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Scalan: polytypic library for nested parallelism in Scala.

The paper presents a specialized Scala library to express nested data parallelism
in Scala language using its advanced features for polytypic and datatype-generic
programming, DSL embedding and type-level programming. The proposed library
implements polytypic (type-indexed), non-parametric representations of parallel
arrays. The approach is illustrated by a series of increasingly sophisticated exam-
ples followed by a description of key implementation details.

Александр Слесаренко

Scalan: политиповая библиотека на языке Scala для вложенного па-

раллелизма

В работе представлена библиотека на языке Scala для описания вложенного
параллелизма. Используются возможности языка Scala для обобщенного про-
граммирования, построения встроенных проблемно-ориентированных языков
(DSL), а также программирования на уровне типов. В предложенной библио-
теке используется непараметрическое представление параллельных массивов.
Подход иллюстрируется серией примеров и сопровождается описанием клю-
чевых деталей реализации.
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1 Introduction

Programming is hard and parallel programming is an order of magnitude harder.
Every computer these days is, in fact, a parallel computer and we have to find a
way to cope with this complexity. One particular approach to parallel program-
ming is to “go functional way” since pure functional languages are by-default safe
for parallel evaluation, whereas imperative languages are by-default unsafe.

A particularly promising and well-studied approach to employing large num-
bers of processors (100-s and 1000-s) is data parallelism in general and nested
data parallelism in particular. Blelloch’s seminal work on NESL [3] showed that
nested data parallelism can be efficiently implemented by mapping it to flat par-
allelism using flattening transformation [1]. It is possible to combine flexible and
high-level programming model (nested data parallelism) with fast, scalable and
implementation specific execution model (flat data parallelism). Recent work [16]
showed that this approach can be extended to support higher-order functional
languages such as Haskell.

Programmers of parallel computer encounter nested parallelism whenever they
write a routine that performs parallel operations, and in turn want to call that rou-
tine in parallel. This occurs naturally in many applications [2]. Most data-parallel
programming environments [9, 22, 8], however, do not permit the expression of
nested parallelism. This forces the programmer to exploit only one level of par-
allelism or to create its own implementation of nested parallelism. Both of these
alternatives tend to produce code that is harder to maintain and less modular
than code described at a higher-level with nested parallel constructs. Not per-
mitting the expression of nested parallelism is analogous to not permitting nested
loops in serial languages.

In this paper we describe Scalan - a polytypic [14] library for Scala, which
embodies nested data parallelism in a modern, general-purpose language [24]. In
contrast to [16] our approach is to rely solely on the existing language features
while implementing nested parallelism in the Scala language. The library can
be regarded as an embedded domain specific language (DSL) with the purely
functional semantic.

This paper makes the following main contributions.

1. We present Scalan library for expressing nested parallelism in Scala code,
for that we use series of examples.

2. We show internal non-parametric representation of parallel arrays and de-
scribe how that representation is constructed depending on type of array
element thus specifying parallel arrays as type-indexed types [10].

3. Following [6] we present Scala encodings of parallel arrays as type-indexed
types by employing advanced generic programming techniques available in
Scala [7].
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4. We present a reference implementation (sequential) of our approach and a
series of examples that illustrate a range of nested parallelism scenarios.

5. We also show how nested parallelism can be used to encode lambda calculus
by implementing a simple interpreter. To our knowledge we are the first to
describe this application of nested parallelism.

The purely-functional interface of Scalan comes in the form of collective op-
erations such as maps, filters, permutations etc., that emphasise an algorithm’s
high-level structure.

The reference implementation described in this work employs the standard
Scala arrays and in fact is sequential (not parallel)1 Thus, its performance is not
so good to say the least. First of all, it aims to show the usability of Scala language
for encoding nested parallel algorithms and underlying non-parametric represen-
tations. Second, we are not considering any parallel speedups or benchmarking
as it is a subject of future development.

In this paper we assume familiarity with the Scala language [24].
The rest of the paper is organized as follows. We describe why the library

is called polytypic. Then we present Scalan as a DSL which is polymorphically
embedded in the Scala language. Than we give a number of examples showing
how Scalan library (DSL) can be used to express nested data-parallel algorithms.
Then we describe a non-parametric type-indexed representations of parallel ar-
rays. Next we show how the advanced Scala language features can be used to
implement these representations. And finally, in Section 7, we conclude by con-
sidering some limitations of our approach and possible lines of further research.

