gir  



Jω M M M

D DW
         (2.4) 

where 

3 2

3 1

2 1

0

0

0

 

 

 

 
 

 
 
  

W . 

That leads to 1

1 i i t t     ωJ M . 

Differential misalignment part becomes controllable again. For the positional 

part variation we have 

     2 1 23 32 2 31 13 3 12 21iid t d d d d d d t                . 

We introduce the vector  23 32 31 13 12 21, ,
T

d d d d d d   S . This allows the last 

expression to be rewritten in a form 2 t  ωS . The positional part cannot be 

minimized according to the first variation. However it is possible again to state the 

angular velocity damping (since the differential part can be minimized). So the 

second variation of the positional misalignment part governs its behavior, 

 2 1 2

2 t   SJ M Sω . 

Omitting the term with the angular velocity we obtain conditions 
1 10, 0  ωJ M SJ M          (2.5) 

analogous to (2.1). The gyroscopic torque is omitted because of the angular velocity 

damping, the “weighing” matrix 1
J  is omitted so the control correspond to the PD-

controller inspired one. After the control torque is written in the form cntrl  M m B  

and the circular permutation is performed conditions (2.5) can be written as 

   0, 0.   m B ω m B S  

These conditions lead to the control dipole moment 

ak k    m B ω B S          (2.6) 

analogous to the control torque (2.2). 

This control is often constructed using different reasoning. It is inspired by the 

PD-controller construction. As a Lyapunov function candidate the expression 

 
3

1

1
1

2
a ii

i

V k d


   ω Jω  
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can be used. Clearly the equilibrium position is 0ω , , (1,1,1)diagD  that is the 

inertial and the bound reference frames coincide. The Lyapunov function candidate 

derivative is 

 
3

1

1

2
a ii

i

dV
k d

dt 

     ω Jω ω Jω . 

This derivative equals to 

 cntrl gir a

dV
k

dt
  ω M M S         (2.7) 

after the equations of motion are taken into account. We need to find the torque 

leading to the Lyapunov function candidate derivative being negative everywhere 

except the equilibrium position. This can be achieved if 
dV

k
dt

  ω ω . This is valid 

if the torque is chosen in such a way that 

cntrl ak k  M S ω . 

Note that 0gir ωM . The control torque should be of the form 

cntrl ak k  M ω S .         (2.8) 

Expression (2.8) corresponds to the (2.2). However, the torque (2.8) cannot be 

achieved using magnetorquers. The common way to implement the control is to use 

only accessible part of (2.8). So instead of the torque (2.8) its projection on the plane 

perpendicular to the local geomagnetic induction vector is used, 

 0 0cntrl cntrl
   M B M B  

or 

0

1
cntrl
  M m B

B
. 

Here the geomagnetic induction vector 0B  is a unit one. The dipole magnetic control 

moment is constructed according to (2.6). In this case the Lyapunov function 

candidate derivative is not negative. It is governed by the relation 

     
2

0 0 0cos , cos ,a

dV
k k

dt
   ω B ω S B ω B S .    (2.9) 

This relation can be used to choose the control implementation moments. If the 

second term in the relation is negative, the control should be implemented. However 

the numerical analysis showed very slight control time-response gain so it is illogical 

to overburden the control with unnecessary condition. From (2.9) we see that the 
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differential misalignment part is negative always so the control is perfect for the 

angular velocity damping. This is not valid for the positional misalignment. 

In this section two ways to construct the control (2.6) are presented. However 

these arguments cannot be considered as the algorithm efficiency proof. They can 

only provide the hope that the control is close to the necessary one and can be used. 

So we now process to the control (2.6) analysis. 

3. Transient motion analysis 

An analytical study of the satellite dynamics in the arbitrary motion is a 

complicated problem, so we divide it into three stages. This allows us to introduce 

several assumptions relevant to each stage. Provided the result is obtained on each 

stage we can get overall comprehension on the satellite dynamics in the arbitrary 

state. 

The first stage corresponds to the fast rotation of the satellite. We rewrite the 

control law (2.6) in the form 

ak k
     m B Ω B S ,         (3.1) 

where 0ω Ω , so Ω  is a dimensionless angular velocity. The geomagnetic 

induction vector is a unit one (note that in the averaged geomagnetic field model its 

magnitude is constant). We assume that the control gains ratio ak k
   is of the order 

of unity. Under this assumption the differential control part is prevailing for the fast 

tumbling satellite since 1Ω . The torque may be written in an approximate form 

k  m B Ω . 

