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Alexander Borisovich Batkhin
Families of symmetric periodic solutions of the Generalized Hill’s Problem

Certain generalization of the well-known celestial mechanics problem, namely
the Hill’s problem, is considered. This generalization makes possible to study
families of periodic solutions of the Hill’s problem as continuation of generating
solutions of two integrable problems: the Sinodical Kepler problem and the Hénon’s
problem. To provide complete study of families of periodic solutions it is necessary
to consider a special case of the Hill’s problem, called the anti—Hill’s problem,
where the Newtonian potential of attraction of the central body is replaced by the
Newtonian potential of repulsion.
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In memory of Professor Michel Hénon

1. Introduction

A common schema of studying of any complex problem consists of steps
which consequently simplify the original problem up to the case that can be
investigated by known methods or was considered earlier. Sometimes we have to
make a backward step by embedding the obtained simplified problem into more
general one. Usually such embedding looks quite naturally, because during the
simplification steps we could loose some essential properties of the original complex
problem.

We consider in this work a certain generalization of a celestial mechanics
problem called the Hill’s problem. The original planar Hill’s problem is a limiting
case of the well-known restricted three body problem (RTBP) and was proposed
by G. Hill for the Moon motion theory [1,2]. For detail information about the
Hill’s problem see, for example, [1,3,4]. This generalization links together three
different problems and makes it possible to investigate periodic solutions of these
problems simultaneously.

The first problem is the famous Kepler problem which is considered in the
uniformly rotating frame and is called here the Sinodical Kepler problem (or in
brief the SKP). The SKP is integrable, its families of symmetric periodic solutions
are completely investigated (see [5, Ch. III|) and, more over, the SKP is often used
as an unperturbed part for many non-integrable problems, e. g. RTBP.

The second problem is so called Hénon problem (see [6]), which gives us
the description of motion of massless particle that guides the smallest massive
body in RTBP and moves outside the Hill’s region of this primary. The Hénon
problem provides the first approximation of so called quasi-satellite motion.

Finally, the third problem is the mentioned above the Generalized Hill’s
problem (or in brief the GHP) in which the Newtonian potential of attraction
of the massive body can be changed by the Newtonian potential of repulsion or
even switched off. We note that the Hénon’s problem takes an intermediate place
between the SKP and the Hill’s problem and it is also integrable.

Hamiltonian H(z) of the GHP is

o 1
H(z,¢) = (?J% + ?J%) + 2oy — XY+ 17— +¢€ (—ﬁ + —$§> ; (1)
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or in matrix form
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where x is vector of coordinates, y — vector of momenta, z = (x,y), o € {—1,0,1}
and € € [0;1].

The canonical equations of Hamiltonian has first integral called Jacobi
integral

2
J=(1+2)a%+ (1 —e)a?— é —i2—i2=C, C=-2H(z¢)=—2h. (3)

The essential property of the GHP is the presence of discrete group of sym-
metries of extended phase space given by linear transformations

21 : (t,$1,$27y1,y2> — (_tvxla —T2, _y1>y2)
22 : (taxlax%ylay?) — (_ta —T1,T2, Y1, _y2)
Yig =10y (t,$1,£€2,$1,x2) — (t, —x1, —T2, —Y1, —yz)

which involves that all the periodic solutions of the GHP belong to one of the
following group:

1) Asymmetric solutions, which change their form under any transformation
2172.

2) Single symmetric solutions, which are invariant under only the one transfor-
mation >J; or Xs.

3) Double symmetric solutions, which are invariant under any transformation
21, 22 or 212.

The presence of symmetry of equations considerably simplify the usage of
generating solutions defined by corresponding limiting problems.
The following Table [I] summaries the special cases of the GHP.

Table 1. Special cases of the GHP

| Abbr. Problem name o e | Hamilt. |
GHP | Generalized Hill’s problem | {£1,0} | [0; 1] 1
SKP Sinodic Kepler problem —1 0 6
— Hénon problem 0 1 9
— Parametric Hénon problem 0 0; 1] 9
HP Hill’s problem —1 1 1
AHP anti-Hill’s problem +1 1 1

For small values of the parameter ¢ the GHP can be considered as the
SKP with regular perturbation eR = ¢ (—x% + x%/Q) We show below that for
large values h of Hamiltonian H(z,e) the GHP can be considered as singular
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perturbation of the so called Parametric Hénon problem (see it definition on page|7))
by function o/|x| as well. Thus there are two main approaches for investigation
of periodic solutions of the GHP:

1) using generating solutions of the Parametric Hénon problem;
2) using generating solutions of the SKP.

