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A.A.ABanoB, A.A.MaptsinoB, C.}O.Mensenes, 10.10.Ilomexonon
BBIUMCJIUTEJIBHBIN KOJI SPIDER. PEILIEHUE 3A AU PABHOBECHS
IIJIASMbI C AHM3OTPOIIHBIM JTIABJIEHUEM U BPAIIIEHUEM

B TOKAMAKE

B MI'Jl Teopuun mia3Mbl B TOKamMakax AABJICHUE TIA3Mbl OOBIYHO CUHUTACTCS
M30TponHBIM. OTHAKO HArpes IUIa3Mbl ¢ IIOMOLIBIO WHKEKIIUA HEUTPAIBHOTO ITy4YKa
1 BY HarpeB MOTYT NPUBOJINUTH K CHJIBHOW aHU30TPOIIMH IUIA3MEHHBIX [TAPAMETPOB U
BpawieHuo IuiasMel. Teopus MI'Jl paBHOBecus C y4€TOM HMHEpPLUMM IUIA3Mbl U
aHU3O0TPOIUU JAaBJIEHUS Hauyajga pa3padaThIBaThCS YXKE€ JIOCTATOYHO JIABHO, HO JI0
IOCJIEHEr0 BpPEMEHM OHAa He OblUla  [OCIENOBATEbHO IPUMEHEHAa B
BBIYMCIIMTEIBHBIX KOJIAX JUId HWHXXEHEPHBIX pPacy€TOB PAaBHOBECHUS U HBOJIIOLUU
I1a3MbI B TOKaMaKe.

B nannoit cratbe npeacrtapieHa Bepcus kojga SPIDER, npeanasnauenHas s
YUCJICHHOTO  MOJCIMPOBAHUSA  PABHOBECHs IUIa3Mbl TOKamMaka €  y4€TOM
TOPOMJIAJIBLHOIO BpAIlCHUs I1a3Mbl U AHU30TPONUM JABIEHUS; AaéTCs MOIPOOHBIN
BBIBOJI YPAaBHEHUS! PaBHOBECUSI OCECHMMETPHUUYHOM I1a3Mbl B caMOM 00111eM Buje (¢
IIPOU3BOJIBHBIM BpAIlCHUEM W AHU3O0TPONHBIM JABJICHUEM); H3JIaraercsi METO.
pacyera paBHOBECUM C AHHW3OTPOITHBIM [JABJIICHUEM IIPU 3aJaHHOM BpPaIaTEIbHOM
npeoOpazoBannu. Takxke TPUBOASATCS NPUMEPHI pacdyeToB U 00CYyXIarTcs
IIOJIyYEHHBIE PE3YJIBTATHI.

Knrwoueswie cnoga: Toxamax, rmnasma, MI'J[ paBHOBECHE, aHU30TPOITHOE
JaBJICHUE

A.A.Ivanov, A.A.Martynov, S.Yu.Medvedev, Yu.Yu.Poshekhonov
THE SPIDER CODE. SOLUTION OF TOKAMAK PLASMA EQUILIBRIUM
PROBLEM WITH ANISOTROPIC PRESSURE AND ROTATION

In the MHD tokamak plasma theory plasma pressure is usually assumed to be
isotropic. However, plasma heating by neutral beam injection and RF heating can
lead to a strong anisotropy of plasma parameters and rotation of the plasma. The
development of MHD equilibrium theory with the plasma inertia and the anisotropic
pressure began a long time ago, but until now it has not been consistently applied in
computational codes for engineering calculations of the plasma equilibrium and
evolution in tokamak.

This paper 1s devoted to description of the version of the SPIDER code for
numerical simulation of the tokamak plasma equilibrium with the toroidal rotation
and pressure anisotropy; detailed derivation of the axisymmetric plasma equilibrium
in the most general form (with arbitrary rotation and anisotropic pressure) and a
method of calculation of the equilibrium with anisotropic pressure and prescribed
rotational transform are given. Examples of calculations and discussion of the results
are also presented.