Clearly this leads to the satellite with the “-Bdot” [8] control implemented. The 

motion of the satellite was analyzed by the authors earlier [9], and the angular 

velocity is asymptotically damped. 

This leads to the second stage, when the velocity becomes of the order of the 

orbital one, that is  1OΩ . Positional control part cannot be omitted. We assume 

the control to be rather small, so the angular momentum prevails over its change 

during one orbit revolution. This allows us to use the Beletsky-Chernousko variables 

and implement an averaging technique. In order to do so we introduce a 

dimensionless torque LM  according to the relation 
2

0 LL ak BM M ; 
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the argument of latitude 
0 0( )u t t   where 

0t  is an initial moment; dimensionless 

angular momentum magnitude l  according to 0L L l  where 0L  is an initial angular 

momentum. As a result the equations (1.4) can be written in a dimensionless form 

 

 

 

3 1 2

2 1

1 21

1 22

, , ,
sin

cos sin ,

cos cos sin ,
sin

cos ctg ctg sin ctg .

L L L

L L

L L

L L

dl d d
lM M M

du du du

d
M M

du

d
l M M

du

d
l M M

du

  
 




  

 
   




       

  

 

  

   

    (3.2) 

The notations 
2

0

0 0

ak B

L





 , 0

1

0

1 1L

C A




 
  

 
, 0

2

0

L

A



  are introduced. Here  , ,u   

are fast variables, while  , , ,l     are slow ones. So, we can use the averaging 

technique [10] to determine the slow variables evolution. In order to do it we need to 

average the equations in the vicinity of the undisturbed solution of equations (3.2). 

However, since this motion is a regular precession, we need only to average 

separately the equations for slow variables over the fast variables. After this we get 

evolutionary equations for slow variables with accuracy of the order of   on the time 

interval of the order of 1/  . We assume that the moments of inertia A  and C  

provide no resonance between 1 , 2  and 1 (u  rate of change) . In order to obtain 

averaged equations we need expressions 
, ,iL u

M
 

, 
, ,

cosiL u
M

 
  and 

, ,
siniL u

M
 

 . The damping component averaging result is known[9]. We need to 

prove that the positional part has no influence on the damping of the angular velocity, 

that is 

  0  S B B . 

That leads to the condition 

,
0

 
S . 

Clearly, L xS AS  and the transition matrix between the inertial and bound 

frames can be expressed as T TD A Q . Therefore we need to average the expressions  

ij kla a  over   and  . For the first component of the LS  vector 

1 11 12 31 11 22 32 11 32 33 11 13 21 11 23 22 11 33 23LS a a q a a q a a q a a q a a q a a q        
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12 13 11 12 23 12 12 33 13 12 11 31 12 21 32 12 31 33a a q a a q a a q a a q a a q a a q        

13 11 21 13 21 22 13 31 23 13 12 11 13 22 12 13 32 13a a q a a q a a q a a q a a q a a q      . 

Simplifying leads to 

     1 32 11 22 12 21 33 11 32 12 31 22 13 21 11 23LS q a a a a q a a a a q a a a a        

     23 13 31 11 33 12 12 23 13 22 13 12 33 13 32q a a a a q a a a a q a a a a      . 

Taking into account 
ija  (1.3) and 

ijq  (1.2) after averaging over   we get 

1 12 sin sinLS q


   

and in the end 

1 ,
0LS

 
 . 

The same math can be easily obtained for 2LS  and 3LS . 

In this section we managed to prove the asymptotical damping of the angular 

velocity of the satellite regardless of the positional torque part. This allows passing to 

the last stage in the satellite dynamics. 

4. Stability analysis 

Previous section proved that the control law (2.6) leads to the angular velocity 

damping and the angular momentum magnitude tends to zero exponentially [11], 

[12]. So we now assume that the control gains k  and ak  are of different magnitude, 

but  1oΩ . The equations of motion (1.6) may be written in a dimensionless form 

1
12 3 1

( )
,x

d B C
M

du A


 
     

2
21 3 1

( )
,x

d A C A
M

du B B


 
      

 

 

3
31 2 1

3 2

,

1
sin cos ,

cos

x

B Ad A
M

du C C

d

du




 




    

  

       (4.1) 

2 3sin cos ,
d

du


    

 1 2 3tg cos sin ,
d

du


       



14 

 

where 
2

0
1 2

0

ak B

A





  is a new small parameter. In order to make these equations 

convenient for the averaging we introduce another small parameter characterizing the 

angular velocity magnitude, 
2Ω w  where  2 0  Ω . We introduce vector 

 1 2 3, , , , ,w w w  x  and the equations (4.1) are of the form 

 2 , , ,u  x X x .         (4.2) 

Here 

 

 

 

3 2

2 3

1 2 3

1
12 3 2

2

1
21 3 2

2

1
31 2 2

2

1
sin cos

cos

sin cos

tg cos sin

( )

( )

x

x

x

w w

w w

w w w

B C
w w M

A

A C A
w w M

B B

B A A
w w M

C C

 


 

  













 
  

 
 

 
 

 
 

  
 
 
  

 
 
  

 

X . 