The first approach was partially implemented in [4,7] by the author for the
case of 0 = —1, ¢ = 1 and for symmetrical orbits only. The second approach
was proposed by Professor A.D. Bruno in [8] but still was not implemented. This
paper is an attempt to realize the second approach for doubly symmetric periodic
solutions.

2. Limiting cases of the GHP

The following steps provide obtaining all the limiting cases of the GHP and
corresponding Hamiltonians as well. For details see |9, Ch. 4]. All the following
computations are carried out in the space of vector power exponents, where each
term Ax}'xy*y;*ys'e”™ of the function H(x,y, ) derives the point with coordinates

(Tlu re,T3,T4, T5)-

1) Define the cone K of the problem.

2) Compute the support S of the Hamiltonian H(z) — the set of vector power
exponents of all the terms of function H(z,e). Then the projection S” = 7S is
computed, where 7 : (11, 79,73, 74,75) > (r1 + 79,73 + 74, 75).

3) Compute the convex hull T' of the support S”, which is a polyhedron in
R3. The boundary of I is the union of generalized faces I‘g-d) (2D faces, edges and

4) Only those faces I‘;d) are selected which cone U;d) has non empty inter-
section with the cone K of the problem.

5) The truncated Hamiltonian H ](d) is computed for each selected face ng).
This Hamiltonian gives the first approximation of the original function H(z,¢) in
the certain domain of the space (x1, z2,y1, Yo, €).

6) Often it is useful to make an additional power transformation of the phase

vertices). For each face I'}” the corresponding external cone U is computed.

space that is able to simplify the truncated polynomial H j(d) and represents the
original Hamiltonian H (z,¢) in the form

H=H"+ R, (4)

where p; is a small parameter and R; is a perturbation of the first approximation
Hamiltonian H j@.

The implementation of above schema of computation to Hamiltonian (1)) is
following.

—5—



1) In the case of the GHP the cone of the problem is
K={WcR’: w; <0},

because we consider the parameter ¢ € [0; 1].
2) Support S of the Hamiltonian ([1)) contains points with coordinates

(0,0,2,0,0), (0,0,0,2,0), (0,1,1,0,0), (1,0,0,1,0), (2,0,0,0,1), (0,2,0,0,1)
and the support of the monomial ¢/r which is segment J connecting the points

(—1,0,0,0,0) and (0, —1,0,0,0). Projection 7 yields the projection S” which contains
the points

" = (-1,00), 1y = (0,20), 1§ = (1,1,0), 1 = (2,0,1). (5)

3) The convex hull I is a tetrahedron with 4 vertices with coordinates given
by (B), 6 edges and 4 faces and is shown in Figure[l] Only three faces have external

/
| /

2) —1
3

0 1 2
Py

Figure 1. Convex hull I' of the GHP Hamiltonian . Normal vectors NZ(?), 1 =
1,...,4 are shown.

normal with non—positive third coordinate, i.e. these faces and its common edges
could give suitable truncated polynomial.




////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Alexander Grahn
//
// 3Dspintool.js
//
// version 20120301
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript')
//
// enables the Spin tool (also accessible via 3D toolbar or context menu)
// upon activation of the 3D scene; the scene then rotates around the upright
// axis while dragging with the mouse
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

runtime.setCurrentTool(runtime.TOOL_NAME_SPIN);



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20131204
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+='  END\n';
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')||
    scene.nodes.getByName('Clipping Plane')){
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();
    }
  }
  restoreTrans(curTrans);
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



A) The face F(IQ) contains the vertices Fgo), Fgo) and Féo). Its normal vector
NgQ) = (0,0, —1) and truncated Hamiltonian is

]:[1(2)(Z75) = % (?J% + yg) + Xoy1 — T1Yo + %, (6)
which is Hamiltonian of the SKP, if 0 = —1. The case o = +1 is not interesting
because it has not any periodic solution. Thus, the SKP is a limiting case of the
GHP and the next step of investigation is isolation such periodic solutions of the
SKP that can be continued into periodic solutions of the GHP. This truncation is
suitable for € — 0.

B) The edge Fgl) contains the vertices Fgo) : Fgo) . Its normal cone Ugl) is

spanned on vectors N§2) and Nf) = (—2,1,6):
Ul = {W ER:W = (1- O)NP £ AN? = (2x A 7A = 1), A e [0; 1]} .