Key words: tokamak, plasma, MHD equilibrium, anisotropic pressure



1. Introduction

In the MHD tokamak plasma theory plasma pressure is usually assumed to be
isotropic. However, in some cases of practical interest, such as plasma heating by
neutral beam injection and RF heating, the rotation of the plasma and a strong
anisotropy of some plasma parameters can occur [1]. The development of MHD
equilibrium theory with the plasma inertia and the anisotropic pressure began to a
long time ago [2-5], but until now it has not been consistently applied in
computational codes for engineering calculations of the plasma equilibrium and
evolution in tokamak.

This paper is devoted to the description of the version of the SPIDER code [6-
7] intended for numerical simulation of the tokamak plasma equilibrium with the
toroidal rotation and pressure anisotropy.

In the section 2 a detailed derivation of the axisymmetric plasma equilibrium
formulation in the most general form (with arbitrary rotation and anisotropic
pressure) is given. The equilibrium equation with the toroidal rotation and the static
plasma equilibrium equation with anisotropic pressure follow from the general
equation. The method of calculating of the fixed boundary plasma equilibrium with
anisotropic pressure and prescribed rotational transform q(y) is also presented.

The section 3 is devoted to the investigation of the influence of toroidal
rotation on the position of the free boundary plasma with pedestal profiles
corresponding to the basic equilibrium of the ITER Scenario 4.

In the section 4 examples of the ITER Scenario 2 plasma equilibrium with
prescribed rotational transform q(y) and varying anisotropy of the plasma pressure
are presented.

The part 5 is devoted to the discussion of the obtained results.

2. General formulation of the tokamak plasma equilibrium problem
with anisotropic pressure and rotation

2.1 Ideal MHD equations and some of its consequences

The dynamics of a perfectly conducting fluid is described by the equations of
motion, energy (in terms of internal energy per unit of mass for adiabatic flows) and
magnetic field frozen into fluid:

pfjjz_div(mf), (1)



pzf:—/z*OOVV, @)
pjt(f)}(&v)v. ()

where p,V,s are the density, velocity, internal energy,B is a magnetic field vector.

2 A
The equations include the Maxwell stress tensor T :Bzf—BB and the pressure

tensor:

#=p,i+0, BB, a=%. &)
The continuity equation

L () (5)
and the condition of the solenoidality of the magnetic field

divB=0 (6)

close the set of equations (1) - (3).

Rewriting the equation (3) in the form

d (B’
— | — |==TooVV R 3
ol [2/)] (a)
and combining the equations (1) and (2), we obtain the following equation for the
: v’ 1 B?
total energy per unit mass E=—+¢&+——:
2 p 2
p‘jj'f:_div(ﬁovwov). (7)

Using the explicit form of the tensor (4), it can be shown that
700V = p,divi+o, (B, (B, V).

On the other hand, from the equations (3) and (5) for the Lagrangian time derivative
of the magnetic field squared we have:

d (BZJ = Bdivv+(B,(B,V)).

dtl 2

With the use of the last expression for the term (E,(E,V)V) the energy equation in the
adiabatic case can be written as follows [5]:

ot 2 d )
Thus, we can assume that ¢ = g(\/ =1/p, Bz,y/) is a function of three parameters, with
w being a label of magnetic surface frozen into the flow, so in a liquid particle the
following relation holds :

BZ
de =-p,dV —oVd [TJ



Let us introduce the function h=¢+pV as an analogue of the enthalpy. Then
2
dh=Vdp, - o,Vd (BTJ ,

or in the whole space

2
vh=vvp, —ovv| 2 |+ % vy, (9)
2 oy
Divergence of the tensor # can be written as follows:
2
divz = (rot o I§)>< B- O-'V(B?J +Vp,, (10)

or, using (9), in terms of the thermodynamic parameters:

divz = (rot o-‘lé)x B+ pVh— pS—ng// .
W

These relations will be used later to derive the axisymmetric equilibrium equation in
the most general form.