We assume  1

2

2

1O





   for the analysis simplification. The equation in the form 

(4.2) can be used for the formal averaging over the time (argument of latitude in our 

case). Since the stability of the interest in this section, we first linearize the equation 

of motion (4.1), 

1
2 1 2 3

2 2
2 3 1 2 1 3( )

dw
w w

du
B B w B B B B         

2 2
1 2 1 3 2 3 ,2 2 2( )B B B B B B       

2
2 1 2 3

2 2
1 2 1 3 2 3( )

dw A
w w

du B
B B B B w B B      

 

2 2
1 3 2 3 1 22( ) 2 2B B B B B B     ,      (4.3)

 

3
2 1 2 3

2 2
1 3 2 3 1 2( )

dw A
w w

du C
B B B B B B w       

 

2 2
2 3 1 2 1 3 ,2 2( ) 2B B B B B B     
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2 2 ,
d

w
du


 2 3,

d
w

du


 2 1,

d
w

du


  

where 
ak k   . The averaged linearized equations are 

   1 12 0p q p q          , 

   1 12 0
A A

p q p q
B B

          ,      (4.4) 

1 12 4 0
A A

p p
C C

         

where 21
sin

2
p   , 2cosq   . The equations (4.4) introduce damping oscillations 

for each angle, so the necessary attitude is stable. Equations (4.4) allow us to assess 

the control gains values that provide the optimal algorithm time-response. The 

characteristic polynomials roots are 

      22 2

1,2 1 1 1

1
8

2
p q p q p q            , 

     
2

22 2

3,4 1 1 1

1
8

2

A A A
p q p q p q

B B B
     

 
         

  
 

, 

2

2 2 2

5,6 1 1 14
A A A

p p p
C C C

     
 

    
 

. 

We introduce parameters 

1 B A  ,  2 2C p q pA    

and new control gains 

 
2

0

2

0

B
K p q k

A
 


  ,  

2

0

2

0

a a

B
K p q k

A
  . 

The roots are then rewritten in the form 

 2

1,2

1
8

2
aK K K      , 

2

3,4 12

1 1

1 1
8

2
a

K
K K

 
 

 
    

 
,       (4.5) 

2

5,6 22

2 2

1 1
8

2
a

K
K K

 
 

 
    

 
. 



16 

 

The bound frame is chosen in such a way that C B A  . In this case 
1 1   and 

it is necessary to examine three cases. 

I. 2 1 1    . This situation takes place for the low inclination orbit where q  prevails 

over p . Control gains are from one of the three following areas. 

1. 28 aK K . All radicands in (4.5) are negative and the degree of stability is 

1 2

1 1 1
min , ,

2 2 2
K K K  

 

 
  

 
. 

From the restriction I we have 

1

2

1

2
K


 . 

2. 2

28 aK K  . All radicands are positive and 

2 2 2

1 22 2

1 1 2 2

1 1 1
min 8 , 8 , 8

2
a a a

K K
K K K K K K K 

     
   

 
       

 
. 

That leads to 

2

2 8 aK K K     . 

3. 2

28 8a aK K K   . In this case either one or two radicands in (4.5) are positive and 

the degree of stability equals 1  or 2 . 

The case when 1 2   is of the utmost interest since it provides the maximum degree 

of stability with the minimum control gains (for each degree) 
2

2 2

2

8

2 1
aK K







, 

or in the initial expressions 

 
2

22 0

2 2

2 0

2 1

8
a

B
k p q k

A




 


   .        (4.6) 

Fig. 3 shows the degree of stability isolines with respect to both control gains for 

the satellite with inertia tensor  1,1.5,2diagJ  kg∙m2 on the orbit with 30˚ 

inclination and 350 km attitude. The parabola (4.6) is highlighted by the thick line. 
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Fig. 3. Optimal control gains parabola 

 

Fig. 3 reveals the parabola (4.6) point. If one chooses the degree of stability, this 

parabola offers the minimum possible control gains. This parabola also corresponds 

to the equality between three roots real part for each of the equations in (4.5). We 

now pass to other cases. 