2 Why polytypic?

Polytypism [15] differs from both parametric polymorphism and ad-hoc polymor-
phism (overloading). A definition of polymorphic function such as

def head[A](a: List[A]): A

can be seen as a family of functions one for each instance of A as a monomorphic
type. There need only be one definition of head; the typechecker ensures that
values of type A are never used. A polymorphic function can be implemented
parametrically - as a single function that works on boxed values.

An ad-hoc polymorphic function, which can be idiomaticaly encoded in Scala
like this (employing Typeclass of Concept pattern [7])

def +[A:Numeric](a:A, b:A): A // we use scala.math.Numeric[T]

is also a family of functions, one for each instance of the Numeric type resolved
by the compiler and provided as an evidence for implicit parameter.

A polytypic function on the other hand is a function like this

1Source code is available at http://github.com/scalan.

http://github.com/scalan
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def length[A,D[_]](d: D[A]): Int

where D ranges over type constructors [15]. We can apply length to instances of
List[A] or Tree[A] for some kind of tree.

The polymorphism of a polytypic function is somewhere between parametric
and ad-hoc polymorphism. A single definition of length suffices, but length has
different instances in different contexts depending on type D. A polytypic function
can be implemented parametricaly, but it need not be parametric and can also be
implemented non-parametricaly without boxing values.

We are going to use this property in our library to represent instances of
PA[A] type (see Fig. 2) non-paramerically using unboxed arrays along with an
implementation of related polytypic methods and functions.

General approach to encoding of polytypic (or generic) functions in Scala is
given in [25]. Inspired by these ideas, we implement polytypism in Scalan library
but in a different, more specialized way.

3 Scalan as embedded DSL

It is well known that a domain specific language (DSL) can be embedded in an
appropriate host language (see for example [12]). When embedding a DSL in a
rich host language, the embedded DSL (EDSL) can reuse the syntax of the host
language, its module system, typechecking(inference), existing libraries, its tool
chain, and so on. This hinges on the power and the flexibility of the host language.

In pure embedding the domain types are directly implemented as host language
types, and domain operations are modeled as host language functions on these
types. This approach is similar to the development of a traditional library, which
also exports types and functions to its clients, but DSL approach stresses the
domain-specific concepts and operations during the design and implementation of
the library.

The DSL approach is highly amenable to formal methods. The key point
that one can reason directly withing the domain semantics, rather than withing
the semantics of the programming language. Because the domain operations are
defined in terms of the domain semantics, rather than the syntax of the DSL,
this approach automatically yields compositional semantics with its well-known
advantages, such as easier and modular reasoning about programs and improved
composability.

However, while the semantics is in accordance with the laws (algebraic) of the
domain, the approach based on pure embedding cannot utilize them for optimiza-
tion purposes due to tight coupling of the host language and the embedded one. It
also restricts the EDSL to a single opaque interpretation, which is not amenable to
analysis or optimizations. Partial evaluation and multi-staged computation have
been proposed [13], but domain-specific optimizations or other kinds of analyses
are still not possible with pure embedding approach.
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Recently, polymorphic embedding – a generalization of Hudak’s approach – was
proposed [11] to support multiple interpretations by complementing the functional
abstraction mechanism with an object-oriented one. This approach introduces
the main advantage of an external DSL, while maintaining the strengths of the
embedded approach: compositionality and integration with the existing language.
In this framework, optimizations and analyses are just special interpretations of
the DSL program.

Taking advantage of the polymorphic embedding approach we have designed
Scalan in a similar way. The ultimate goal is to expose Scalan as polymorphically
embedded DSL in the Scala language. We are going to benefit from transfor-
mational nature of nested parallelism by providing specialized domain specific
interpretations along with analisis and optimizations.

3.1 Getting started with Scalan

The first step to use Scalan is to make its definitions available in the program by
inheriting them from trait Scalan defined in package scalan.dsl, as it is shown in
Fig. 1. This makes all abstract definitions of Scalan DSL available inside MySample

trait. According to the idea of polymorphic embedding, at this point, we don’t
impose any specific implementation details and use Scalan in an abstract way
(type of methods fromArray, map, toArray given in Fig. 2 and 3).

