
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 73, 2013

Klyuchnikov I.G., Romanenko S.A.

TT Lite: a supercompiler for
Martin-Löf’s type theory

Recommended form of bibliographic references: Klyuchnikov I.G., Romanenko S.A. TT Lite: a
supercompiler for Martin-Löf’s type theory. Keldysh Institute preprints, 2013, No. 73, 28 p. URL:
http://library.keldysh.ru/preprint.asp?id=2013-73&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2013-73&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/author_page.asp?aid=1291&lg=e
http://library.keldysh.ru/preprint.asp?id=2013-73&lg=e

KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Ilya G. Klyuchnikov, Sergei A. Romanenko

TT Lite: a supercompiler for Martin-Löf ’s type theory

Moscow
2013

Ilya G. Klyuchnikov, Sergei A. Romanenko. TT Lite: a supercom-
piler for Martin-Löf ’s type-theory

The paper describes the design and implementation of a certifying supercom-
piler TT Lite, which takes an input program and produces a residual program
paired with a proof of the fact that the residual program is equivalent to the
input one. As far as we can judge from the literature, this is the first imple-
mentation of a certifying supercompiler for a non-trivial higher-order functional
language. The proof generated by TT Lite can be verified by a type checker
which is independent from the supercompiler and is not based on supercom-
pilation. This is essential in cases where the reliability of results obtained by
supercompilation is of fundamental importance.

Supported by Russian Foundation for Basic Research grant No. 12-01-00972-a
and RF President grant for leading scientific schools No. NSh-4307.2012.9.

Илья Ключников, Сергей Романенко. TT Lite: суперкомпилятор
для теории типов Мартина-Лёфа

Описывается структура и реализация сертифицирующего суперкомпиля-
тора TT Lite, преобразующего исходную программу в пару, содержащую
остаточную программу и доказательство того, что остаточная программа
эквивалентна исходной. Насколько можно судить по существующим публи-
кациям, сертифицирующая суперкомпиляция для нетривиального функ-
ционального языка высшего порядка реализована впервые. Доказатель-
ства, порождаемые суперкомпилятором TT Lite могут быть верифициро-
ваны проверяльщиком типов, который независим от суперкомпилятора и
не основан на суперкомпиляции. Это существенно в ситуациях, когда ре-
шающее значение имеет надежность результатов, полученных с помощью
суперкомпиляции.

Работа выполнена при поддержке гранта РФФИ № 12-01-00972-a и гранта
Президента РФ для ведущих научных школ № НШ-4307.2012.9.

3

1 Introduction

Supercompilation is a program manipulation technique that was originally in-
troduced by V. Turchin in terms of the programming language Refal (a first-
order applicative functional language) [22], for which reason the first super-
compilers were designed and developed for the language Refal [21].

Roughly speaking, the existing supercompilers can be divided into two large
groups: “optimizing” supercompilers that try to make programs more efficient,
and “analyzing” supercompilers that are meant for revealing and proving some
hidden properties of programs, in order to make programs more suitable for
subsequent analysis and/or verification.

1.1 Analysis by transformation and the problem
of correctness

The main idea behind the program analysis by supercompilation is that su-
percompilation “normalizes” and “trivializes” the structure of programs by
removing modularity and levels of abstraction (carefully elaborated by the
programmer). Thus, although the transformed program becomes less human-
friendly, it may be more convenient for automatic analysis.

Following are a few examples of using supercompilation for the purposes of
analysis and verification.

∙ Verification of protocols [13, 5].

∙ Proving the equivalence of programs [9].

∙ Contract checking (e.g. the verification of monadic laws) [7].

∙ Problem solving in Prolog style by inverse computation [17, 23].

∙ Proving the correctness of optimizations (verifying improvement lemmas)
[10].

It should be noted that the use of supercompilation for analysis and verifi-
cation is based on the assumption:

The supercompiler we use preserves the semantics of programs.

And in the following we will silently assume that this requirement is satisfied1.
At this point we are faced with the problem of correctness of supercompi-

lation itself, which has a number of aspects.

1Note that some supercompilers are not semantics-preserving, changing as they do termi-
nation properties and/or error handling behavior of programs).

4

∙ A non-trivial supercompiler is a sophisticated construction, whose proof
of correctness is bound to be messy and cumbersome, involving as it does
several areas of computer science. (For example, the proof of correctness
of the supercompiler HOSC takes more than 30 pages [8].) Such a proof
may contain some bugs and overlooks. . .

∙ Even if the proof is perfect, the implementation of the supercompiler may
be buggy.

∙ The correctness of the implementation can be verified by means of for-
mal methods. However, even the verification of a “toy” supercompiler is
technically involved [12].

1.2 Producing the result of supercompilation together
with a proof of its correctness

As we have seen, ensuring the correctness of a supercompiler is a difficult
task. But, what we are really interested in is the correctness of the results of
supercompilation. Thus we suggest the following solution.

Let the supercompiler produce a pair:

∙ a residual program, and

∙ a proof of the fact that this residual program is equivalent to
the original program.

The essential point is that the proof must be verifiable with a proof checker
that is not based on supercompilation and is (very!) much simpler than the
supercompiler.

The advantages of such certifying supercompilation are the following.

∙ The supercompiler can be written in a feature-rich programming language
(comfortable for the programmer), even if programs in this language are
not amenable to formal verification.

∙ The implementation of the supercompiler can be buggy, and yet its results
can be verified and relied upon.

∙ The supercompiler can be allowed to apply incorrect techniques, or, more
exactly, some techniques that are only correct under certain conditions
that the supercompiler is unable to check. In this case, some results of
supercompilation may be incorrect, but it is possible to filter them out.

5

1.3 Supercompilation for Martin-Löf’s type theory

A certifying supercompiler, in general, has to deal with two languages: the
programs transformed by the supercompiler are written in the subject language,
while the proof language is used for formulating the proofs generated by the
supercompiler.

The problem is that the proof language and the subject language must be
consistent with each other in some subtle respects. For example, the functions
in the subject language may be partial (as in Haskell), but total in the proof
language (as in Coq or Agda). And semantic differences of that kind may give
rise to a lot of annoying problems.

The above problem can be circumvented if the subject language of the
supercompiler is also used as its proof language! Needless to say, in this case
the subject language must have sufficient expressive power2.

The purpose of the present work was to show the feasibility and usefulness of
certifying supercompilation. To this end, we have developed and implemented
TT Lite, a proof-of-concept supercompiler for Martin-Löf’s type theory (TT
for short). The choice of TT as the subject+proof language was motivated as
follows.

∙ The language of type theory is sufficiently feature-rich and interesting.
(It provides inductive data types, higher-order functions and dependent
types.)

∙ The type theory is easy to extend and can be implemented in a simple,
modular way.

∙ Programs and proofs can be written in the same language.

∙ The typability of programs is decidable, and type checking can be easily
implemented.

To our knowledge, the supercompiler described in the present work is the
first one capable of producing residual programs together with proofs of their
correctness. It is essential that these proofs can be verified by a type checker
that is not based on supercompilation and is independent from the supercom-
piler.

The general idea that a certifying program transformation system can use
Martin-Löf’s type theory both for representing programs and for representing
proofs of correctness was put forward by Albert Pardo and Sylvia da Rosa [19].
We have shown that this idea can be implemented and does work in the case
of program transformation performed by supercompilation.

2Note, however, that the implementation language of the supercompiler does not need to
coincide with either the subject language or the proof language.

6

1.4 Outline of the preprint

Section 2 outlines the general structure of TT Lite (our supercompiler for
Martin-Löf’s type theory) and gives an example of its use for theorem proving.
Section 3 describes the subject+proof language of TT Lite, and the rules of
typing and normalization. Section 4 specifies the rules used by TT Lite for
constructing graphs of configurations. Section 5 explains how the proof that
the residual program is equivalent to the input one is extracted by TT Lite
from the graph of configurations. Section 6 concludes the preprint.

2 TT Lite in action

The TT Lite project comprises 2 parts:

∙ TT Lite Core, which is a minimalistic implementation of the language of
type theory (a type-checker, an interpreter and REPL).

∙ TT Lite SC, which is a supercompiler.

The results produced by TT Lite SC are verified by the type checker imple-
mented in TT Lite Core. TT Lite Core does not depend on TT Lite SC and
is not based on supercompilation3.

TT Lite Core implements the collection of constructs and data types that
can be usually found in textbooks on type theory: dependent functions, pairs,
sums, products, natural numbers, lists, propositional equality, the empty (bot-
tom) type and the unit (top) type.

TT Lite SC implements a supercompiler which can be called by programs
written in the TT Lite input language by means of a built-in construct sc.
(This supercompiler, however, is implemented in Scala, rather than in the TT
Lite language.) The supercompiler takes as an input an expression (with free
variables) in the TT Lite language and returns a pair: an output expression and
a proof that the output expression is equivalent to the input one. The proof
is also written in the TT Lite language and certifies that the two expressions
are extensionally equivalent, which means that, if we assign some values to the
free variables appearing in the expressions, the evaluation of the expressions
will produce the same result.

Both the output expression and the proof produced by the supercompiler
are first-class values and can be further manipulated by the program that
has called the supercompiler. Technically, the input expression is converted

3This design is similar to that of Coq. The numerous and sophisticated Coq “tactics”
generate proofs written in Coq’s Core language, which are then verified by a relatively small
type checker. Thus, occasional errors in the implementation of tactics do not undermine the
reliability of proofs produced by tactics.

7

1 import "examples/id.tt";

2
3 plus : forall (x : Nat)(y : Nat). Nat;
4 plus = \(x : Nat)(y : Nat).
5 elim Nat (\(n : Nat). Nat) y (\(x1 : Nat). Succ) x;
6
7 $x : Nat; $y : Nat; $z : Nat;
8
9 e1 = plus $x (plus $y $z);

10 e2 = plus (plus $x $y) $z;
11 (res1, proof1) = sc e1;
12 (res2, proof2) = sc e2;
13
14 id_e1_res1 : Id Nat e1 res1;
15 id_e1_res1 = proof1;
16
17 id_e2_res2 : Id Nat e2 res2;
18 id_e2_res2 = proof2;
19
20 id_res1_res2 : Id Nat res1 res2;
21 id_res1_res2 = Refl Nat res1;
22
23 id_e1_e2 : Id Nat e1 e2;
24 id_e1_e2 = proof_by_sc Nat e1 e2 res1 proof1 proof2;

Figure 1: Proving the associativity of addition by means of normalization by
supercompilation.