Bernoulli integral. Let us take the scalar products of the equations (1) and (3) with

B and v respectively. Summing the obtained equations gives the following relations
yo,

under the assumption that (Vy,B)=0 :

p%(v’gj:—l(é,divﬁ)+ é,v[gn, (11)

P P

2
p;(V;BJ:diV[B(VZ—h , (12)

or in the integral form:

;[j(v,e)dv]:j(";—h

\ ov

or

—_

B.dS), (13)

where V is the Lagrangian volume, and 6V is its boundary.

2.2 Axisymmetric plasma equilibrium with rotation

The axisymmetric magnetic field consists of the poloidal and toroidal
components:

B,=VyxVe , I§¢:FV¢) .
Plasma equilibrium equation with a scalar pressure taking into account inertial forces
can be written as:

p(V,V)V =rot BxB-Vp. (14)



In the steady state when
(v,,Vy)=0, div(ev,)=0,
the poloidal components of the velocity and magnetic field are related as follows:

o, :rot(;(Vgo):V;(ngo,
M, =28, x=xy)

It means that the velocity vector v lies on the magnetic surfaces w = const.

The toroidal component of the velocity is expressed through the angular velocity w :
v, =oR’Vop.
Assuming the ideal conductivity of plasma we can write:
E=-vxB, E,=-v,xB =0,
E=E,=—QVy,
1.e. the electric field E is orthogonal to magnetic surfaces. The function Q is the flux
quantity in the steady state:
rotE, =0 ™ VQxVy=0 = Qy).

Using an explicit representation of the poloidal magnetic field through #, p,0,F

E = xB -V xB. =—4 B xB -V pr:

p p 4 4 p D p 4 @
= (o X&)\ & ) Fl'j ( F}(’j
=B x|V —-=B, |=B x|oR"——|Vp=— 0- Vy,
' [‘” p “’J p [ p PR’
we obtain
F !
Qy)=w--%, (15)
PR
v=2 B+QRYVp. (16)

Yo,

In the case of the steady state axisymmetric flow the Bernoulli integral reads:
2

h+V2—a)QR2:H(gz/). (17)

Let us denote the vorticity W =rotV and the electric current density j =rotB. Then
the steady state equilibrium equation (14) becomes:

2
pV(VZJ+pVVxV:]xB—Vp. (18)

Substituting the expression pv from (16) to (18), we get:

\"

(;cW—I)XB+pQR2(VV><V¢>)=—Vp—pV(22} (19)
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and using W = V(eR?)x Vg in (19) arrives to:
2
I x B+pa)R2VQ:—Vp—pV(V2—a)QR2J, (20)

where =W -7.
The toroidal part of the equation (20) gives I xB =0, from which it follows

F-7oR*=Aly),
I —ZVA \Y (W)RZ "B (21)
p = VAXVo+aR™y'B,,

i.c. the vector I lies on magnetic surfaces. The poloidal part of (20) is:
[,xB,+I xB, :—pa)RZVQ—Vp—pV(V;—a)Qsz. (22)
Let us expand the two terms in the left-hand side of (22):
[ xB,=(yW,-7],)x8, = ([;/rot(f)'vwwa —rot(Vy xV(p)],V(p]V v,

[ xB, =—F(VAxV@)xVp+FaR’ " (VyxVe)xVep= FI:ZVA ~Fay'"Vy.
Now the equations (22) can be rewritten as:

;({rot["’v 8% V(pj,Vgo)V W — (I‘Ot(V W X Vgo), V([))V W=
P

(23)
2

2
= —£VA+ Fa);("Vt//—pa)R2VQ+pV(a)QR2 —sz—Vp.

If the entropy S is introduced in the usual way as Vh=VVp+TVS through the
enthalpy h and the temperature T, and it is the flux function S =S(y), then in the
view of (17) and (9) the equation (23) takes the form:

;(’(rot [%Vl// xV(pJ,V(pj—(rot (VyxVe) V)= (24)

F ! 14 ! ! !
:—?A +Faoy" - poR*Q' — pH' + pTS'.