For 0 < A < 1/7 the truncated Hamiltonian

O A S N
Hy —5(914‘3/2)‘1‘@ (7)

provides approximation of for finite values of the parameter € and for motion
near the origin, i.e. for |x| — 0. Function (7)) is a Hamiltonian of the Kepler
problem in inertial frame and is a particular case of the Hamiltonian @ The

1 TA—1
vector N = (—1, !

5 T) from the cone U§1) defines the following canonical

transformation

x = b "X,y = [h]V?Y,e = |h| &t = BP0 < A < 2, (8)

=

which blows up the vicinity of the origin in the coordinate space and shrinks the
vicinity of infinity in momentum space. Applying transformation to the whole
Hamiltonian one can rewrite the last in the form

3\ — 1 '
+ |h| 2A 8<—Xf+§2(22>.

~

X - X
A - o 91 1V

2 2
Vi+Y5) + EIRYE

DO | —

So, the coefficient |h|~/? plays the role of small parameter j; for h — oo,
C) The face I’g) contains the vertices F;O), Féo) and FELO). Its normal vector



N;Z) = (1,1,0) and truncated Hamiltonian is

AP (z,e) =

N | —

1
(?J% + y%) + Toy1 — 1Yo + € <—33% + 5@) : (9)

which is Hamiltonian of the Parametric Hénon problem. This truncated Hamil-
tonian provides the approximation for large values of phase coordinates, i.e. for
|x| = 00, |y| — o0, and for finite value of the parameter . The canonical power
transformation z = \/W Z shrinks the vicinity of the infinity and applying it to
the whole Hamiltonian (1) one can rewrite the last in the form

~ o
Hy =(GZ,Z) + \hl_?’/z@,

where G is the matrix from (2)) and A is the value of the Hamiltonian H(z,¢). So,
the coefficient |h|~/2 plays the role of small parameter ji; for h — oo. Thus, this
limiting problem can be used to obtain periodic solutions of the GHP. It was done
in [4,[7] for e = 1 and symmetric periodic solutions. Note that (9] is limiting case
for both Hill’s and anti—Hill’s problem. This fact is used below to link with each
other families of periodic solutions of last two problems.

D) The face Fz(f) contains the vertices Fﬁ‘”, Féo) and FELO). Its normal vector

@) = (1, —2,—3) and truncated Hamiltonian is

N;
77(2) _ _ o 2,1,
Hy"(z,e) = xoy1 — 2192 + . +e x] + 572 ) - (10)

This Hamiltonian can be simplified by canonical transformation
X = 5*1/3X, y = 52/3Y,t = €T,

and in new variables it takes form (10 with ¢ = 1. The system of canonical

equations, defined by ﬁéQ) is integrable but does not contain periodic solutions.
So this case is out of our interest.

3. Generating solutions and their properties

The idea of generating solution, introduced by Poincare [10], is used in this
study. It was very fruitful in studying periodic solutions of the RTBP (see [5,11]).

Definition 1. Let at small parameter value p > 0 there exists a periodic solution
z(t, ;1) to canonical system defined by Hamitonian , and it could be smoothly
continued over p. Then its limit at g — 0 (if it does exist) is called generating
solution.

Regular generating solution could be found by the methods of normal forms.

-8 —



In case of Hamiltonian system with two degrees of freedom this technique is
described in [5).

Singular generating solutions are computed in more complex way and strict
proof of their existence could be done usually in certain cases only.

Let the system has a periodic solution z(t,z¢) with period T z(T, z¢) = zo
for definite value of Hamiltonian H(zy) = ho. Let p), and pj are the minimal and
the maximal distance from the origin to orbit x(¢,2zg). There are three possible
ways of continuation of periodic solution z(t,zg) while h — oo:

1) If hlim p, > 0 then we get generating solution of the first species; such
—00

solution is regular and can be find by the normal form method [5, Ch. II, VII].
2) If hlim p, = 0 and lim p} > 0 then we get generating solution of the
—00

- h—o00
second species.

3) If lim p; = lim pj = 0 then we get generating solution of the third
h—o00 h—o00

species.

If generating solution is not regular then it may consist of solutions of special
form called arc—solution. The arc—solutions start and finish at the singular points
of the Hamiltonian (]). In our case generating solutions should be composed from
arcs which start and finish at the origin.

4. Linking families of the Hill’s and anti—Hill’s Problems

To obtain the periodic solution of the singularly perturbed system from the
generating solution one has to provide a matching procedure of arc-solutions near
the origin. The matching procedure of the first order matches the velocities of
solution of the first limiting problem and velocities of solutions of the second
limiting problem at the origin. If matching procedure is successful then we get
a periodic solution of a certain family and the whole family can be computed
numerically by one of the continuation algorithm (see, for example, [12]).