(reflected) to an AST, which then processed by the supercompiler written in
Scala. The result of supercompilation is then reified into values of the TT Lite
language4.

Let us consider the example in Fig. 1 illustrating the use of TT Lite SC for
proving the equivalence of two expressions [9].

As in Haskell and Agda, the types of defined expressions do not have to
be specified explicitly. However, type declarations make programs more under-
standable and easier to debug.

Lines 3–5 define the function of addition for natural numbers. The interest-
ing part of this definition is the use of an eliminator for both case analysis and
the implementation of recursion. The first argument of an eliminator specifies
the type of the value to be “eliminated”. (In this case the type is Nat.) The

4Thus the proof by supercompilation can be regarded as a special case of proof by reflection
[24].

8

second argument is a motive [15], the last argument is an expression whose
value is to be “eliminated” and the other arguments correspond to various
cases that can be encountered in the process of elimination. (Since a natural
number is either a zero or a successor of another natural number, here we have
two arguments.)

Line 7 declares (assumes) 3 free variables $x, $y and $z whose type is Nat.
By convention, the names of free variables start with $.

Lines 9–10 define two expressions whose equivalence is to be proved.
Now we come to the most interesting point: line 11 calls the built-in function

sc, which takes as input the expression e1 and returns its supercompiled version
res1 along with the proof proof1 or the fact that e1 and res1 are extensionally
equivalent (i.e., given $x, $y and $z, e1 and res1 return the same value).

Line 12 does the same for e2, res2 and proof2.
Lines 14–15 formally state that proof1 is indeed a proof of the equivalence

of e1 and res1, having as it does the appropriate type, and this fact is verified
by the type checker built into TT Lite Core.

Lines 17–18 do the same for e2, res2 and proof2.
And now, the final stroke! Lines 20–21 verify that res1 and res2 are

“propositionally equivalent” or, in simpler words, they are just textually the
same. Hence, by transitivity, e1 is extensionally equivalent to e2. And the
proof has been found (by supercompilation) and verified (by type checking)
automatically [9]. The function proof by sc is coded in TT Lite language in
the file examples/id.tt.

3 TT Lite: syntax and semantics

In the following the reader is assumed to be familiar with the basics of pro-
gramming in Martin-Löf’s type theory [18, 20].

TT Lite Core provides a modular and extensible implementation of type
theory. Technically speaking, it deals with a monomorphic version of type
theory with intensional equality and universes.

TT Lite SC is based on TT Lite Core and makes heavy use of the expression
evaluator (normalizer) and type checker provided by TT Lite Core. Hence,
before looking into the internals of the supercompiler, we have to consider the
details of how normalization and type checking are implemented in TT Lite
Core.

3.1 Syntax

The Syntax of the TT Lite language is shown in Fig. 2. A program is a list of
declarations and definitions. A definition (as in Haskell) can be of two kinds:

9

𝑝 ::= (𝑑𝑒𝑓 |𝑑𝑒𝑐)* program

𝑑𝑒𝑓 ::= 𝑖𝑑 : 𝑒; 𝑖𝑑 = 𝑒; definition with explicit typing
| 𝑖𝑑 = 𝑒; definition

𝑑𝑒𝑐 ::= $𝑖𝑑 : 𝑒; declaration (assumption)

𝑒 ::= 𝑣 variable
| c built-in constant
| b(𝑣 : 𝑒). 𝑒 built-in binder
| 𝑒1 𝑒2 application
| elim 𝑒𝑡 𝑒𝑚 𝑒𝑖 𝑒𝑑 elimination (special form of an application)
| (𝑒) parenthesized expression

Figure 2: TT Lite: syntax

Constant Constant Constant Constant Binder
𝒰𝑘 𝐼𝑛𝑟 N 𝑁𝑖𝑙 Π(𝑥 : 𝑒).𝑒(𝑥)
𝜎 ⊥ 0 𝐶𝑜𝑛𝑠 𝜆(𝑥 : 𝑒).𝑒(𝑥)
+ ⊤ 𝑆𝑢𝑐𝑐 ℐ Σ(𝑥 : 𝑒).𝑒(𝑥)
𝐼𝑛𝑙 ⋆ 𝐿𝑖𝑠𝑡 𝑅𝑒𝑓𝑙

Figure 3: TT Lite: built-in constants

with or without an explicit type declaration. There is also a possibility to
declare the type of an identifier without defining its value (in which case the
identifier must start with $).

A TT Lite expression is either a variable, a built-in constant, a binder5,
an application, an application of an eliminator or an expression enclosed in
parentheses.

This syntax should be familiar to functional programmers: variables and
applications have usual meaning, binders are a generalization of 𝜆-abstractions,
eliminators are a “cross-breed” of case and fold [3].

In general, an eliminator in the TT Lite language has the form

elim 𝑒𝑡 𝑒𝑚 𝑒𝑖 𝑒𝑑

where 𝑒𝑡 is the type of the values that are to be eliminated, 𝑒𝑚 is a “motive”
[15], 𝑒𝑖 correspond to the cases that can be encountered when eliminating a
value, and 𝑒𝑑 is an expression that produces values to be eliminated6.

5See [2, Section 1.2] describing abstract binding trees.
6By the way, application is essentially an eliminator for functional values.

10

The site of the project https://github.com/ilya-klyuchnikov/ttlite
contains a tutorial on programming in the TT Lite language with examples
taken from [18, 20].

Fig. 3 shows built-in constants and binders of the TT Lite language.

3.2 Semantics

The typing and normalization rules implemented in TT Lite can be found in
Appendix A. Essentially, they correspond to the rules described in [18, 20], but
have been refactored, in order to be closer to their actual implementation in
TT Lite.

The typing and normalization rules are formulated with respect to a context
Γ, where Γ is a list of pairs of two kind: 𝑥 := 𝑒 binds a variable to an expression
defining its value, while 𝑥 : 𝑇 binds a variable to a type. By tradition, we divide
the rules into 3 categories: formation, introduction and elimination rules. A
rule of the form Γ ⊢ 𝑒 : 𝑇 means that 𝑒 has the type 𝑇 in the context Γ, while
[[𝑒]]Γ = 𝑒′ means that 𝑒′ is the result of normalizing 𝑒 in the context Γ.

Our rules mainly differ from the corresponding ones in [18, 20] in that subex-
pressions are explicitly normalized in the process of type checking. It should be
also noted that these expressions, in general, may contain free variables. If a
TT Lite expression is well-typed, its normalization is guaranteed to terminate.
So, any function definable in the TT Lite language is total by construction.

Fig. 15 gives a definition of the neutral variable [14] of an expression. Es-
sentially, a neutral variable is the one that prevents an elimination step from
being performed7.

4 TT Lite: supercompilation

The implementation of TT Lite SC is based on the MRSC Toolkit [11], which
builds graphs of configurations [22] by repeatedly applying a number of graph
rewrite rules. The nodes of a partially constructed graph are classified as
either complete or incomplete. The supercompiler selects an incomplete node,
declares it to be the current one, and turns it into a complete node by applying
to it the rules specified by the programmer. The process starts with a graph
containing a single (initial) configuration and stops when all nodes become
complete8.

Fig. 4 schematically depicts the graph building operations that can be per-
formed by the MRSC Toolkit. (Incomplete nodes are shown by dashed lines,

7Recall that application is also a special case of eliminator
8Or the graph is declared by the whistle to be “dangerous” (in this case the supercompiler

just discards the graph), but this feature is not used by TT Lite SC.

https://github.com/ilya-klyuchnikov/ttlite

11

𝑈𝑛𝑓𝑜𝑙𝑑−−−−−→

𝐹𝑜𝑙𝑑−−−→

𝑆𝑡𝑜𝑝−−−→

Figure 4: Basic operations of MRSC

𝐼(𝑐) - decomposition
𝐸(𝑦 ↦→ 𝑡1, 𝑡𝑟𝑒𝑐) - case analysis and (possible) recursion

Figure 5: Labels on graph edges in TT Lite SC

the current node is inside rounded box.) These operations are applied to the
current node (which, by definition, is incomplete). The operation unfold adds
child nodes to the current node. This node becomes complete, while the new
nodes are declared to be incomplete. The operation fold adds a “folding” edge
from the current node to one of its parents, and the node becomes complete.
The operation stop just declares the current node to be complete, and does
nothing else.

4.1 Graphs of configurations

The MRSC toolkit allows the nodes and edges of a graph to hold arbitrary
information. In the case of TT Lite SC, a configuration is a pair consisting of a
term (expression) and a context. Schematically, a graph node will be depicted

12

as follows:
�� ��𝑡 | Γ . The edges of a graph can be assigned labels of two kinds

(Fig. 5). The first kind corresponds to the elimination of a constructor, while
the second kind corresponds to case analysis and (in general case) primitive
recursion performed by an eliminator.

In the case of recursive eliminators (such as N, 𝐿𝑖𝑠𝑡) the label also holds
information to be used for finding possible foldings.