If alternatively the density is the flux functionp = p(y), then in the view of

Vp = pV(pj _PVYP the Tast two terms in the right hand side of (23) are transformed to:
yo,

P
2 2
pV(a)QRz—V—pj+pv’0, VP R =AW,
2 p p 2 p
and the last two terms in the right-hand side of (24) convert to
- pH"+ o

P



2.3 Axisymmetric plasma equilibrium with anisotropic pressure

Recalling the expression (10) for the pressure tensor divergence, we can
rewrite the static (V=0) equilibrium equation with the anisotropic pressure in the

form:
2

divz = (rotO'H I§)>< B- 0|V[BTJ +Vp, =] x B, (25)

p” - pi
BZ

b

where #=p i +o, BB, o, =
or

- B’

k x B = VpH —O'V(zj N

where K =rot(oB), o =1-0,. The projection of (25) on the toroidal direction V¢ gives

Fo=Ay).
Poloidal part of (25) gives
le(rot(th//ngo),V(p)—VA%—pVh+p§—gVy/=0. (26)
7%
Thus we have:
(o5 )=H ). @)
and the equilibrium equation (26) can be written as:
(rot(th//ngo),V(o)—A'%—pH’+p§—g:O. (28)
7%

Note that from (27) p, can be expressed as a function of two variables (Bz, z//).

Then (28) can be rewritten as

F 8pH(z//,BZ)
R? oy
Taking into account p, = p, (l//» Bz) in the equation (25) we obtain:

(rot(cVy x V@) Vo)A’ =0. (29)

@ o

— I 29a
Averaging of (29) over the volume dv, between the magnetic surfaces y = const
gives:
0
dK¢dy/—d<I>dA=<p'> av, dy (30)
oy vy
or
op
dK, +qdA=(_") dv,, 31
o <0W>V ’ Gl

where K = jk¢dS, S, - area inside the level line y =const in the toroidal cross-

Sy

section.
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Let us obtain the expression for the averaged current density parallel to the
magnetic field, which may be needed for derivation of the magnetic field diffusion
equation averaged over the magnetic surfaces:

1) Starting with the expression
(1.8)=3,.8,)+(5,-B,)=F(i,. Vo)+(3,.B,). (32)

and integrating it over the volume dV. between the poloidal current surfaces

F = const, we obtain:
av/((J. B)>V = Fdl. —1.dF,

where |, = I]st , Sp - area inside the level line F =const in the toroidal cross-

Sk

section.
2) From the expression
(K.B)=(rot(cB). B)= (oB *) o(].B) (33)
we get (R,aB)zaz(],B)z( ) ( )_ (kw,V(p)+(Rp,on),and integration over

the volume between the magnetic surfaces leads to

AdK, —K,dA =((K,0B)), dv (34)

v

Currents and fluxes. The toroidal current | through the magnetic surface y = const
cross-section poloidal flux of the magnetic field are related as follows [8]:

d
I =azzﬁa (35)
v

Uy = fﬁ

w=const

where V, is the volume inside the magnetic surface. In general case of equilibrium

A2
0 (36)

with anisotropic pressure, when the magnetic and current surfaces are not the same,
the analogous relation between the poloidal current F and the toroidal flux ®. can

be written through the surface F =const but not the magnetic surface:

do
F=a; WF ) (37)
F
P
as =) - (9)
Ve

where V. is the volume inside the current surface F =const. In addition to that, for

the fluxes of the vector kK we have:
dy
K, =Co g (39)

§ oc——

w=const

\VV .
(40)



10

where V, is the volume bounded inside the surface y =const,

dd
A = C33 E s (41)
1 -1

v,

Flux conserving equilibrium equation with anisotropic pressure. Let us specify
how the equilibrium equation (29) can be solved with the prescribed functions g(y),