We apply the described above approach to the Hill’s and anti—Hill’s problems.
Let consider the GHP for € = 1 when the value h — —oco. There are two suitable
limiting problems obtained in Section [2} the first is the Hénon problem with
Hamiltonian (9) and the second is Kepler problem with Hamiltonian (7]). The
Hénon problem has two sets of suitable solutions:

1) one-parametric family of regular periodic solutions, which contains the
only one generating solution of the first species (see [4]);

2) the countable set of arc-solutions of two types, which are solutions of the
second species.

The arc-solutions of the first type were denoted by M. Hénon [13] by symbols
+7, 7 € N. The orbits of the first type arc-solutions are epicycloid. In Figure
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three arcs for positive values of index j are shown. The arcs with negative value
of index j are symmetric with respect to the axis OY. The arc—solutions of the
second type are denoted by symbols 2 and e and its orbits are ellipses passing
through the origin (see Figure [3)).

(a) Arc +1 (b) Arc +2 (c) Arc +3

Figure 2. Arc-solutions of the first type +1, +2 and +3.

The second limiting problem is Kepler problem, which gives solutions in the
form of hyperbola with semi-major axis equals to 1.

All arc-solutions pass through the origin and it is possible to compose the
infinite number of sequences from arc-solutions +7, j € N, 7, e by matching these
arcs with hyperbolas of two types (see [4,/14]). Hyperbolas of the first type have
its pericenter near OX axis and eccentricity e = 1, hyperbolas of the second type
have pericenter near OY axis and eccentricity e > 1.

The analysis of the structure of the phase space of the Hill’s problem depend-
ing on the value of Jacobi integral C' was given in [4,[14], and it was shown that
suitable solutions of the Hénon problem and Kepler problem can exist simultane-
ously only for C' < 3%3 ~ 4.328. Thus, generating solutions can give only those
families of periodic orbits which are continuable up to C' — —oo (or h — +00).

M. Hénon stated in [13] that for Newtonian potential of attraction (i.e. for
o = —1) there are two pairs of arc-solutions, namely, ii and ee, which can not be
matched to each other by hyperbolas described above.
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T2 J

fell

—4 +
(a) Arc i (b) Arc e

Figure 3. Arc-solutions of the second type ¢ and e.

Statement 1 (M. Hénon [11]). A sequence of arc-solutions which does not contain
two identical arcs of the second type in succession is a generating solution and it
is called generating sequence for the Hill’s problem.

Numerical analysis of all known families of periodic solutions of the Hill’s
problem allows to state the following

Statement 2. Each family of periodic solutions of Hill’s problem, which is con-
tinuable to solution of the second species, is defined at the limit by generating
sequence of Statement [I]

Moreover, numerical explorations of periodic solutions of the anti—Hill’s prob-
lem show that there are almost no limitations in the structure of generating
sequences.

Statement 3. The sequence composed from the arc-solutions j, 7 € N, 7, e in
arbitrary order, except two sequences consisting of arcs {i} and {e} only, is a
generating sequence for anti—Hill’s problem’s family of periodic solutions.

The generating sequence allows to determine the following properties of
corresponding family:

e the type of symmetry of periodic orbits of the family:;





e global multiplicity of periodic orbits of the family;
e asymptotics of initial conditions, period and stability index of periodic
orbits of the family when C' — —oo.

An algorithm for studying symmetric periodic solutions defined by its corre-
sponding generating sequences was proposed by the author in [4]/15].

1) A generating sequence is composed in according with Statement [1jor State-
ment |3 depending on Hill’s or anti-Hill’s problem is considered.

2) The type of symmetry, approximate initial conditions and period of solu-
tions are computed.

3) An orbit of the corresponding family is computed iteratively.

4) The whole family is computed by one of the continuation method.

5) During the computation of the whole family stability of periodic solutions
and its bifurcations are detected as well.

More then 20 new families of periodic solutions were found out by this
algorithm. Many of them have periodic solutions useful for space flight design [7,/15].

The main families of symmetric periodic solutions of the Hill’s problem are
given in the Table [2| (see [6]). The column marked as M gives the multiplicity of
generating sequence. Characteristics of these families in coordinates (x1,ys) are
represented in Figure

Table 2. Summary table of the main families of the Hill’s problem

| Name | Generating sequence | Symmetry | M | Chax |

f — 21, 29 1| +4o0

a {+1} 4/3

: 1 oY 0| 3

g {i,e} 21, 29 —1| +o0

/ {+2}

g 2 ) 1| 449998

1, 11] 3
I3 (+1,0 1.} S, % || 380620

Some peculiarities of anti—Hill’s problem make it easier for prediction the
global properties of families defined by generating sequences. Namely,

e the region of possible motion called the Hill’s region is isolated from the ori-
gin, therefore, no one family has periodic orbit with collision and global multiplicity
of periodic solution is invariant along the family:;
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Figure 4. Characteristic of main symmetric periodic solutions of the Hill’s problem

(see Table .

e periodic solutions are possible for values C' < 0 only, as long as configura-
tion space is divided by OY axis for C' > 0.