We use the following notation for depicting nodes and transitions between
nodes:

(a)
�� ��𝑡0 | Γ0

𝐼(𝐶𝑜𝑛𝑠)−−−−−−−−→
�� ��𝑡1 | Γ1

(b)
�� ��𝑡0 | Γ0

𝐸(𝑦→𝑐1,𝑟)−−−−−−−→
�� ��𝑡1 | Γ1

𝐸(𝑦→𝑐1,∙)−−−−−−−→
�� ��𝑡2 | Γ2

(c)
�� ��𝑡0 | Γ0 ←−−−−−−−

�� ��𝑡1 | Γ1

(d)
�� ��𝑡0 | Γ0 −−−−−−−→ ∙

An unfolding edge is schematically represented by a right arrow, and a
folding edge by a left arrow. (a) represents an unfolding. (b) corresponds to
case analysis performed by an eliminator. If the eliminator is a recursive one,
the edge label contains a recursive term 𝑟, otherwise this position is occupied
by the placeholder ∙. (c) represents a folding edge. (d) represents a complete
node without child nodes. Sometimes, nodes will be denoted by greek letters.
For example, a folding edge from 𝛽 to 𝛼 will be depicted as 𝑎← 𝛽.

The rules used by TT Lite SC for building graphs of configurations can be
found in Appendix B. In simple cases, the left part of a rule is a pattern that
specifies the structure of the nodes the rule is applicable to. But, sometimes
a rule has the form of an inference rule with a number of premises (“guarded
pattern matching” in programmer’s terms). The rules are ordered.

Let us consider rules of various kinds in more details.

4.2 Unfolding rules

All rules enumerated in Appendix B, except for Fold, Whistle and Default, add
new nodes to the graph by applying the operation Unfold. Any unfolding rule
can be classified as either a decomposition or a case analysis by means of an
eliminator.

13

4.2.1 Decomposition

From the perspective of the type theory, Decomposition corresponds to for-
mation and introduction rules. The essence of decomposition is simple: we
take a construct to pieces, which become new nodes, and label the edges with
some information about the construct that has been decomposed. The pecu-
liarity of decomposition is that it makes no analysis of type information, only
examining the structure of values. For example, when the supercompiler en-
counters 𝜎 (Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝑡1 𝑡2, it supercompiles 𝑡1 and 𝑡2, but does not touch
Σ(𝑥 : 𝐴). 𝐵(𝑥). The reason is that supercompilation is required to preserve
the types of expressions, but the supercompilation of a type parameter can, in
general, change the type of the expression.

Decomposition of binders is not performed, either. The reason is that in
this case we could be unable to generate a proof of correctness of decompo-
sition, because the core type theory does not provide means for dealing with
extensional equality. Thus we do not decompose Π, Σ and 𝜆.

Note that decomposition does not change the context.

4.2.2 Case analysis for neutral eliminators

When the supercompiler encounters an expression with a neutral variable, it
considers all instantiations of this variable that are allowed by its type. Then,
for each possible instantiation, the supercompiler adds a child node labeling the
corresponding edge with information about this instantiation. In the case of
“ordinary” types, this information is enough for generating both the residual
program and the proof of correctness (in a straightforward way). However,
an attempt to perform case analysis for the eliminator 𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑥 𝑦) and
then generate a residual program would require solving a system of equations
(for example, by means of higher-order unification). Thus, to keep our proof-of-
concept supercompiler simple, driving is just not performed for 𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑥 𝑦).

Another special case is the application of a neutral variable. Since a neu-
tral variable is bound to have a functional type, we cannot enumerate all its
possible instantiations. So, to keep the supercompiler simple, we prefer not to
decompose such applications.

When dealing with eliminators for recursive types (such as N and 𝐿𝑖𝑠𝑡), we
record the expression corresponding to the “previous step of elimination”9 in
the edge label. For example, for the expression 𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 (𝑆𝑢𝑐𝑐 𝑛), the
expression corresponding to the previous step is 𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 𝑛

10.

9= “recursive call” of the same eliminator
10For eliminators implemented in TT Lite (lists, Peano numbers) there is at maximum

one recursive call on each branch. For cases when there are more than one recursive calls
to the eliminator on the same branch (e.g. tree data type) labeling will be more technically

14

4.3 Folding rule

In the rule Fold 𝑎𝑛𝑐(𝛽) is a set of ancestor nodes of the current node 𝛽. The
rule itself is very simple. If the current node has an ancestor node whose
“previous step of elimination” in the outgoing edge is (literally) the same as
the current term, then the rule Fold is applicable and the current configuration
can be folded to the parent one. In the residual program this folding will give
rise to a function defined by primitive recursion.

4.4 Default rule

If no folding/unfolding rule is applicable, the rule Default is applied. (This rule
is the last and has the lowest priority.) In this case, the current node becomes
complete and the building of the current branch of the graph is stopped.

4.5 Stop rule

In general, the process of repeatedly applying unfolding rules together with
the rules Fold and Default may never terminate. Thus, in order to ensure
termination, we use the rule Whistle, whose priority is higher than that of
the unfolding rules and the rule Default. In this supercompiler we use a very
simple termination criterion: the building of the current branch stops if its
depth exceeds some threshold 𝑛. Note that, in the case of TT Lite SC, the
expressions appearing in the nodes of the graph are self-contained, so that they
can be just output as is into the residual program.

4.6 Termination

Since the graph of configurations is finitely branching and all branches have
finite depth, the graph of configurations cannot be infinite. Therefore, the
process of graph building eventually terminates.

4.7 Code generation

The generation of the residual program corresponding to a completed graph
of configurations is performed just by recursive descent. The function that
implements the residualization algorithm is defined in Appendix C. A call to
this function has the form 𝒞[𝛼]𝜌, where 𝛼 is the current node, and 𝜌 is an
enviroment (mapping of nodes to variables) to “tie the knot” on “folding”
edges. The initial call to the function 𝒞 has the form 𝒞[𝑟𝑜𝑜𝑡]{}, where 𝑟𝑜𝑜𝑡 is
the root node of the graph of configurations.

involved, but the essence will be the same.

15

The function 𝒞 performs pattern matching against the edges going out of
the current node. (In the rules the patterns are enclosed into square brackets.)
To avoid cluttering the notation, we use the following conventions. The current
node is 𝛼, 𝑡𝑝(𝛼) is the type of the expression appearing in the node 𝛼. If 𝑡 | Γ
is the configuration in the node 𝛼, and Γ ⊢ 𝑡 : 𝑇 , then 𝑡𝑝(𝛼) = 𝑇 .

5 Proof generation

The generation of the proof corresponding to a completed graph of configura-
tions is performed by recursive descent (and in this respect is similar to the
generation of residual program). The function that implements the proof gen-
eration algorithm is defined in Appendix D. A call to this function has the
form 𝒫[𝛼]𝜌,𝜑. Where 𝛼 is the current node, 𝜌 is an environment for folding of
code generation and 𝜑 is an environment for folding of proof generation, 𝜑 is an
analog of 𝜌 in the world of proofs, – 𝜑 binds a node to an inductive hypothesis
of the proof. However, 𝜌 is used for two purposes (see explanations below).
The initial call to the function 𝒫 has the form 𝒫[𝑟𝑜𝑜𝑡]{},{}, where 𝑟𝑜𝑜𝑡 is the
root node of the graph of configurations.

A proof generated by 𝒫 is based on the use of propositional equality (i.e.
syntactic identity of normalized expressions), functional composition and in-
duction.

∙ The residual expression corresponding to a childless node is the same as
the one appearing in this node. Hence, the proof amounts to the use of
reflexivity of equality (i.e. is a call to 𝑅𝑒𝑓𝑙).

∙ The proofs corresponding to decompositions of configurations exploit the
congruence of equality: the whole proof is constructed by combining
subproofs (that arguments of constructors are equal) with the aid of the
combinators 𝑐𝑜𝑛𝑔1 and 𝑐𝑜𝑛𝑔2 (defined in Figure 22).

∙ The proofs corresponding to eliminators are by (structural) induction.
When specifying a type of a proof for eliminator (as a motive), 𝒞[𝛼]𝜌
is used as during code generation (the same environment 𝜌). But when
generating a subproof for recursive eliminators (see rules for 𝑒𝑙𝑖𝑚 𝒩 and
𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡𝐴)), an environment 𝜌 is extended with a recursive call of a
supercompiled eliminator. Also 𝜑 is extended with a mapping of the
current node to a subproof (inductive hypothesis) to “fold” a proof.

Now we can explain why, when constructing graphs of configurations, we
do not decompose 𝜆-abstractions (in spite of the fact that this is done in [6]).
We could have used the graph building rule

16�� ��𝜆 (𝑥 : 𝑇).𝑒 | Γ 𝐼(𝜆(𝑇))−−−−−→
�� ��𝑒 | Γ, 𝑥 : 𝑇

and the corresponding code generation rule

𝒞
[︁

𝐼(𝜆(𝑇))−−−−−→ 𝛼1

]︁
𝜌

= 𝐼(𝜆(𝑥 : 𝑇) 𝒞[𝛼1]𝜌)

However, it would be unclear how to generate a proof of correctness (based
on intensional equality)?

Note that the same graph of configurations is used both for generating the
residual program and for generating the proof. If TT Lite SC would have been
implemented in “direct” style (without explicit graphs of configurations) like
in [1], such reuse would be problematic, which would produce a negative effect
on the modularity of our design.

6 Conclusions

We have developed and implemented a certifying supercompiler TT Lite SC,
which takes an input program and produces a residual program paired with a
proof of the fact that the residual program is equivalent to the input one.

As far as we can judge from the literature, this is the first implementation
of a certifying supercompiler for a non-trivial higher-order functional language.

A proof generated by TT Lite SC can be verified by a type checker of TT
Lite Core which is independent from TT Lite SC and is not based on super-
compilation. This is essential in cases where the reliability of results obtained
by supercompilation is of fundamental importance. For example, when super-
compilation is used for purposes of program analysis and verification.

Some “technical” details in the design of TT Lite SC are also of interest.

∙ The subject language of the supercompiler is a total, statically typed,
higher-order functional language. Namely, this is the language of Martin-
Löf’s type theory (in its monomorphic version).

∙ The proof language is the same as the subject language of the supercom-
piler.

∙ Recursive functions in the subject language are written in a well-struc-
tured way, by means of “eliminators”. An eliminator for an inductively
defined data type performs both the case analysis and recursive calls.

∙ Driving is type-directed.

The main limitation of the current version of TT Lite SC is that it does not
perform generalization of configurations. It would be interesting to investigate
generalization in the context of certifying supercompilation.