0 . . .
ap( , Bz) and the total poloidal flux in the plasma Sy =y, —y, (see the section 4).
7%

Averaged equilibrium equation (31) with the relations (39) - (42) can be rewritten as:

d d V4 d d 4 apu
sz J -q (ng j = < . (43)
av, ( av, | dv, av, ) o/,

To solve the equilibrium problem the iterative procedure similar to the procedure in
[7] 1s used. At each iteration the one-dimensional equation (43) is solved. From its
solution we can determine the quantity
d dy
AN =—qC,; ——|C,q—"|. 44
q 33 dVW ( 33q dvy/] ( )

Then the two-dimensional equation (29) with AA’ from (44) and prescribed
Py

51#( ,B?) is solved.

Remark. It is easy to show that the equilibrium equation with anisotropic pressure
and plasma rotation can be wrirren as follows:

;('(rot(%v W X V(o], Vgoj —(rot(6Vy xVp),Vep)= —%A' +Fay"— paR*Q' — pH' + pTS' .(45)

3. Influence of the toroidal rotation on the plasma equilibrium
for the basic ITER scenario

In the case of purely toroidal rotation the equilibrium equation (23)
significantly simplifies and takes the form [4]:

1 (4 N op(w.R)
—— (Ay+FF)= YR
Rz( v+ ) ™ (46)

Poloidal current F and » depend on the poloidal flux function y only, i.e. current
and magnetic surfaces coincide.
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If we assume that the density p is constant on magnetic surfaces, i.e. p= p(y), the
expression for the pressure p can be written as follows:

2p2
Dy R) = pyfy) + VIR @)
From this it follows:
P _ (PWZ)IRZ 4
oy Py + - (43)

To study the influence of toroidal rotation on the equilibrium, the following
series of calculations with different values of the rotation velocity v were performed
for the equilibrium configuration of the ITER tokamak (Fig.1):

e the basic equilibrium configuration "Scenario 4" from the ITER database with
the value g, =2u,p,/B; =6.2% was chosen;

e the normalized poloidal flux w =(y—-w,)/(v,~w,) varies from 1 at the
magnetic axis to 0 at the plasma boundary;

e the profile (,oco2 )' = Ao(l—(l—w)“‘ )az with ¢, =2, a, =0.5 was prescribed;

e the maximal velocity v, =e,,R, changes within the range of 100-300 km/c,

P =1.5:107° 93 , which corresponds to n=10"*cm™ for a hydrogen plasma;
cm

value 10,V /By =0.0075% for v, =100 km/sec.
Fig.2 shows the profiles of the main flux functions in plasma. For the series of
calculations with different values of toroidal rotation velocity the Table 1 and Fig.3

show the dependence of the radial position of the magnetic axis and the X-point -
R.(m) and R (m) respectively - on the magnitude of the rotation velocity.

Table 1 - Radial coordinates of the magnetic axis and the X-point in the equilibria
with free boundary and plasma toroidal rotation, depending on the magnitude of the
rotation velocity

v(km/sec) 0 100 200 300
Rn(m) 6.690 6.6920 6.696 6.7056
R,(m) 5.085 5.086 5.088 5.0908
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ITER equilibrium configuration. Poloidal flux contours.
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Figure 1 - Basic free boundary plasma equilibrium (v=0).

ITER Scenario 4
ITER equilibrium configuration profiles x 10°
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Figure 2 - Profiles of the flux functions in plasma for Fig.1 basic equilibrium
configuration versus normalized poloidal flux. The input flux functions for the

equilibrium - p', FF', (po?)
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Outer perimeters of the plasma boundaries
‘ T

v=0

0.47 -
v=100

0.46
v=200

‘ (f“v: 300

0.4+

0.39+ |

| | | |
8.19 8.2 8.21 822
R(m)

Figure 3 - The position of the equilibrium plasma boundary at the outer side of the
torus depending on the magnitude of the toroidal rotation velocity (numbers
correspond to the maximal rotation velocities in km/sec)