II. 1 2 1   . The reasoning is the same, the optimal parabola is defined by 

 
2

21 0

2 2

1 0

2 1

8
a

B
k p q k

A




 


           (4.7) 

III. 1 21   . This relation is valid for the high inclined orbits. 

1. 2

28 aK K  . All radicands are negative, the degree of stability is 

1

1

1

2
K


 . 

2. 2

18 aK K  . All radicands are positive,  

2

2 22

2 2

1
8 a

K
K K

 
 

   . 
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3. 2

1 28 8a aK K K   . There are both positive and negative radicands, and the 

optimal parabola is defined by the expression 

 
2

22 0

2

1 1 0

1
2

8
a

B
k p q k

A




  

 
    

 
.       (4.8) 

Fig. 4 brings the degree of stability isolines for the same satellite but for the 

orbit inclination of 70 degrees. 

 
Fig. 4. Optimal control gains parabola for the highly inclined orbit 

 

All three parabolas are close for low and high inclined orbits, but in the latter 

case the damping control component should be slightly greater. 

Consider equations (4.2) again. The reasoning above is valid only if 

 1

2

2

1O





  . Assume that this relation is not valid and 1 2

n   instead with 

arbitrary n . Notation   , ,  y  allows the equations (4.1) to be written in the 

form 

   1

2 1 2 2 , ,n   ω f ω f ω y  

 2 3 , .y f ω y  
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The averaged equations are valid on the time interval 21u   with the accuracy 

2  if 2n  . On this time interval only angles change significantly while the angular 

velocity components stay almost constant. If 2n   the angular velocity components 

change while angles not, and the averaging is valid on the interval 1

21 nu   . 

However both cases allow the averaging and the resulting equations are 

asymptotically stable. That leads to the asymptotically stable limit cycle of the initial 

equations. The solution of initial equations is in the vicinity of the averaged solution 

with the accuracy of 2

k  where  min 1, 1k n  . This allows the averaging result to 

be prolonged on the infinite time interval, so the result obtained for 2n   is valid for 

arbitrary n  value. 

5. Numerical analysis 

According to previous sections, the necessary attitude is stable if the control 

gains are small enough. This result conflicts with the obvious underactuation 

problem: there should be unstable areas. To dismiss this problem we use the 

numerical analysis with the Floquet theory (the isolines are characteristic multipliers 

in this case). Fig. 5 shows the discrepancy between the analytical and numerical 

results for the control gains valid for the analytical results (same satellite, 70 degree 

inclination orbit). 
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Fig. 5. Analytical and numerical results comparison 

 

As seen from Fig. 5 the discrepancy raises as the control gains rise. The 

accuracy of the analytical result is of the order of the small parameter depending on 

the gains. Fig. 6 shows the unstable control gains area. 
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Fig. 6. Unstable area for the strong positional torque part 

 

Fig. 6 corresponds to the prevailing positional torque component. This strong 

positional torque rotates the satellite in a wrong direction, “missing” the point where 

it should be stopped, and small damping torque cannot neglect this rotation. Fig. 7 

presents the numerical modeling example for the same satellite with control gains  

9580k  , 1510ak  , orbit inclination 70 degrees. 
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Fig. 7. Attitude angles 

 

Note that the small control torque restriction is not unnatural. It is induced in 

order to perform the asymptotical analysis with the small parameter. However, as 

seen from Fig. 6, it is essential to have small control torque. If the torque is too 

strong, the satellite will acquire the error greater or comparable to the one before each 

control iteration. The torque should ob the order of about 5∙10-6 N∙m for the satellite 

considered. However it is only 2-4 times greater than the gravitational one which 

results in poor attitude accuracy, slightly better than 10 degrees. With different 

satellite masses and inertia tensors the accuracy of about few degrees is achievable. 

Nevertheless the control (2.6) should be modified. The weighing matrix ( 1
J  for 

example) may be introduced or varying control gains used [13] in order to maintain 

stable control torque magnitude when the angular velocity and the positional error 

diminish. 

Conclusion 

The satellite equipped with the active magnetic attitude control system providing 

three-axis stabilization is considered. The algorithm is constructed and analytically 

studied. Angular velocity damping and necessary attitude stability is proven using the 

asymptotical methods. Optimal (in terms of the degree of stability) control 

parameters are provided. Algorithm limitations are present. 
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