Figure 1 Hello Scalan sample

package scalan.samples

import scalan.dsl._

trait HelloScalan extends Scalan {

def hello(names: Array[String]) = {

fromArray(names) map {name ⇒ "Hello, " + name + "!"} toArray

}

}

import scalan.sequential._

object Sample extends HelloScalan with ScalanSequential {}

Later on, to construct a particular implementation (in this case with sequential
semantics) and to run our code we need to import corresponding implementation
package and create object by using mixin composition of our abstract HelloScalan
trait with particular Scalan implementation (ScalanSequential in this case).

We can run this sample in Scala console like this:

scala> import scalan.samples._

import scalan.samples._

scala> Sample.hello(Array("Alex", "Ilya"))

res1: Array[java.lang.String] = Array(Hello, Alex!, Hello, Ilya!)
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3.2 Expressing parallelism with types

There is a lot of different ways to express parallelism. Depending on the program-
ming model, one can use some implementation of actors, parallel collections, task
parallel library or other specialized primitives.

In NESL the only way to say that something should happen in parallel was
to use parallel array datatypes and array comprehensions [3], as the language
construct to express parallel operations over collections of data. This is analogous
to list comprehensions found in many programming languages.

In Scalan we follow this type directed approach.

1. We use datatypes to express parallelism.

2. We let the programmer to express parallel algorithms on the highest possible
level, without actually introducing a parallelism in the language. (In fact
Scalan can be viewed as a language with purely sequential semantic.)

3. We do it in a compositional way so that the parallel function once defined
can be used in the definition of the others (in a nested way).

This can have a lot of benefits especially in polymorphic embedding settings.
Take as an example type declaration from Fig. 6.

type Vector = PA[Float]

Here we declare Vector to be a parallel array type by using the type constructor
PA[A] which is inherited as abstract type from trait Scalan and defined like this:

type PA[A] <: PArray[A] // parallel array of A

We will elaborate on PA type constructor later in this section. Using Vector type
in the definition of dotProduct makes it a parallel function. This is the only way
to express parallelism in Scalan and we will refer to Scala definitions that use
parallel datatypes as parallel functions.

3.3 Type constructor of parallel arrays: PA[A]

In Scalan we support ideas of NESL and overall nested parallelism by:

1. introducing a type constructor PA[A] of parallel arrays (see.Fig 2) to express
parallelism;

2. defining a set of polytypic [14] operations (generic array combinators) shown
in Fig. 2 and 3. They can be applyed to any datatype PA[A] provided that
the type A is constructed according to the rules in Fig. 4. This way we
support non-parametric representations of datatypes;

3. integrating PA datatype with Scala’s for-comprehensions by implementing
abstract methods map, flatMap and filter of trait PArray[A] (Fig. 2).
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Figure 2 Parallel array operations (OO style)

trait PArray[A] {

def length: Int

def toArray: Array[A]

def map[B](f: A ⇒ B): PA[B]

def flatMap[B:Elem](f:A⇒ PA[B]): PA[B]

def filter(f: A⇒ Bool): PA[A]

def apply(i: Int)

def zip[B](b: PA[B]): PA[(A, B)]

def zipWith[B,C](f: A⇒ B⇒ C)(that: PA[B]): PA[C]

// retrieve elements from specified indexes

def backPermute(idxs: PA[Int]): PA[A]

// place elements to specified indexes

def permute(idxs: PA[Int]): PA[A]

def slice(start:Int, len:Int): PA[A]

def ++(that: PA[A]): PA[A]

...

// see companion source code [28]

}

Figure 3 Parallel array operations (functional style)

trait Arrays extends ArraysBase {

def fromArray[A: Elem](x: Array[A]): PA[A]

def length[A: Elem](a: PA[A]): Int

def index [A: Elem](a: PA[A], i: Int): A

def replicate[A](count: Int, v: A): PA[A]

def tabulate[A](f:Int)(f:Int ⇒ A): PA[A]

def map[A,B](f: A ⇒ B)(a: PA[A]): PA[B]

def zip[A,B](a: PA[A], b: PA[B]): PA[(A, B)]

def unzip[A: Elem, B: Elem](a: PA[(A, B)]): (PA[A], PA[B])

def concat[A](a: PA[PA[A]]): PA[A]

def unconcat[A,B](a: PA[PA[A]])(b:PA[B]): PA[PA[B]]

def flatMap[A,B](f:A⇒ PA[B])(a: PA[A]): PA[B]

def filter[A](f: A⇒ Bool)(a: PA[A]): PA[A]

...