17

References

[1] M. Bolingbroke and S. Peyton Jones. Supercompilation by evaluation.
In Proceedings of the third ACM Haskell symposium on Haskell, pages
135–146. ACM, 2010.

[2] R. Harper. Practical foundations for programming languages. Cambridge
University Press, 2012.

[3] G. Hutton. A tutorial on the universality and expressiveness of fold. J.
Funct. Program., 9:355–372, 1999.

[4] A. Klimov and S. Romanenko, editors. Third International Valentin
Turchin Workshop on Metacomputation in Russia. Publishing House “Uni-
versity of Pereslavl”, 2012.

[5] A. V. Klimov, I. G. Klyuchnikov, and S. A. Romanenko. Automatic veri-
fication of counter systems via domain-specific multi-result supercompila-
tion. In Klimov and Romanenko [4], pages 112–141.

[6] I. Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63,
Keldysh Institute of Applied Mathematics, Moscow, 2009. URL: http:
//library.keldysh.ru/preprint.asp?id=2009-63.

[7] I. Klyuchnikov. Inferring and proving properties of functional programs
by means of supercompilation. PhD thesis, Keldysh Institute of Applied
Mathematics, 2010.

[8] I. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31,
Keldysh Institute of Applied Mathematics, Moscow, 2010. URL: http:
//library.keldysh.ru/preprint.asp?id=2010-31.

[9] I. Klyuchnikov and S. Romanenko. Proving the equivalence of higher-order
terms by means of supercompilation. In Proceedings of the 7th interna-
tional Andrei Ershov Memorial conference on Perspectives of Systems In-
formatics, volume 5947 of LNCS, pages 193–205. Springer, 2010.

[10] I. Klyuchnikov and S. Romanenko. Towards higher-level supercompilation.
In Nemytykh [16].

[11] I. G. Klyuchnikov and S. A. Romanenko. MRSC: a toolkit for building
multi-result supercompilers. Preprint 77, Keldysh Institute of Applied
Mathematics, 2011. URL: http://library.keldysh.ru/preprint.asp?
lg=e&id=2011-77.

http://library.keldysh.ru/preprint.asp?id=2009-63
http://library.keldysh.ru/preprint.asp?id=2009-63
http://library.keldysh.ru/preprint.asp?id=2010-31
http://library.keldysh.ru/preprint.asp?id=2010-31
http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77
http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77

18

[12] D. Krustev. A simple supercompiler formally verified in Coq. In Nemytykh
[16], pages 102–127.

[13] A. Lisitsa and A. Nemytykh. Verification as a parameterized testing (ex-
periments with the SCP4 supercompiler). Programming and Computer
Software, 33(1):14–23, 2007.

[14] A. Löh, C. McBride, and W. Swierstra. A tutorial implementation of a
dependently typed lambda calculus. Fundamenta Informaticae, 21:1001–
1032, 2010.

[15] C. McBride. Elimination with a motive. In Selected papers from the
International Workshop on Types for Proofs and Programs, volume 2277
of LNCS. Springer, 2002.

[16] A. Nemytykh, editor. Second International Valentin Turchin Memorial
Workshop on Metacomputation in Russia. Publishing House “University
of Pereslavl”, 2010.

[17] A. P. Nemytykh and V. A. Pinchuk. Program transformation with meta-
system transitions: Experiments with a supercompiler. In Perspectives of
System Informatics, volume 1181 of LNCS. Springer, 1996.

[18] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-
Löf ’s type theory. Oxford University Press, 1990.

[19] A. Pardo and S. da Rosa. Program transformation in Martin-Löf’s type
theory. In CADE-12, Workshop on Proof-search in type-theoretic lan-
guages, 1994.

[20] S. Thompson. Type theory and functional programming. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA, 1991.

[21] V. F. Turchin. The language Refal: The theory of compilation and meta-
system analysis. Technical Report 20, Courant Institute, 1980.

[22] V. F. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

[23] V. F. Turchin. Supercompilation: Techniques and results. In Perspectives
of System Informatics, volume 1181 of LNCS. Springer, 1996.

[24] P. van der Walt and W. Swierstra. Engineering proof by reflection in
Agda. In R. Hinze, editor, Implementation and Application of Functional
Languages - 24th International Symposium, 2012.

19

A Formation, Introduction and Elimination
Rules

(𝑣) Γ, 𝑥 : 𝑇 ⊢ 𝑥 : [[𝑇]]Γ

([[𝑣]]) [[𝑥]]Γ, 𝑥:=𝑡 = [[𝑡]]Γ

Figure 6: TT: variables

(𝒰) 𝒰𝑛 : 𝒰𝑛+1

Figure 7: TT: universes

(Π𝐹)
Γ ⊢ 𝐴 : 𝒰𝑚 Γ, 𝑥 : [[𝐴]]Γ ⊢ 𝐵(𝑥) : 𝒰𝑛

Γ ⊢ Π(𝑥 : 𝐴). 𝐵(𝑥) : 𝒰𝑚𝑎𝑥(𝑚,𝑛)

(Π𝐼)
Γ ⊢ 𝐴 : 𝒰𝑚 Γ, 𝑥 : [[𝐴]]Γ ⊢ 𝑡(𝑥) : 𝐵(𝑥)

Γ ⊢ 𝜆(𝑥 : 𝐴). 𝑡(𝑥) : [[Π(𝑥 : 𝐴). 𝐵(𝑥)]]Γ

(Π𝐸)
Γ ⊢ 𝑓 : Π(𝑥 : 𝐴). 𝐵(𝑥) Γ ⊢ 𝑡 : 𝐴

Γ ⊢ 𝑓 𝑡 : [[𝐵(𝑥)]]Γ,𝑥:=𝑡

([[Π𝐹]]) [[Π(𝑥 : 𝐴). 𝐵(𝑥)]]Γ = Π(𝑥 : [[𝐴]]Γ). [[𝐵(𝑥)]]Γ

([[Π𝐼]]) [[𝜆(𝑥 : 𝐴). 𝑡(𝑥)]]Γ = 𝜆(𝑥 : [[𝐴]]Γ). [[𝑡(𝑥)]]Γ

([[Π𝐸]]) [[𝑓 𝑡]]Γ = ⌈[[𝑓]]Γ[[𝑡]]Γ⌉Γ
(⌈Π𝐸⌉) ⌈(𝜆(𝑥 : 𝐴).𝑡(𝑥))𝑢⌉Γ = [[𝑡(𝑥)]]Γ,𝑥:=𝑢

Figure 8: TT: dependent functions (products)

(Σ𝐹)
Γ ⊢ 𝐴 : 𝒰𝑚 Γ, 𝑥 : [[𝐴]]Γ ⊢ 𝐵(𝑥) : 𝒰𝑛

Γ ⊢ Σ(𝑥 : 𝐴). 𝐵(𝑥) : 𝒰𝑚𝑎𝑥(𝑚,𝑛)

(Σ𝐼)
Γ ⊢ Σ(𝑥 : 𝐴). 𝐵(𝑥) : 𝒰𝑘 Γ, 𝑡1 : [[𝐴]]Γ ⊢ 𝑡2 : [[𝐵(𝑥)]]Γ,𝑥:=𝑡1

Γ ⊢ 𝜎 (Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝑡1 𝑡2 : [[Σ(𝑥 : 𝐴). 𝐵(𝑥)]]Γ

(Σ𝐸)

Γ ⊢ Σ(𝑥 : 𝐴). 𝐵(𝑥) : 𝒰𝑘 Γ ⊢ 𝑝 : [[Σ(𝑥 : 𝐴). 𝐵(𝑥)]]Γ
Γ ⊢ 𝑚 : [[Π(𝑧 : Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝒰𝑘]]Γ

Γ ⊢ 𝑓 : [[Π(𝑥 : 𝐴).Π(𝑦 : 𝐵(𝑥)).𝑚 (𝜎 (Σ(𝑥 : 𝐴). 𝐵(𝑥))𝑥 𝑦)]]Γ
𝑒𝑙𝑖𝑚 (Σ(𝑥 : 𝐴). 𝐵)𝑚𝑓 𝑝 : [[𝑚𝑝]]Γ

([[Σ𝐹]]) [[Σ(𝑥 : 𝐴). 𝐵(𝑥)]]Γ = Σ(𝑥 : [[𝐴]]Γ). [[𝐵(𝑥)]]Γ

([[Σ𝐼]]) [[𝜎 (Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝑡1 𝑡2]]Γ = 𝜎 [[Σ(𝑥 : 𝐴). 𝐵(𝑥)]]Γ [[𝑡1]]Γ [[𝑡2]]Γ

([[Σ𝐸]]) [[𝑒𝑙𝑖𝑚 (Σ(𝑥 : 𝐴). 𝐵(𝑥))𝑚𝑓 𝑝]]Γ =
⌈𝑒𝑙𝑖𝑚 [[Σ(𝑥 : 𝐴). 𝐵(𝑥)]]Γ [[𝑚]]Γ [[𝑓]]Γ [[𝑝]]Γ⌉Γ

(⌈Σ𝐸⌉) ⌈𝑒𝑙𝑖𝑚 (Σ(𝑥 : 𝐴). 𝐵(𝑥))𝑚𝑓 (𝜎 (Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝑡1 𝑡2)⌉Γ = [[𝑓 𝑡1 𝑡2]]Γ

Figure 9: TT: dependent sums (pairs)

20

(+𝐹)
Γ ⊢ 𝐴 : 𝒰𝑚 Γ ⊢ 𝐵 : 𝒰𝑛
Γ ⊢ 𝐴+𝐵 : 𝒰𝑚𝑎𝑥(𝑚,𝑛)

(+𝐼1)
Γ ⊢ 𝐴+𝐵 : 𝒰𝑘 Γ ⊢ 𝑎 : [[𝐴]]Γ

Γ ⊢ 𝐼𝑛𝑙 (𝐴+𝐵) 𝑎 : [[(𝐴+𝐵)]]Γ

(+𝐼2)
Γ ⊢ 𝐴+𝐵 : 𝒰𝑘 Γ ⊢ 𝑏 : [[𝐵]]Γ

Γ ⊢ 𝐼𝑛𝑟 (𝐴+𝐵) 𝑏 : [[(𝐴+𝐵)]]Γ

(+𝐸)