The following results were announced in [16].

It was shown above that the Hénon problem is the limiting problem both for
the Hill’s problem and the anti-Hill’s problem. Therefore, two families of periodic
solutions — one for Hill’s problem and the another for the anti—Hill’s — are called
linked if they both have the same generating sequence at the limit C' — —oo0.
Comparing Statement [I] with Statement [3] one can conclude that not every family
of periodic solutions of the anti-Hill’s problem can be continued into a family
of Hill’s problem. But, on the contrary, all known families defined by generating
sequences satisfying the condition of Statement (1| are continuable to families of
the anti-Hill’s problem.

Figure |5 gives the result of computations in the form of schematic drawing
of families of periodic solutions of the GHP, which form the common network
(web) of periodic solutions in the sense that starting from an arbitrary orbit of
any family one can continue to any orbit of other family. All families of the Hill’s
problem denoted on Figure [5| (left part of the figure) are described in [1].

Let give a short description of Figure 5 The center column is generating
sequences of families. L; o are libration points, O is the origin. The names of the
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+00 0 Hill’s problem —0o0 Anti-Hill’s problem 0

Figure 5. Diagram of connection between families of the Hill’s (left part) and the
Ant-Hill’s problems (right part). Central columns gives generating sequences of
the families.

families is used the same as in M. Hénon’s papers [6,[13|. The linked families of
the anti—Hill’s problem have the same name with ~ (tilde) sign above and are
shown in the same color. The common orbits of two families is denoted by small
circle. The same circle is used to denote the orbit at which the family riches the
extremum on Jacobi integral J (3)). To simplify the drawing we show only small
part of all known at that moment families.

The family f3 demonstrates that its continuation from the Hill’s problem to
the anti—Hill’s and vice versa could be rather complex. Let start from the one of
the common orbit of families f (blue line) and f3 (violet line). Continuation of
the family f3 brings us to the generating sequence {+1, —1}. This sequence links
together the family f3 of the Hill’s problem and family of the anti-Hill’s problem
denoted by fP. Family f2 riches the extreme value on C' and then continues to
another generating sequence {i,1, e, e}. This sequence due to Statement [1| can not
be a generating sequence for any family of the Hill’s problem. So, the family ]%B
passes through the generating sequence {i,1, e, e} and links with the anti-Hill’s
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problem’s family denoted by fi'. This family shares the common orbit with the
family g, riches the extreme value on C' and then continues to the generating
sequence {+1,4, —1, e}. This generating sequence is also the limit of the another
branch of the family f3 of the Hill’s problem.

5. Continuation of doubly symmetric periodic solutions from the
SKP to the GHP

Now we give the general description of generating solutions of the SKP,
which can be continued into the families of periodic solutions of the Hill’s problem.
We restrict our interest to doubly symmetric generating solutions, because the
realization of the global picture of connection between the periodic solutions of
the SKP and the Hill’s problem is not yet finished and it requires considerably
more computations and overcoming many computational difficulties. The following
results are only the first step in understanding the connections between the two
mentioned above problems.

5.1. Continuation and change of stability of libration points. It is well-
known fact that the Kepler problem with Hamiltonian does not have any
liberation (stationary) point, but when one considers the motion of the massless
particle in the gravitational field with Newtonian potential in uniformly rotating
frame i.e. the SKP with Hamiltonian @, where parameter 0 = —1, then one gets
the unit circle of libration points |[x| = 1. The perturbation function e R(x) =
e (—a% + 23/2) of the GHP destroys this unit circle. As function eR(x) is an
even function in both variables so two pairs of librations points still remain for
small values of parameter €. The first pair is laying in the axis OX and has
coordinates (:I:(l + 25)_1/ 3,0). These points are usually denotes by symbol L for
point with positive abscissa and by symbol Lo for point with negative abscissa.
The second pair of libration points is situated in the axis OY and has coordinates
(0,£(1 - 6)_1/3>. We denote this points by symbols L] and L§ correspondingly.

While the parameter ¢ changes from the value 0 to the value 1 the points L o
move inside the unit circle and take the position with coordinates (£371/3,0). The
characteristic polynomial f(Ly) of Jacobi matrix M (L) = J Hess H(z,¢) |1, ,,
computed in libration point L; 9 is equal

f(Lia) = A+ (1= 32)A% — 9¢(1 + 2¢).