// see companion source code [28]

}



9

Since Scala is a multiparadigm language, we support two styles of array op-
erations: in object-oriented (Fig. 2) and functional style (Fig. 3) so that a pro-
grammer can choose the style that is better for his/her intent. In most cases
the functional style versions are simply wrappers around the OO style versions
(see the definition of map, flatMap, filter, pack etc in the source code [28]). But
some operations have only one style of implementation (see ++, unzip, unconcat).

Note that PA[A] has PArray[A] as the upper bound constraint which should be
satisfied in descendent traits while providing concrete implementation according
to polymorphic embedding design pattern. This makes it possible to think of
parallel arrays as instances of the PArray[A] trait while writing code using Scalan
as DSL.

3.4 What is element type?

In the definition of the Vector type we use the Float type as the type of element of
parallel array (we will call it element type or PA element type). The types of array
elements can be defined inductively according to the rules defined in Fig. 4. Given
an element type A we can define the type of parallel array PA[A] with elements of
the type A.

Figure 4 Element types

𝑇 := 𝑈𝑛𝑖𝑡|𝐼𝑛𝑡|𝐵𝑜𝑜𝑙𝑒𝑎𝑛|𝐹𝑙𝑜𝑎𝑡|𝐶ℎ𝑎𝑟 (𝑁1)
| (𝑇1, 𝑇2) (𝑁2)
| (𝑇1|𝑇2) (𝑁3)
| (𝑃𝐴[𝑇 ]) (𝑁4)
| (𝑇𝑟𝑒𝑒[𝑇 ]) (𝑁5)

Type constructor (𝐴|𝐵) defined as 𝑡𝑦𝑝𝑒 |[𝐴,𝐵] = 𝐸𝑖𝑡ℎ𝑒𝑟[𝐴,𝐵] (which has 𝐿𝑒𝑓𝑡 and
𝑅𝑖𝑔ℎ𝑡 constructors) and constructor 𝑇𝑟𝑒𝑒 as 𝑐𝑎𝑠𝑒 𝑐𝑙𝑎𝑠𝑠 𝑇𝑟𝑒𝑒[𝐴](𝑣𝑎𝑙𝑢𝑒 : 𝐴, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 :
𝑃𝐴[𝑇𝑟𝑒𝑒[𝐴]])

For a given parallel array type PA[A] the concrete type of its internal represen-
tation depends on the element type A, specifically on the type structure (how the
type is constructed). Representation types are built automatically by the library
for each PA element type. This type-indexed behavior of PA types allows us to
define generic representation rules ones and for all PA element types (see Fig. 15).
We elaborate on this in the later sections. What is important here is that we can
abstract this representations away leaving the details to the library.

3.5 Polytypic nature of parallel operations

The same way as a representation of a parallel array is automatically constructed
based on its element type (see Fig. 15), the operations over this representation
are automatically composed on the basis of the structure of the element type.
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Figure 5 Polytypic operation map

// PA[Unit]

def map[R:Elem](f: Unit ⇒ R): PA[R] = {

element[R].tabulate(len)(i ⇒ f())

}

// PA[A]

def map[R:Elem](f: A ⇒ R) = {

element[R].tabulate(arr.length)(i ⇒ f(arr(i)))

}

// PA[(A,B)]

def map[R:Elem](f: ((A,B)) ⇒ R): PA[R] = {

val len = length

element[R].tabulate(len)(i ⇒ f(a(i),b(i)))

}

// PA[(A|B)]

def map[R:Elem](f: (A|B) ⇒ R): PA[R] = {

val len = length

element[R].tabulate(len)(i ⇒ f(index(i)))

}

// PA[PA[A]]

def map[R:Elem](f: PA[A] ⇒ R): PA[R] = {

val len = length

element[R].tabulate(len)(i ⇒
{val (p,l) = segments(i); f(arr.slice(p,l))})

}

// PA[Tree[A]]

def map[R:Elem](f: Tree[A] ⇒ R): PA[R] = {

val len = length

element[R].tabulate(len)(i ⇒ {val t = this(i); f(t)})

}

This is achieved by implementing each abstract operation declared in base trait
PArray[A] in all representation classes shown in Fig. 14.