Γ ⊢ 𝐴+𝐵 : 𝒰𝑘 Γ ⊢ 𝑚 : [[Π(𝑥 : 𝐴+𝐵). 𝒰𝑘]]Γ
Γ ⊢ 𝑓𝑙 : [[Π(𝑥 : 𝐴). 𝑚 (𝐼𝑛𝑙 (𝐴+𝐵) 𝑥)]]Γ
Γ ⊢ 𝑓𝑟 : [[Π(𝑥 : 𝐴). 𝑚 (𝐼𝑛𝑟 (𝐴+𝐵) 𝑥)]]Γ

Γ ⊢ 𝑡 : [[𝐴+𝐵]]Γ
Γ ⊢ 𝑒𝑙𝑖𝑚 (𝐴+𝐵) 𝑚 𝑓𝑙 𝑓𝑟 𝑡 : [[𝑚 𝑡]]Γ

([[+𝐹]]) [[𝐴+𝐵]]Γ = [[𝐴]]Γ + [[𝐵]]Γ

([[+𝐼1]]) [[𝐼𝑛𝑙 (𝐴+𝐵) 𝑎]]Γ = 𝐼𝑛𝑙 [[(𝐴+𝐵)]]Γ [[𝑎]]Γ

([[+𝐼2]]) [[𝐼𝑛𝑟 (𝐴+𝐵) 𝑏]]Γ = 𝐼𝑛𝑟 [[(𝐴+𝐵)]]Γ [[𝑏]]Γ

([[+𝐸]]) [[𝑒𝑙𝑖𝑚 (𝐴+𝐵) 𝑚 𝑓𝑙 𝑓𝑟 𝑣]]Γ =
⌈𝑒𝑙𝑖𝑚 [[𝐴+𝐵]]Γ [[𝑚]]Γ [[𝑓𝑙]]Γ [[𝑓𝑟]]Γ [[𝑣]]Γ⌉Γ

(⌈+𝐸1⌉) ⌈𝑒𝑙𝑖𝑚 (𝐴+𝐵) 𝑚 𝑓𝑙 𝑓𝑟 (𝐼𝑛𝑙 (𝐴+𝐵) 𝑎)⌉Γ = [[𝑓𝑙 𝑎]]Γ

(⌈+𝐸2⌉) ⌈𝑒𝑙𝑖𝑚 (𝐴+𝐵) 𝑚 𝑓𝑙 𝑓𝑟 (𝐼𝑛𝑟 (𝐴+𝐵) 𝑏)⌉Γ = [[𝑓𝑟 𝑏]]Γ

Figure 10: TT: coproducts (sums)

(⊥𝐹)
Γ ⊢ ⊥ : 𝒰0

(⊤𝐹)
Γ ⊢ ⊤ : 𝒰0

(⊤𝐼)
Γ ⊢ ⋆ : ⊤

(⊥𝐸)
Γ ⊢ 𝑚 : [[Π(𝑥 : ⊥). 𝒰𝑘]]Γ Γ ⊢ 𝑡 : ⊥

Γ ⊢ 𝑒𝑙𝑖𝑚 ⊥ 𝑚 𝑡 : [[𝑚 𝑡]]Γ

(⊤𝐸)
Γ ⊢ 𝑚 : [[Π(𝑥 : ⊤). 𝒰𝑘]]Γ Γ ⊢ 𝑓 : [[𝑚 ⋆]]Γ Γ ⊢ 𝑡 : ⊤

Γ ⊢ 𝑒𝑙𝑖𝑚 ⊤ 𝑚 𝑓 𝑡 : [[𝑚 𝑡]]Γ

([[⊥𝐸]]) [[𝑒𝑙𝑖𝑚 ⊥ 𝑚 𝑡]]Γ = 𝑒𝑙𝑖𝑚 ⊥ [[𝑚]]Γ [[𝑡]]Γ

([[⊤𝐸]]) [[𝑒𝑙𝑖𝑚 ⊤ 𝑚 𝑓 𝑡]]Γ = ⌈𝑒𝑙𝑖𝑚 ⊤ [[𝑚]]Γ [[𝑓]]Γ [[𝑡]]Γ⌉Γ

(⌈⊤𝐸⌉) ⌈𝑒𝑙𝑖𝑚 ⊤ 𝑚 𝑓 ⋆⌉Γ = [[𝑓 ⋆]]Γ

Figure 11: TT: the empty (bottom) type and the unit type

21

(N𝐹)
Γ ⊢ N : 𝒰0

(N𝐼1)
Γ ⊢ 0 : N

(N𝐼2) Γ ⊢ 𝑛 : N
Γ ⊢ 𝑆𝑢𝑐𝑐 𝑛 : N

(N𝐸)

Γ ⊢ 𝑚 : [[Π(𝑥 : N). 𝒰𝑘]]Γ
Γ ⊢ 𝑓0 : [[𝑚 0]]Γ

Γ ⊢ 𝑓𝑠 : [[Π(𝑥 : N) (𝑦 : 𝑚 𝑥). 𝑚 (𝑆𝑢𝑐𝑐 𝑥)]]Γ
Γ ⊢ 𝑛 : N

Γ ⊢ 𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 𝑛 : [[𝑚 𝑛]]Γ

([[N𝐼2]]) [[𝑆𝑢𝑐𝑐 𝑛]]Γ = 𝑆𝑢𝑐𝑐 [[𝑛]]Γ

([[N𝐸]]) [[𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 𝑛]]Γ = ⌈𝑒𝑙𝑖𝑚 N [[𝑚]]Γ [[𝑓0]]Γ [[𝑓𝑠]]Γ [[𝑛]]Γ⌉Γ

(⌈N𝐸1⌉) ⌈𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 0⌉Γ = [[𝑓0]]Γ

(⌈N𝐸2⌉) ⌈𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 (𝑆𝑢𝑐𝑐 𝑛)⌉Γ = [[𝑓𝑠 𝑛 (𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 𝑛)]]Γ

Figure 12: TT: natural numbers

(𝐿𝑖𝑠𝑡 𝐹)
Γ ⊢ 𝐴 : 𝒰𝑘

Γ ⊢ 𝐿𝑖𝑠𝑡 𝐴 : 𝒰𝑘

(𝐿𝑖𝑠𝑡 𝐼1)
Γ ⊢ 𝐿𝑖𝑠𝑡 𝐴 : 𝒰𝑘

Γ ⊢ 𝑁𝑖𝑙 (𝐿𝑖𝑠𝑡 𝐴) : [[𝐿𝑖𝑠𝑡 𝐴]]Γ

(𝐿𝑖𝑠𝑡 𝐼2)
Γ ⊢ 𝐿𝑖𝑠𝑡 𝐴 : 𝒰𝑘 Γ ⊢ 𝑡1 : [[𝐴]]Γ Γ ⊢ 𝑡2 : [[𝐿𝑖𝑠𝑡 𝐴]]Γ

Γ ⊢ 𝐶𝑜𝑛𝑠 (𝐿𝑖𝑠𝑡 𝐴) 𝑡1 𝑡2 : [[𝐿𝑖𝑠𝑡 𝐴]]Γ

(𝐿𝑖𝑠𝑡 𝐸)

Γ ⊢ 𝐿𝑖𝑠𝑡 𝐴 : 𝒰𝑛 Γ ⊢ 𝑚 : [[Π(𝑥 : 𝐿𝑖𝑠𝑡 𝐴). 𝒰𝑘]]Γ
Γ ⊢ 𝑓𝑠 : [[Π(𝑥 : 𝐴) (𝑦 : 𝐿𝑖𝑠𝑡 𝐴) (𝑧 : 𝑚 𝑦). 𝑚 (𝐶𝑜𝑛𝑠 𝐴 𝑥 𝑦)]]Γ

Γ ⊢ 𝑡 : [[𝐿𝑖𝑠𝑡 𝐴]]Γ Γ ⊢ 𝑓0 : [[𝑚 (𝑁𝑖𝑙 𝐴)]]Γ
Γ ⊢ 𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) 𝑚 𝑓0 𝑓𝑠 𝑡 : [[𝑚 𝑡]]Γ

([[𝐿𝑖𝑠𝑡 𝐹]]) [[𝐿𝑖𝑠𝑡 𝐴]]Γ = 𝐿𝑖𝑠𝑡 [[𝐴]]Γ

([[𝐿𝑖𝑠𝑡 𝐼1]]) [[𝑁𝑖𝑙 (𝐿𝑖𝑠𝑡 𝐴)]]Γ = 𝑁𝑖𝑙 [[𝐿𝑖𝑠𝑡 𝐴]

([[𝐿𝑖𝑠𝑡 𝐼2]]) [[𝐶𝑜𝑛𝑠 (𝐿𝑖𝑠𝑡 𝐴) 𝑡1 𝑡2]]Γ = 𝐶𝑜𝑛𝑠 [[𝐿𝑖𝑠𝑡 𝐴]]Γ [[𝑡1]]Γ [[𝑡2]]Γ

([[𝐿𝑖𝑠𝑡 𝐸]]) [[𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) 𝑚 𝑓0 𝑓1 𝑡]]Γ =
⌈𝑒𝑙𝑖𝑚 [[𝐿𝑖𝑠𝑡 𝐴]]Γ [[𝑚]]Γ [[𝑓0]]Γ [[𝑓1]]Γ [[𝑡]]Γ⌉Γ

(⌈𝐿𝑖𝑠𝑡 𝐸1⌉) ⌈𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) 𝑚 𝑓0 𝑓1 (𝑁𝑖𝑙 (𝐿𝑖𝑠𝑡 𝐴))⌉Γ = [[𝑓0]]Γ