For any € € (0;1] it has one pair of real zeroes and one pair of pure imaginary
zeroes, so, for all these values of parameter ¢ there is a family of Lyapunov periodic
solutions, which is denoted by symbol a. The symmetric family around the libration
point Ls is denoted by symbol c. Families a and c exist only for those values of
Jacobi integral (3) that C' < 3(1 + 2¢)'/3, i.e. for those values of C' when points
Ly 5 get into the Hill’s region. So, for fixed values of parameter € € [0; 1] family a



(¢) is terminated naturally in corresponding libration point.

While the parameter € changes from the value 0 to the value 1 the points
L{ , move outside the unit circle and tend to infinity, so the Hill’s problem does
not have libration points Lj ,. The characteristic polynomial of the Jacobi matrix

M(Li,) = JHess H(z,¢) |1y, computed in libration point Lj, is equal

FLY,) =M+ X +9(1—e), (11)

which has on unit interval two critical values €], = 1/2 F v/2/3. These values
divide the unit interval into three subintervals: (0;¢7), (¢1;¢3), (g5;1).

On interval (0;e7) polynomial has two pairs of pure imaginary mutually
conjugated zeroes, so, there exists family of quasi-periodic orbits near the libration
point LZ{Q. For countable set of values of parameter ¢, for which the ratio of zeroes
is commensurable, these quasi-periodic orbits became periodic. At the value ¢ = €}
two zeroes in each pair coincide and polynomial has one pair of multiple zeroes.
On interval (£7;¢3) polynomial has two pairs of complex zeroes. One pair of
mutually conjugated zeroes has negative real part and on invariant manifold, which
is spanned on its eigenvectors, one has a trajectory asymptotically approximating
to the point LY. Small non-linear perturbations shift this trajectory from the stable
manifold and trajectory begins to move off the libration point. On interval (¢3; 1)
the polynomial has the same zeroes as on interval (0;e7). The motion near

libration points L?{’2 is possible only for values C' < 3(1 — 5)1/ 3,

5.2. Bifurcation of doubly symmetric periodic solutions of the SKP.
Let recall the structure of families of symmetric periodic solutions of the SKP.
The following description is a summary of [5, Ch. III].

All finite orbits of Kepler problem are always periodic but in the SKP the
property of periodicity preserves orbits of two following types:

[) circular orbits, the shape of which does not change;
IT) elliptic orbits, which period is commensurable with 27.

Circular orbits form two families: the family of direct circular orbits, denoted by
Id, and the family of retrograde circular orbits, denoted by Ir.

Let T is a period of elliptic orbit and N = 27T, . To be periodic in the
sinodic frame the orbit should have value N = (p + ¢)/p, where p € N and
q € Z. To be symmetric the orbit should have the pericenter lying in the axes
of symmetry, i.e. the argument of pericenter w should be equal to values 0 or 7
for 31-symmetric orbits and to be equal to values +m/2 for Yo-periodic solutions.
To be doubly symmetric the periodic solution should have both numbers p and
q to be odd and argument of pericenter w € {0, 7/2, 7, —7/2}. The families of
symmetric elliptic periodic solutions are denoted by FEy.
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To make the structure of symmetric orbits more obvious let consider the
Poincaré section of the phase flow, defined by the system of canonic equations,
by the plane of symmetry Il : 9 = y; = 0. ¥1-symmetric orbits cross this plane
orthogonal and points of intersection of orbit with the plane IT have coordinates
(1,0,0,92). Along the family of periodic solutions these non-zero coordinates
change smoothly and form the curve on the plane of symmetry. The following
coordinates was proposed by A.D.Bruno in [5, Ch. 3] to make the form of char-
acteristic of periodic solutions the most simple and clear:

a= 21"’—1'5' & = yolyna. (12)
The semi-major axis a = [a| and eccentricity e = |1 — |€]|. The part of plane of
symmetry II filled with periodic solutions is a cylinder in coordinates (12)). The @
is a coordinate along the generatrix of the cylinder and the € is a coordinate along
the directing circle. So the dashed lines with coordinates @ = 42 in Figures [f] to
coincide.

Eé E§ E§ Eé
3 7 9 5
-~ 2T —— = — — = — — — 9~ — — | — 99 90— — — & — —

Id¥ Idy

Idf Ic;\ Ag Idy
| / ‘Ll \ Id

Idi Idt
0 ° o—o-o °*o—o *—>
a
—1 Ir
- ——_—_—_- - —_—— — == — = = -4— — — — ¢ —00— 11— 9206 o— — — o — —
E, Es Es E:

Figure 6. Main families of doubly symmetric periodic solutions of the SKP. Colli-
sion orbits are marked with purple.