Consider the function map declared in the trait PArray[A] (see Fig. 2). The
implementation of this function for each representation class from Fig. 14 is shown
in Fig. 5. We have to provide such implementation for each type constructor in
the rules (see Fig. 4) of building an element type.

4 Scalan by examples

In this section we describe the Scalan library from the point of view of the pro-
grammer, illustrating our description with a series of examples.
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Figure 6 Dot-product of two vectors

import scalan.dsl._

trait DslSamples extends Scalan {

type Vector = PA[Float]

// using for-comprehensions

def dotProduct(v1: Vector, v2: Vector): Float =

sum(for ((f1,f2) <- v1 zip v2) yield f1 * f2)

// more idiomatic Scala

def dotProduct2(v1: Vector, v2: Vector): Float =

(v1, v2).zippedPA.map{ _ * _ }.sum

}

trait StdSamples {

type Vector = Array[Float]

def dotProduct(v1: Vector, v2: Vector): Float =

(for ((f1,f2) <- v1 zip v2) yield f1 * f2).sum

def dotProduct2(v1: Vector, v2: Vector): Float =

(v1, v2).zipped.map{ _ * _ }.sum

}

4.1 Parallel dot-product

Consider the scalar multiplication of two vectors shown in Fig. 6. We show two
versions, a parallel and a sequential one in comparisson, to emphasize the simi-
larity of parallel and sequential code. In the parallel version we define the Vector

type as a parallel array. Thus we employed the type directed approach to ex-
pressing parallelism. The parallel version of dotProduct2, being literally identical
to the sequential version, has an internal representation and implementation that
are completely different from the sequential ones.

4.2 Sparse matrix-vector multiplication

Next, consider the definition of sparseVectorMul in Fig. 7. We represent a sparse
vector as a parallel array of pairs where the integer value represents the index of
an element in the vector and the float value represents the value of the element
(compressed row format). Having this representation, we can define the dot-
product of sparse and dense vectors as a function over parallel arrays and thus
expressing our intent for parallel evaluation.

Moreover, we can use the parallel function sparseVectorMul to define another
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Figure 7 Sparse matrix-vector multiplication

import scalan.dsl._

trait DslSamples extends Scalan {

type VectorElem = (Int,Float) // element index and value

type SparseVector = PA[VectorElem] // store only non-zero elements

type Vector = PA[Float]

type Matrix = PA[SparseVector] // array of rows

def sparseVectorMul(sv: SparseVector, v: Vector) =

sum(for ((i,value) <- sv) yield v(i) * value)

def matrixVectorMul(matr: Matrix, vec: Vector) =

for (row <- matr) yield sparseVectorMul(row, vec)

}

Figure 8 QuickSort

import scalan.dsl._

trait DslSamples extends Scalan {

def qsort(xs: PA[Int]): PA[Int] = {

val len = xs.length

if (len <= 1) xs

else {

val m = xs(len / 2)

val smaller = for (x <- xs if x < m) yield x // for-comprehesions

val greater = xs filter(x ⇒ x > m) // or methods directly

val equal = xs filter(_ == m) // or even shorter

val sg = fromArray(Array(smaller, greater))

val sorted = for (sub <- sg) yield qsort(sub)

sorted(0) ++ equal ++ sorted(1)

}

}

}

parallel function matrixVectorMul shown in Fig. 7 realizing the principle of com-
posability inherent to nested data parallelism. We will see in later sections that
the underling representation of the Matrix type enables both outer and inner
parallelism to be used through the flattening techniques [1].

4.3 Quicksort

We can also use a parallel function inside its own definition i.e. recursively.
Fig. 8 shows how the quick-sort recursive algorithm can be implemented in Scalan.
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Figure 9 Points of mass and Barnes-Hut tree

Again we exploit the inner (sorting of subarrays) and the outer parallelism (re-
cursive calls) by using parallel datatypes alone without introducing any parallel
constructions in the language.

4.4 Working with hierarchical data

Consider a popular example of building Barnes-Hut tree that appears in many
publications on nested parallelism and that we show here as well. Given a set of
points on a plane, we have to build the centroid tree shown in Fig. 9. To represent
this tree, we use the Tree[A] element type constructor from Fig. 4. Following [17]
we provide a limited support for user-defined recursive types as parallel array
element type. The type constructor Tree[A] has the following definition in the
library.

case class Tree[A](

value : A, // for each node

children: PA[Tree[A]])

Using Tree[A], we can define recursive parallel functions over recursive irreg-
ular data structures. We show in Fig. 10 how to encode Barnes-Hut tree building
algoritm in Scalan, the example taken from [17]. The functions splitArea, inArea,
calcCentroid have obvious implementations and we omit them for brevity. It is
important to realize that while we are talking about irregular data structures they
in fact have very regular and flattened representations that are given in Fig. 17
and will be discussed in Section 5.