(⌈𝐿𝑖𝑠𝑡 𝐸2⌉) ⌈𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) 𝑚 𝑓0 𝑓1 (𝐶𝑜𝑛𝑠 (𝐿𝑖𝑠𝑡 𝐴) 𝑡1 𝑡2)⌉Γ =
[[𝑓1 𝑡1 𝑡2 (𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) 𝑚 𝑓0 𝑓𝑠 𝑡2)]]Γ

Figure 13: TT: lists

22

(ℐ𝐹)
Γ ⊢ 𝐴 : 𝒰𝑚 Γ ⊢ 𝑡1 : [[𝐴]]Γ Γ ⊢ 𝑡2 : [[𝐴]]Γ

Γ ⊢ ℐ 𝐴 𝑡1 𝑡2 : 𝒰𝑚

(ℐ𝐼)
Γ ⊢ 𝐴 : 𝒰𝑚 Γ ⊢ 𝑡 : [[𝐴]]Γ
Γ ⊢ 𝑅𝑒𝑓𝑙 𝐴 𝑡 : [[ℐ 𝐴 𝑡 𝑡]]Γ

(ℐ𝐸)

Γ ⊢ ℐ 𝐴 𝑡1 𝑡2 : 𝒰𝑘 Γ ⊢ 𝑒𝑞 : [[ℐ 𝐴 𝑡1 𝑡2]]Γ
Γ ⊢ 𝑚 : [[Π(𝑥 : 𝐴) (𝑦 : 𝐴) (𝑧 : ℐ 𝐴 𝑥 𝑦). 𝒰𝑘]]Γ

Γ ⊢ 𝑓 : [[Π(𝑥 : 𝐴). 𝑚 𝑥 𝑥 (𝑅𝑒𝑓𝑙 𝐴 𝑥)]]Γ
𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑡1 𝑡2)𝑚𝑓 𝑒𝑞 : [[𝑚 𝑡1 𝑡2 𝑒𝑞]]Γ

([[ℐ𝐹]]) [[ℐ 𝐴 𝑡1 𝑡2]]Γ = ℐ [[𝐴]]Γ [[𝑡1]]Γ [[𝑡2]]Γ

([[ℐ𝐼]]) [[𝑅𝑒𝑓𝑙 𝐴 𝑡]]Γ = 𝑅𝑒𝑓𝑙 [[𝐴]]Γ [[𝑡]]Γ

([[ℐ𝐸]]) [[𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑡1 𝑡2)𝑚𝑓 𝑒𝑞]]Γ = ⌈𝑒𝑙𝑖𝑚 [[ℐ 𝐴 𝑡1 𝑡1]]Γ [[𝑚]]Γ [[𝑝]]Γ [[𝑒𝑞]]Γ⌉Γ

(⌈ℐ𝐸⌉) ⌈𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑡1 𝑡2)𝑚𝑓 (𝑅𝑒𝑓𝑙 𝐴 𝑡3)⌉Γ = [[𝑓 𝑡3]]Γ

Figure 14: TT: equality

𝑛𝑣(𝑥 𝑡) = 𝑥 𝑛𝑣(𝑒𝑙𝑖𝑚 ⊥ 𝑚 𝑥) = 𝑥
𝑛𝑣(𝑡1 𝑡2) = 𝑛𝑣(𝑡1) 𝑛𝑣(𝑒𝑙𝑖𝑚 ⊥ 𝑚 𝑡) = 𝑛𝑣(𝑡)

𝑛𝑣(𝑒𝑙𝑖𝑚 (Σ(𝑥 : 𝐴). 𝐵)𝑚𝑓 𝑥)= 𝑥 𝑛𝑣(𝑒𝑙𝑖𝑚 ⊤ 𝑚 𝑓 𝑥) = 𝑥
𝑛𝑣(𝑒𝑙𝑖𝑚 (Σ(𝑥 : 𝐴). 𝐵)𝑚𝑓 𝑡) = 𝑛𝑣(𝑡) 𝑛𝑣(𝑒𝑙𝑖𝑚 ⊤ 𝑚 𝑓 𝑡) = 𝑛𝑣(𝑡)

𝑛𝑣(𝑒𝑙𝑖𝑚 (𝐴 + 𝐵) 𝑚 𝑓𝑙 𝑓𝑟 𝑥) = 𝑥 𝑛𝑣(𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 𝑥) = 𝑥
𝑛𝑣(𝑒𝑙𝑖𝑚 (𝐴 + 𝐵) 𝑚 𝑓𝑙 𝑓𝑟 𝑡) = 𝑛𝑣(𝑡) 𝑛𝑣(𝑒𝑙𝑖𝑚 N 𝑚 𝑓0 𝑓𝑠 𝑡) = 𝑛𝑣(𝑡)

𝑛𝑣(𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) 𝑚 𝑓0 𝑓𝑠 𝑥)= 𝑥 𝑛𝑣(𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑡1 𝑡2)𝑚𝑓 𝑥)= 𝑥
𝑛𝑣(𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) 𝑚 𝑓0 𝑓𝑠 𝑡) = 𝑛𝑣(𝑡) 𝑛𝑣(𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑡1 𝑡2)𝑚𝑓 𝑡) = 𝑛𝑣(𝑡)

Figure 15: Finding the neutral variable of a term

23

B Supercompilation rules

(Fold)
∃𝛼 ∈ 𝑎𝑛𝑐(𝛽) : 𝛼

𝐸(𝑦 ↦→𝑡1,𝑐)−−−−−−−→ 𝛼1

𝛼←− 𝛽

(WH)
𝑑𝑒𝑝𝑡ℎ(𝛽) > 𝑛�� ��𝑐 | Γ 𝑆𝑡𝑜𝑝(𝑐)−−−−−→ ∙

(Σ𝐼 ′)

�� ��𝜎 (Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝑡1 𝑡2 | Γ
𝐼(𝜎)−−−→

�� ��𝑡1 | Γ
𝐼(𝜎)−−−→

�� ��𝑡2 | Γ

(Σ𝐸′)
𝑛𝑣(𝑐) = 𝑦 𝑦 : (Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝑡1 = 𝜎 (Σ(𝑥 : 𝐴). 𝐵(𝑥)) 𝑣1 𝑣2�� ��𝑐 | Γ 𝐸(𝑦 ↦→𝑡1,∙)−−−−−−−→

�� ��[[𝑐]]Γ,𝑦:=𝑡1
| Γ, 𝑣1 : 𝐴, 𝑣2 : 𝐵(𝑣1)

(+𝐹 ′)

�� ��𝑡1 + 𝑡2 | Γ
𝐼(+)−−−→

�� ��𝑡1 | Γ
𝐼(+)−−−→

�� ��𝑡2 | Γ

(+𝐼 ′1)
�� ��𝐼𝑛𝑙 (𝐴 + 𝐵) 𝑡 | Γ 𝐼(𝐼𝑛𝑙)−−−−→

�� ��𝑡 | Γ

(+𝐼 ′2)
�� ��𝐼𝑛𝑟 (𝐴 + 𝐵) 𝑡 | Γ 𝐼(𝐼𝑛𝑟)−−−−→

�� ��𝑡 | Γ

(+𝐸′)
𝑛𝑣(𝑐) = 𝑦 𝑦 : 𝐴 + 𝐵 𝑡1 = 𝐼𝑛𝑙 (𝐴 + 𝐵) 𝑣1 𝑡2 = 𝐼𝑛𝑙 (𝐴 + 𝐵) 𝑣2�� ��𝑐 | Γ

𝐸(𝑦 ↦→𝑡1,∙)−−−−−−−→
�� ��[[𝑐]]Γ,𝑦:=𝑡1

| Γ, 𝑣1 : 𝐴

𝐸(𝑦 ↦→𝑡2,∙)−−−−−−−→
�� ��[[𝑐]]Γ,𝑦:=𝑡2

| Γ, 𝑣2 : 𝐵

(⊤𝐸′)
𝑛𝑣(𝑐) = 𝑦 𝑦 : ⊤ 𝑡1 = ⋆�� ��𝑐 | Γ 𝐸(𝑦 ↦→𝑡1,∙)−−−−−−−→

�� ��[[𝑐]]Γ,𝑦:=𝑡1
| Γ

Figure 16: Building graphs of configurations: part 1

24

(N𝐼 ′2)
�� ��𝑆𝑢𝑐𝑐 𝑡 | Γ 𝐼(𝑆𝑢𝑐𝑐)−−−−−→

�� ��𝑡 | Γ

(N𝐸′)

𝑛𝑣(𝑐) = 𝑦 𝑦 : N
𝑡1 = 0 𝑡2 = 𝑆𝑢𝑐𝑐 𝑣1 𝑡𝑟 = [[𝑐]]Γ,𝑦:=𝑣1�� ��𝑐 | Γ

𝐸(𝑦 ↦→𝑡1,∙)−−−−−−−→
�� ��[[𝑐]]Γ,𝑦:=𝑡1

| Γ
𝐸(𝑦 ↦→𝑡2,𝑡𝑟)−−−−−−−→

�� ��[[𝑐]]Γ,𝑦:=𝑡2
| Γ, 𝑣1 : N

(ℐ 𝐹 ′)

�� ��ℐ 𝐴 𝑡1 𝑡2 | Γ
𝐼(ℐ)−−−→

�� ��𝑡1 | Γ
𝐼(ℐ)−−−→

�� ��𝑡2 | Γ

(ℐ𝐼 ′)
�� ��𝑅𝑒𝑓𝑙 𝐴 𝑡 | Γ 𝐼(𝑅𝑒𝑓𝑙)−−−−−→

�� ��𝑡 | Γ

(𝐿𝑖𝑠𝑡 𝐹 ′)
�� ��𝐿𝑖𝑠𝑡 𝑡 | Γ 𝐼(𝐿𝑖𝑠𝑡)−−−−→

�� ��𝐴 | Γ

(𝐿𝑖𝑠𝑡 𝐼 ′2)