The families of circular orbits are represented in coordinates by straight
lines parallel to axis OX with coordinate e = +1 for family /d and with coordinate
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e = —1 for family Ir. The families Ey are represented by vertical segments with
coordinate @ = +N~%3. Each family has two collision orbits with coordinates
(N72/3,4£2) and (N~%/3,0) in plane (@,¢). Each family Ey of elliptic solutions
shares one common orbit with family Id at point (N~2/3,1) and with family Ir
at point (NN —2/3, —1). The segments of elliptic solutions condense tending to the
segment with @ = 1. The circle of stationary points is represented by black point L;
with coordinates (41,1). The main families of doubly symmetric periodic solutions
are shown in Figure[6] The part with @ > 0 is shown.

The main result of perturbation of doubly symmetric periodic solutions under
the function e R(x) is that the points of intersection of the family Id and families
Ey disappear. This bifurcation takes place for those families, which N = (p+1)/p
or N=(p+1)/(p+2), where p is odd positive number, i.e. p =2k — 1, k € N,

E Eis FEs Es Ea E>

- - - - - - - - - - - - - = —12————-1»3— — —— 99 o — — o — —
e 27
1 . I
1
0 - - >
a
-1 Ir

) — - — - = 94— — — — & —¢06 —!— 906 00— — — & — —

E, E Es E

alo

2
3

=~

Figure 7. Bifurcations of families of doubly symmetric periodic solutions of the
SKP for small value of parameter ¢.

Under the perturbation e R the family Id* is divided into countable number
of pieces by families of doubly symmetric elliptic orbits E, 1)/, p = 2k — 1, and
Ep_1y/p, p =2k +1, k € N. We denote the parts of the perturbed family Id by
I d; and Id, (see Figure @ Moving along the perturbed family from the circular
direct orbits with small radius a one will sequentially pass through the part Idy,
then goes through the part of family Es. At point with coordinates (2_2/ 3, 42)
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family passes through the collision orbit, moving along another part of family FEs,
crossing the family Ir, and goes through the part Id;. This part is connected
with the part of the family F /3, which continues through the collision orbit at the
point ((4/3)7%/3,42) and goes to another part of the family FE, 3 and so on. So,
the characteristic of the perturbed families Id and FE(,,1/, is a labyrinth curve
on the surface of cylinder, which makes infinitely many folds while tending to the
point Ly. Another part of perturbed characteristic tends to point L; from outside,
making infinitely many folds. Let denote the families of united segments [ d; and
Epi1yp by I dE];r and united segments Id; and E(, 1)/, by IdE,. Moving through
the collision points the orbits sequentially change its direction of movement and
global multiplicity.

The same type of bifurcation of family Id takes place in the case of small
perturbation of the RTBP, but such bifurcation happens for each integer value of
number p. For details see [5, Ch. VIII].

1IN

05|

1

1

-0.5 L 4

-1.5 L

1

Id

Ir
eps=0.01 __

1

-2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
a

Figure 8. Deformation of characteristic of the family IdE™ for e = 0.01.
5.3. Evolution of families of doubly symmetric solutions for small value

of . Here we give description of evolution of family IdE™ while perturbation
parameter € changes from 0 to 1. We limit our description to periodic solutions
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with major semiaxis a < 1, i.e. which characteristic is situated at the left side
of Figure [7] These results were obtained after intensive numerical computation.

Small changing of the parameter ¢ leads to quick deformation of the char-
acteristic. As closer the fold of characteristic is situated to the singular point L
the more it is distorted by the perturbation. In the Figure |8 is shown computed
characteristic of perturbed family IdE™ for ¢ = 0.01.

At the certain values of parameter € continuous characteristic begins to “tear”
into separate pieces and these pieces should be investigated separately.

1.35
T T T T T
1 | 13 [ i
125
0.5 | :
1.2 |
Xo 0L . | Xo 115 |
11 L
-0.5 | i
1.05 |
-1 | 1
0.95
X4 X4
1.05 1.0365 : : : : :
1.04 1.036 | :
1.03
1.02 1.0355 |
Xo 1.01 Xo 1.035
! 1.0345 |
0.99
098 1.034 |
0.97 i i i i i i i 1.0335 i i i i i
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 -0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015
X4 X4

Figure 9. An example of orbit with five loops around the libration points L ,.