4. Calculation of the axisymmetric plasma equilibria with the
anisotropic pressure due to high fraction of energetic particles

Equation (29a) can be conveniently converted to the form [9]:

O PP 49
oB ( Bj B” )
Suppose that p, = p, () is a function of y . Then the integration of (49) gives:
p,(y.B)=p.(w)+ fy)B. (50)
Without loss of generality, the expression (50) can be rewritten as:
B
pH =p, (l/7)+ fo(‘?)ia (51)

B

max
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where normalized poloidal flux of the magnetic field w =(y —w,)/(v, —w,) varies
from 1 on the magnetic axis to 0 at the plasma boundary. The calculations were
performed with the prescribed profiles of p (7,B) satisfying (51). The initial
equilibrium was taken from the ITER database for the Scenario 2 with plasma current
|, =15MA and assuming the perpendicular pressure to coincide with the initial
equilibrium total pressure p, = p,. Fig.4 shows the profiles of the main flux functions
in plasma. In Fig.5 the computational grid adaptive to the magnetic surfaces y = const

of the base equilibrium configuration is plotted. The following parameters were
prescribed:

the safety factor q and the total poloidal flux in the plasma from the initial
equilibrium which correspond to a flux conserving series;

f )= AL-0-p)" )" ;
P, (7)=p,(%);
A =2p,(1), a, =4, a,=025.

The calculations show that the qualitative changes in the equilibrium take place for
high longitudinal beta: when the value of the longitudinal beta is about three times
the value of the perpendicular beta the shift of the magnetic axis is quite large:
R, =6.568m as compared to the shift in the initial equilibrium R, =6.418m under

strong pressure anisotropy. The level lines w =const (magnetic surfaces) strongly
) 0 . .-
deviate from the level curves ap:const (Fig.6). In addition, the current surfaces
7%

F =const deviate significantly from the magnetic flux surfaces (Fig.7). For the
equilibrium with A, =p,(1) (the longitudinal beta being two times lower) the

discrepancy between the current and flux surfaces is still significant (Fig.8).
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Figure 4 - Profiles of major flux functions in the plasma versus the normalized
poloidal flux for the basic equilibrium configuration of Figure 5. The input
parameters of the problem - p’, FF’
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Adaptive to magnetic surfaces computational grid

\y

N
N
X

N
N
i
N
A

)

3
N
N
N

D
=
R
N

N
R

N

%
740
%’I/
W7
177
/I

2

i
il
it
it
il

Z(m)

Figure 5 — The computational grid adaptive to the magnetic surfaces y = const of
the basic ITER Scenario 2 equilibrium configuration

Figure 6 - Equilibrium with large longitudinal beta. Level lines y = const (magnetic

.0
surfaces) — green, level lines P _ const — blue
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Figure 7 - Equilibrium with the large longitudinal beta. Level lines y = const
(magnetic surfaces) — green, level lines F =const (current surfaces) — blue
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Figure 8 - Equilibrium with the lower longitudinal beta. Level lines y = const
(magnetic surfaces) — green; level lines F = const (current surfaces) — blue
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5. Conclusions

The calculations of plasma equilibrium with toroidal rotation confirm a weak
influence of the rotation on the free plasma boundary position [10]: for predicted
ITER plasma rotation speeds - below 100 km/s ( 0, Vo / Bs =0.0075% ) - the shift

of the plasma boundary at the outer side of the torus is less than a few millimeters.
Fig.3 shows that the effect increases proportionally to the square of the speed, while
the position of the magnetic axis and the X-point change slightly (see Tab.1).

For the flux conserving equilibria with the anisotropic pressure and large
fraction of energetic particles (beta of the energetic particles comparable with the
total beta in plasma) we can see significant deviation of the current surfaces from the
magnetic surfaces. This fact suggests some restrictions on the choice of a realistic
equilibrium model with anisotropic pressure in ITER.
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