�� ��𝐶𝑜𝑛𝑠 (𝐿𝑖𝑠𝑡 𝐴) 𝑡1 𝑡2 | Γ
𝐼(𝐶𝑜𝑛𝑠)−−−−−→

�� ��𝑡1 | Γ
𝐼(𝐶𝑜𝑛𝑠)−−−−−→

�� ��𝑡2 | Γ

(𝐿𝑖𝑠𝑡 𝐸′)

𝑛𝑣(𝑐) = 𝑦 𝑦 : 𝐿𝑖𝑠𝑡𝐴
𝑡1 = 𝑁𝑖𝑙 (𝐿𝑖𝑠𝑡𝐴) 𝑡2 = 𝐶𝑜𝑛𝑠 (𝐿𝑖𝑠𝑡𝐴) 𝑣1 𝑣2 𝑡𝑟 = [[𝑐]]Γ,𝑦:=𝑣2�� ��𝑐 | Γ

𝐸(𝑦 ↦→𝑡1,∙)−−−−−−−→
�� ��[[𝑐]]Γ,𝑦:=𝑡1

| Γ
𝐸(𝑦 ↦→𝑡2,𝑡𝑟)−−−−−−−→

�� ��[[𝑐]]Γ,𝑦:=𝑡2
| Γ, 𝑣1 : 𝐴, 𝑣2 : 𝐿𝑖𝑠𝑡 𝐴

(Default)
�� ��𝑐 | Γ 𝑆𝑡𝑜𝑝−−−→ ∙

Figure 17: Building graphs of configurations: part 2

25

C Code generation

𝒞
[︀
𝛽 ←

]︀
𝜌
= 𝜌(𝛽)

𝒞
[︀
−→ ∙

]︀
𝜌
= 𝛼.𝑐

𝒞

[︃
𝐼(𝜎)−−−→ 𝛼1

𝐼(𝜎)−−−→ 𝛼2

]︃
𝜌

= 𝜎 𝑡𝑝(𝛼) 𝒞[𝛼1]𝜌 𝒞[𝛼2]𝜌

𝒞
[︁

𝐸(𝑦 ↦→𝜎 (Σ(𝑥:𝐴). 𝐵(𝑥)) 𝑣1 𝑣2,∙)−−−−−−−−−−−−−−−−−−−−→ 𝛼1

]︁
𝜌
=

𝑒𝑙𝑖𝑚 (Σ(𝑥 : 𝐴). 𝐵(𝑥))
(𝜆(𝑦 : Σ(𝑥 : 𝐴). 𝐵(𝑥)). 𝑡𝑝(𝛼))
(𝜆(𝑣1 : 𝐴) (𝑣2 : 𝐵(𝑣1)). 𝒞[𝛼1]𝜌)
𝑦

𝒞

[︃
𝐼(+)−−−→ 𝛼1

𝐼(+)−−−→ 𝛼2

]︃
𝜌

= 𝒞[𝛼1]𝜌 + 𝒞[𝛼2]𝜌

𝒞
[︁

𝐼(𝐼𝑛𝑙)−−−−→ 𝛼1

]︁
𝜌
= 𝐼𝑛𝑙 𝑡𝑝(𝛼) 𝒞[𝛼1]𝜌

𝒞
[︁

𝐼(𝐼𝑛𝑟)−−−−→ 𝛼1

]︁
𝜌
= 𝐼𝑛𝑟 𝑡𝑝(𝛼) 𝒞[𝛼1]𝜌

𝒞

[︃
𝐸(𝑦 ↦→𝐼𝑛𝑙 (𝐴+𝐵) 𝑣1,∙)−−−−−−−−−−−−−−→ 𝛼1

𝐸(𝑦 ↦→𝐼𝑛𝑟 (𝐴+𝐵) 𝑣2,∙)−−−−−−−−−−−−−−−→ 𝛼2

]︃
𝜌

=

𝑒𝑙𝑖𝑚 (𝐴+𝐵) (𝜆(𝑦 : 𝐴+𝐵). 𝑡𝑝(𝛼))
(𝜆(𝑣1 : 𝐴). 𝒞[𝛼1]𝜌)
(𝜆(𝑣2 : 𝐵). 𝒞[𝛼2]𝜌)
𝑦

𝒞
[︁

𝐸(𝑦 ↦→⋆,∙)−−−−−−→ 𝛼1

]︁
𝜌
= 𝑒𝑙𝑖𝑚 ⊤ (𝜆(𝑦 : ⊤). 𝑡𝑝(𝛼)) 𝒞[𝛼1]𝜌 𝑦

𝒞
[︁

𝐼(𝑆𝑢𝑐𝑐)−−−−−→ 𝛼1

]︁
𝜌
= 𝑆𝑢𝑐𝑐 𝒞[𝛼1]𝜌

𝒞

[︃
𝐸(𝑦 ↦→0,∙)−−−−−−→ 𝛼1

𝐸(𝑦 ↦→𝑆𝑢𝑐𝑐 𝑣2,𝑟)−−−−−−−−−−→ 𝛼2

]︃
𝜌

=

𝑒𝑙𝑖𝑚 N (𝜆(𝑦 : N). 𝑡𝑝(𝛼))
𝒞[𝛼1]𝜌
(𝜆(𝑣2 : N)(𝑣3 : (𝜆((𝑦 : N). 𝑡𝑝(𝛼)) 𝑣2).

𝒞[𝛼2]𝜌+(𝛼→𝑣3))
𝑦

Figure 18: Generating residual expressions: part 1

26

𝒞

[︃
𝐼(ℐ)−−−→ 𝛼1

𝐼(ℐ)−−−→ 𝛼2

]︃
𝜌

= ℐ 𝑡𝑝(𝛼) 𝒞[𝛼1]𝜌 𝒞[𝛼2]𝜌

𝒞
[︁

𝐼(𝑅𝑒𝑓𝑙)−−−−−→ 𝛼1

]︁
𝜌
= 𝑅𝑒𝑓𝑙 𝑡𝑝(𝛼) 𝒞[𝛼1]𝜌

𝒞
[︁

𝐼(𝐿𝑖𝑠𝑡)−−−−→ 𝛼1

]︁
𝜌
= 𝐿𝑖𝑠𝑡 𝒞[𝛼1]𝜌

𝒞

[︃
𝐼(𝐶𝑜𝑛𝑠)−−−−−→ 𝛼1

𝐼(𝐶𝑜𝑛𝑠)−−−−−→ 𝛼2

]︃
𝜌

= 𝐶𝑜𝑛𝑠 𝑡𝑝(𝛼) 𝒞[𝛼1]𝜌 𝒞[𝛼2]𝜌

𝒞

[︃
𝐸(𝑦 ↦→𝑁𝑖𝑙 (𝐿𝑖𝑠𝑡 𝐴),∙)−−−−−−−−−−−−−−→ 𝛼1

𝐸(𝑦 ↦→𝐶𝑜𝑛𝑠 (𝐿𝑖𝑠𝑡 𝐴) 𝑣2 𝑣3,𝑟)−−−−−−−−−−−−−−−−−−→ 𝛼2

]︃
𝜌

=

𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴) (𝜆(𝑦 : (𝐿𝑖𝑠𝑡 𝐴)). 𝑡𝑝(𝛼))
𝒞[𝛼1]𝜌
(𝜆(𝑣2 : 𝐴)(𝑣3 : 𝐿𝑖𝑠𝑡 𝐴)

(𝑣4 : (𝜆(𝑦 : (𝐿𝑖𝑠𝑡 𝐴)). 𝑡𝑝(𝛼)) 𝑣3).
𝒞[𝛼2]𝜌+(𝛼→𝑣4))

𝑦

Figure 19: Generating residual expressions: part 2

27

D Proof generation

𝒫
[︀
𝛽 ←

]︀
𝜌,𝜑

= 𝜑(𝛽)

𝒫
[︀
−→ ∙

]︀
𝜌,𝜑

= 𝑅𝑒𝑓𝑙 𝑡𝑝(𝛼) 𝛼.𝑐

𝒫

[︃
𝐼(𝜎)−−−→ 𝛼1

𝐼(𝜎)−−−→ 𝛼2

]︃
𝜌,𝜑

=
𝑐𝑜𝑛𝑔2 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼2) 𝑡𝑝(𝛼) (𝜆(: 𝑡𝑝(𝛼1)). 𝜎 𝑡𝑝(𝛼) 𝛼1.𝑐)
𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑
𝛼2.𝑐 𝒞[𝛼2]𝜌 𝒫[𝛼2]𝜌,𝜑

𝒫
[︁

𝐸(𝑦 ↦→𝜎 (Σ(𝑥:𝐴). 𝐵(𝑥)) 𝑣1 𝑣2,∙)−−−−−−−−−−−−−−−−−−−−→ 𝛼1

]︁
𝜌,𝜑

=

𝑒𝑙𝑖𝑚 (Σ(𝑥 : 𝐴). 𝐵)
(𝜆(𝑦 : Σ(𝑥 : 𝐴). 𝐵(𝑥)). ℐ 𝑡𝑝(𝑎)𝛼.𝑐 𝒞[𝛼]𝜌)
(𝜆(𝑣1 : 𝐴) (𝑣2 : 𝐵(𝑣2)). 𝒫[𝛼1]𝜌,𝜑)
𝑦

𝒫

[︃
𝐼(+)−−−→ 𝛼1

𝐼(+)−−−→ 𝛼2

]︃
𝜌,𝜑

=
𝑐𝑜𝑛𝑔2 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼2) 𝑡𝑝(𝛼) (+)
𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑
𝛼2.𝑐 𝒞[𝛼2]𝜌 𝒫[𝛼2]𝜌,𝜑

𝒫
[︁

𝐼(𝐼𝑛𝑙)−−−−→ 𝛼1

]︁
𝜌,𝜑

= 𝑐𝑜𝑛𝑔1 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼) (𝐼𝑛𝑙 (𝑡𝑝(𝛼.𝑐))) 𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑

𝒫
[︁

𝐼(𝐼𝑛𝑟)−−−−→ 𝛼1

]︁
𝜌,𝜑

= 𝑐𝑜𝑛𝑔1 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼) (𝐼𝑛𝑟 (𝑡𝑝(𝛼.𝑐))) 𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑

𝒫

[︃
𝐸(𝑦 ↦→𝐼𝑛𝑙 (𝐴+𝐵) 𝑣1,∙)−−−−−−−−−−−−−−→ 𝛼1

𝐸(𝑦 ↦→𝐼𝑛𝑟 (𝐴+𝐵) 𝑣2,∙)−−−−−−−−−−−−−−−→ 𝛼2

]︃
𝜌,𝜑

=

𝑒𝑙𝑖𝑚 (𝐴+𝐵)
(𝜆(𝑦 : 𝐴+𝐵). ℐ 𝑡𝑝(𝛼.𝑐) 𝛼.𝑐 𝒞[𝛼]𝜌)
(𝜆(𝑣1 : 𝐴). 𝒫[𝛼1]𝜌,𝜑)
(𝜆(𝑣2 : 𝐴). 𝒫[𝛼2]𝜌,𝜑)
𝑦

𝒫
[︁

𝐸(𝑦 ↦→⋆,∙)−−−−−−→ 𝛼1

]︁
𝜌,𝜑

= 𝑒𝑙𝑖𝑚 ⊤ (𝜆(𝑦 : ⊤). ℐ 𝑡𝑝(𝛼) 𝛼.𝑐 𝒞[𝛼]𝜌) 𝒫[𝛼1]𝜌,𝜑 𝑦

𝒫
[︁

𝐼(𝑆𝑢𝑐𝑐)−−−−−→ 𝛼1

]︁
𝜌,𝜑

= 𝑐𝑜𝑛𝑔1 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼) 𝑆𝑢𝑐𝑐 𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑

𝒫

[︃
𝐸(𝑦 ↦→0,∙)−−−−−−→ 𝛼1

𝐸(𝑦 ↦→𝑆𝑢𝑐𝑐 𝑣2,𝑟)−−−−−−−−−−→ 𝛼2

]︃
𝜌,𝜑

=

𝑒𝑙𝑖𝑚 N
(𝜆(𝑦 : N). ℐ 𝑡𝑝(𝛼) 𝛼.𝑐 𝒞[𝛼]𝜌) 𝒫[[𝛼1]]𝜌,𝜑
(𝜆(𝑣2 : N)(𝑣3 : (𝜆(𝑦 : N). ℐ 𝑡𝑝(𝛼) 𝛼.𝑐 𝒞[𝛼]𝜌) 𝑣2).

(𝜆(𝑦 : N).𝒫[𝛼2]𝜌+(𝛼→𝒞[[𝛼]]𝜌),𝜑+(𝛼→𝑣3)) 𝑣2) 𝑦

Figure 20: Generating proofs of correctness: part 1

28

𝒫

[︃
𝐼(ℐ)−−−→ 𝛼1

𝐼(ℐ)−−−→ 𝛼2

]︃
𝜌,𝜑

=
𝑐𝑜𝑛𝑔2 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼2) 𝑡𝑝(𝛼) (ℐ 𝑡𝑝(𝛼1))
𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑
𝛼2.𝑐 𝒞[𝛼2]𝜌 𝒫[𝛼2]𝜌,𝜑

𝒫
[︁

𝐼(𝑅𝑒𝑓𝑙)−−−−−→ 𝛼1

]︁
𝜌,𝜑

= 𝑐𝑜𝑛𝑔1 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼) (𝑅𝑒𝑓𝑙 𝑡𝑝(𝛼1)) 𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑

𝒫
[︁

𝐼(𝐿𝑖𝑠𝑡)−−−−→ 𝛼1

]︁
𝜌,𝜑

= 𝑐𝑜𝑛𝑔1 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼) 𝐿𝑖𝑠𝑡 𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑

𝒫

[︃
𝐼(𝐶𝑜𝑛𝑠)−−−−−→ 𝛼1

𝐼(𝐶𝑜𝑛𝑠)−−−−−→ 𝛼2

]︃
𝜌,𝜑

=
𝑐𝑜𝑛𝑔2 𝑡𝑝(𝛼1) 𝑡𝑝(𝛼2) 𝑡𝑝(𝛼) (𝜆(: 𝑡𝑝(𝛼1)). 𝐶𝑜𝑛𝑠 𝑡𝑝(𝛼) 𝛼1.𝑐)
𝛼1.𝑐 𝒞[𝛼1]𝜌 𝒫[𝛼1]𝜌,𝜑
𝛼2.𝑐 𝒞[𝛼2]𝜌 𝒫[𝛼2]𝜌,𝜑

𝒫

[︃
𝐸(𝑦 ↦→𝑁𝑖𝑙 (𝐿𝑖𝑠𝑡 𝐴),∙)−−−−−−−−−−−−−−→ 𝛼1

𝐸(𝑦 ↦→𝐶𝑜𝑛𝑠 (𝐿𝑖𝑠𝑡 𝐴) 𝑣2 𝑣3,𝑟)−−−−−−−−−−−−−−−−−−→ 𝛼2

]︃
𝜌,𝜑

=

𝑒𝑙𝑖𝑚 (𝐿𝑖𝑠𝑡 𝐴)
(𝜆(𝑦 : 𝐿𝑖𝑠𝑡 𝐴). ℐ 𝑡𝑝(𝛼) 𝛼.𝑐 𝒞[𝛼]𝜌)
𝒫[𝛼1]𝜌,𝜑
(𝜆(𝑣2 : 𝐴)(𝑣3 : 𝐿𝑖𝑠𝑡 𝐴)

(𝑣4 : (𝜆(𝑦 : 𝐿𝑖𝑠𝑡 𝐴).
ℐ 𝑡𝑝(𝛼) 𝛼.𝑐 𝒞[𝛼]𝜌) 𝑣3).
(𝜆(𝑦 : 𝐿𝑖𝑠𝑡 𝐴).

𝒫[𝛼2]𝜌+(𝛼→𝒞[𝛼]𝜌),𝜑+(𝛼→𝑣4))𝑣4)
𝑦

Figure 21: Generating proofs of correctness: part 2

𝑐𝑜𝑛𝑔1 : Π(𝐴 : 𝒰𝑖)(𝐵 : 𝒰𝑗)(𝑓 : Π(: 𝐴).𝐵)(𝑥 : 𝐴)(𝑦 : 𝐴)(: ℐ 𝐴 𝑥 𝑦). ℐ 𝐵 (𝑓 𝑥) (𝑓 𝑦);
𝑐𝑜𝑛𝑔1 = 𝜆(𝐴 : 𝒰𝑖)(𝐵 : 𝒰𝑗)(𝑓 : Π(: 𝐴).𝐵)(𝑥 : 𝐴)(𝑦 : 𝐴)(𝑖 : ℐ 𝑎 𝑥 𝑦).

𝑒𝑙𝑖𝑚 (ℐ 𝐴 𝑥 𝑦)
(𝜆(𝑥 : 𝐴)(𝑦 : 𝐴)(: ℐ 𝐴 𝑥 𝑦).ℐ 𝐵 (𝑓 𝑥) (𝑓 𝑦))
(𝜆(𝑥 : 𝐴).𝑅𝑒𝑓𝑙 𝐵 (𝑓 𝑥))
𝑖;

𝑐𝑜𝑛𝑔2 : Π(𝐴 : 𝒰𝑖)(𝐵 : 𝒰𝑗)(𝐶 : 𝒰𝑘) (𝑓 : Π(: 𝐴)(: 𝐵).𝐶)
(𝑥1 : 𝐴)(𝑥2 : 𝐴)(: ℐ 𝐴 𝑥1 𝑥2)
(𝑦1 : 𝐵)(𝑦2 : 𝐵)(: ℐ 𝐵 𝑦1 𝑦2). ℐ 𝐶 (𝑓 𝑥1 𝑦1) (𝑓 𝑥2 𝑦2);

𝑐𝑜𝑛𝑔2 = 𝜆(𝐴 : 𝒰𝑖)(𝐵 : 𝒰𝑗)(𝐶 : 𝒰𝑘) (𝑓 : Π(: 𝐴)(: 𝐵).𝐶)
(𝑥1 : 𝐴)(𝑥2 : 𝐴)(𝑖𝑥 : ℐ 𝐴 𝑥1 𝑥2)
(𝑦1 : 𝐴)(𝑦2 : 𝐴)(𝑖𝑦 : ℐ 𝐵 𝑦1 𝑦2).

𝑒𝑙𝑖𝑚 (ℐ (Π(: 𝐵).𝐶) (𝑓 𝑥1) (𝑓 𝑥2))
(𝜆(𝑔1 : Π(: 𝐵).𝐶)(𝑔2 : Π(: 𝐵).𝐶)(: 𝐼𝑑(Π(: 𝐵).𝐶) 𝑔1 𝑔2).

ℐ 𝐶 (𝑔1 𝑦1) (𝑔2 𝑦2))
(𝜆(𝑔 : Π(: 𝐵).𝐶).𝑐𝑜𝑛𝑔1 𝐵 𝐶 𝑔 𝑦1 𝑦2 𝑖𝑦)
(𝑐𝑜𝑛𝑔1 𝐴 (Π(: 𝐵).𝐶)𝑓 𝑥1 𝑥2 𝑖𝑥);

Figure 22: Proof combinators

	Untitled.pdf
	prep2013_73_eng
	Untitled.pdf
	prep2013_73_eng
	Introduction
	Analysis by transformation and the problem of correctness
	Producing the result of supercompilation together with a proof of its correctness
	Supercompilation for Martin-Löf's type theory
	Outline of the preprint

	TT Lite in action
	TT Lite: syntax and semantics
	Syntax
	Semantics

	TT Lite: supercompilation
	Graphs of configurations
	Unfolding rules
	Decomposition
	Case analysis for neutral eliminators

	Folding rule
	Default rule
	Stop rule
	Termination
	Code generation

	Proof generation
	Conclusions
	References
	Formation, Introduction and Elimination Rules
	Supercompilation rules
	Code generation
	Proof generation