An important role in breaking of the whole family IdE™ into separate pieces
plays the changing of the type of stability of libration points L?{Q. Fore > e =
0.0286 new type of periodic orbits appear. These orbits approach to the libration
point LY for that values of Jacobi integral , for which this point is isolated from
the region of possible motion by the zero velocity curve, i.e. for C' > 3(1 — 5)1/3.
The orbits have loop-shape parts of its trajectory, which are passed with very slow
velocity. As Jacobi integral C' tends to the critical value from upper values then
the boundary from the zero velocity curve around the libration point shrinks. So,
the number of decreasing loop-shape parts along the orbit increases and period
of the orbit increases as well. After making a finite number of decreasing loops
around the libration point LY the trajectory moves off along the increasing loops.
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An example of such orbit is shown in Figure[9] The rectangles area is enlarged from
left upper corner to right lower corner of the Figure [0, This orbit was computed
during continuation of the family IdFEy for the value of parameter ¢ = 0.1.

The breaking of the family happens in two steps. On the first step a fold
appears on the characteristic of the family. On the second step the characteristic of
the family is breaking at the place of the fold. Two parts of breaking characteristic
during the continuation make spiral turns and tend to orbits with infinitely large
period.

1.5

0.5

-0.5

-1.5 | Id
Ir
eps=0.07 :
eps=0.10 ___
i i

|
0.3 0.4 0.5

0.9 1

a

Figure 10. Characteristic of the family IdE™ before (green line, e = 0.07) and
after (red line e = 0.1) breaking into parts.

Consider the changes which happen, when parameter € increases from small
values to the value 0.1. One can see that for ¢ = 0.07 a fold on the right side
of characteristic enlarges (green line on Figure and at € ~ 0.0949 this fold
is breaking into parts (red line on . One part of the IdE™ family consists of
united families Id{", Ey and Idj. This part of the family finished at solution with
infinite number of loops around the libration points Lj,. The next part of the
family consists of the united families Ey/3 and I ds. The both ends of this part
are orbits with infinite number of loops around the libration points. Other parts
of the family IdE™ are arranged in the same way but are not shown in Figure [10]

The last reorganization of the family IdE™ takes place at € ~ 0.436. After
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this breaking the first part of the family consists of the family Id; united with
part of the family F, for € > 1. The limit of this part is an orbit with infinite
loops around the libration points LY ,.

So, the parts of the whole family can be identified by the segments [ d;; ,
p=135,....

Statement 4. For large values of perturbation parameter € > 0.435 each part of
the family IdE™, except the first part, consists of the united segments I d; and
Eqp_1)/p-2) for p=3,5,.... Each such part begins with and ends with the orbit,
which makes infinite number of loops around the libration point L?{’Q. The first part
begins with infinitesimal small circular orbit around the origin and ends with an
orbit with infinite numbers of loops. Let denote this parts by ]dE;, p=135,....

The same type of families of periodic solutions with characteristic containing
spirals was found by M. Hénon in the RTBP for the case of equals masses [17], by
K. Papadakis and C. Goudas in the RTBP for mass parameter ;1 = 0.4 [18], by
A. Bruno and V. Varin for Beletsky equation [19].

5.4. Continuation parts [ alE;r into the Hill’s periodic solutions. The
author could numerically continued the family I and the first four parts I dE; :
p = 1,3,5,7 into families of doubly periodic solutions of the Hill’s problem.

The family Ir continues into the family f of retrograde satellite orbits [1],6].
The part IdE] continues into the family g of direct satellite orbits [1,6].
The part IdE; continues into the family f3 [1,13}120].

The part IdE: continues into the new family, which was described in [7].
This family has generating sequence {+1,+1,—1,—1}.

The part IdET continues into the new family with generating sequence
{+1,+1,+1,-1,—-1,—1}.

The family a (¢) of Lyapunov libration orbits was also continued from the Hill’s
problem to the circle of stationary points of the SKP.

Families Ir, parts IdE{ and IdE; can be continued into the corresponding
families of the Hill’s problem directly. The essential role of the anti-Hill’s problem
becomes clear just during continuation the parts IdE: and IdE7 into the Hill’s
problem’s families, because certain pieces of the parts I dE; , p = 5,7 is able to
continue through the families of the anti-Hill’s problem only. For example, the
certain piece of the part IdE;: is continued up to the value of parameter e ~ 0.95.
The further continuation of this piece within the Hill's problem is impossible, but
it is possible to get the limit generating sequence of this piece, which is {42, —2}.
This generating sequence within the anti-Hill’s problem gives another sequence
{4+1,+1, -1, -1}
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6. Summary

The generalization of the Hill’s problem looks quite natural and makes pos-
sible to match doubly symmetric periodic solutions of the SKP and the Hill’s
problem.

Thanks

The author thanks Professor A.D. Bruno for his valuable advices, fruitful
discussions and for the references to the papers [17-19].
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