4.5 Abstract syntax trees

Elaborating on the usage of the Tree[A] type constructor, we can represent even
more irregular data structures exploiting the posibilities that come from the usage
of the type constructor (A|B) (see Fig. 4). So far, we considered only parallel
arrays with elements of the same type even in the case of the buildTree sample.
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Figure 10 Barnes-Hut tree building function

import scalan.dsl._

trait DslSamples extends Scalan {

type Point = (Float, Float) // x and y coordinates

type Vector = (Float, Float) // 2d vector

type Force = Vector

type Centroid = (Float, Point) // mass and position

type Particle = (Centroid, Vector) // position and velocity

type Area = (Point, Point) // by lower left and upper right

type CentroidTree = Tree[Centroid] // tree of centroids

def buildTree(area: Area, particles: PA[Particle]): CentroidTree = {

if (particles.length == 1) {

val ((m, loc), vel) = particles(0)

Tree((m, loc), emptyArrayOf[CentroidTree])

}

else {

val subtrees = for (

a <- splitArea(area);

val ps = for (p <- particles if inArea(a, p)) yield p

if ps.length > 0

)

yield (buildTree(a, ps))

val (m,l) = calcCentroid(subtrees)

Tree((m, l), subtrees)

}

}

}

Figure 11 Abstract syntax tree as PA element

type Expr = Tree[ExprNode]

type ExprNode =

( String | // Variables x, y, ... or env x → expr

( Int | // Int constant 1, 2, 3, ...

( String | // constructor C(args)

( String | // lambda abstraction 𝜆x → Expr

( Unit | // application (e1 e2)

String ))))) // env item x → expr

type Env = PA[Expr]
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A more sophisticated example is given in Fig. 11, where we define Expr type
to represent an abstract syntaxt tree (AST) for terms of the lambda calculus.
Being able to encode a type of expressions using the constructors from Fig. 4, we
automatically get a flattened and regular non-parametric representation (see next
section 5) for the abstract syntax tree which we use here as an example of a very
irregular data structure.

We might be interested in such a representation of expressions for a number
of reasons.

1. To parallelize the execution of an operation (such as evaluation) over an
instance of AST (inner parallelism).

2. To enable a parallel operation to be performed over a large collection of
expressions (outer parallelism).

Consider the case when we have hundreds or thousands of expressions that we
have to evaluate or transform. An example of such a transformation is multi-result
supercompilaton [18] that can produce a lot of intermediate expressions that have
to be analysed on the subsequent steps. Another example is genetic program-
ming [26], where a population of thousands of computer programs(represented
by ASTs) is evolved and on each step we need to estimate each program, often
by evaluating it and comparing the results. It is the flattened representation of
arrays that promise to enable a massive data parallelism in this cases.

Again we see the case of nested parallelism where we can combine the outer
parallelism (over a collection of expressions) and the inner parallelism (operating
over an expression) in a single flat parallel operation thus increasing the degree
of parallelism.

Note that we cannot use recursive type definitions (direct of indirect) as they
are not allowed for type synonims in Scala. Instead we use special encodings
that we can abstract over by using constructors and extractors (see Fig. 12). We
show an implementation for Var, Lit and Con and omit for others as they can be
implemented in a similar manner (see an example in the source code [28]). The
absence of recursive definitions can be considered a limitation of our approach
but fortunately we can extend it to overcome such difficulties. We are going to
elaborate on this in Section 7.

Now with the type Expr, constructors and extractors in hand, we can use flat-
tened representation of lambda terms to implement a simple interpreter function
eval with call-by-value semantic which enables us to automatically employ the
inner (of expression) and the outer (of collection) parallelism (see Fig. 13).

5 Array representations

For each element-type A defined by means of constructors from Fig. 4 we want
to specify how an instance of PA[A] is represented. That is we want to define
a concrete representation type of parallel array depending on the element type
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Figure 12 Constructors and extractors of AST

object Var {

def apply(name: String): Expr = Tree(Left(name))

def unapply(e: Expr) =

e.value fold(v ⇒
if (v != closureVarName) Some(v) else None, _ ⇒ None)

}

object Lit {

def apply(n: Int): Expr = Tree(Right(Left(n)))

def unapply(e: Expr) =

e.value fold(_ ⇒ None, _.fold(n ⇒ Some(n), _ ⇒ None))

}

object Clo {

def apply(e: Expr, env: Env): Expr =

Tree(Left(closureVarName), singleton(e) ++ env)

def unapply(e: Expr) = e.value fold(v ⇒
if (v == closureVarName) {

val expr = e.children(0)

val env = e.children.slice(1, e.children.length-1)

Some((expr, env))

}

else None, _ ⇒ None)

}

object Con {

def apply(name: String, args: PA[Expr]): Expr =

Tree(Right(Right(Left(name))), args)

def unapply(e: Expr) = e.value fold(_ ⇒ None,

_.fold(_ ⇒ None,

_.fold(c ⇒ Some((c, e.children)), _ ⇒ None)))

}

object Lam {

def apply(v: String, body: Expr): Expr =

Tree(Right(Right(Right(Left(v)))), singleton(body))

def unapply(e: Expr) = e.value fold(_ ⇒ None,

_.fold(_ ⇒ None,

_.fold(_ ⇒ None,

_.fold(l ⇒ Some((l, e.children(0))), _ ⇒ None))))

}

object App {

... // see companion source code [28]

}

object EnvItem {

...

}
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Figure 13 The Interpreter function

def eval(expr: Expr, env: Env): Expr = expr match {

case l@Lit(n) ⇒ l

case v@Var(x) ⇒ if (isPrim(x)) v else env(x)

case Con(name, args) ⇒ Con(name, args map { eval(_, env) })

case App(f, g) ⇒ {

val vs = fromArray(Array(f, g)) map { eval(_, env) }

val (f1,g1) = (vs(0), vs(1))

f1 match {

case Clo(Lam(x, e1), env1) ⇒
val env2 = singleton(EnvItem(x, g1)) ++ env1

eval(e1, env2)

case Var("plus") ⇒ g1 match {

case Con(name, args) if name == "P" && args.length == 2 ⇒
(args(0), args(1)) match {

case (Lit(a1),Lit(a2)) ⇒ Lit(a1 + a2)

}

case _ ⇒ error("constructor P expected: operation plus")

}

case _ ⇒ error("primitive function expected " + f)

}

}

case Lam(_,_) ⇒ Clo(expr, env)

}

val x = Var("x")

val f = Lam("x", App(Var("plus"), Con("P", x, 1)))

val app = App(f, 100)

scala> eval(app, emptyArrayOf[Expr])

res0: Samples.Expr = Tree(Right(Left(101)),SeqTreeArray(None))

val apps = replicate(3, app)

val emptyEnv = emptyArrayOf[Expr]

apps map { eval(_, emptyEnv) }

scala> res4: Samples.PA[Samples.Expr] =

SeqTreeArray(Some(

SeqPairArray(

SeqSumArray((true,true,true), (),

SeqSumArray((false,false,false),(101,101,101),

SeqSumArray((),(),

SeqSumArray((),(),SeqSumArray((),SeqUnitArray(0),())))

)),

SeqNestedArray(SeqTreeArray(None),SeqPairArray((0,0,0),(0,0,0)))

)))
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Figure 14 Abstract representation classes

type Item[A] = (A, PA[Tree[A]])

abstract class UnitArray(val len: Int) extends PArray[Unit]

abstract class StdArray[A](val arr: Array[A]) extends PArray[A]

abstract class PairArray[A,B](val a: PA[A], val b: PA[B])

extends PArray[(A,B)]

abstract class SumArray[A,B](val flags: PA[Boolean], val a:PA[A], val b:PA[B])
extends PArray[(A|B)]

abstract class NestedArray[A](val arr: PA[A], val segments: PA[(Int,Int)])

extends PArray[PA[A]] {

abstract class TreeArray[A](items: Option[PA[Item[A]]])

extends PArray[Tree[A]]

Figure 15 Representation rules

𝑅𝑒𝑝[[𝑃𝐴[𝑈𝑛𝑖𝑡]]] ⇒ 𝑈𝑛𝑖𝑡𝐴𝑟𝑟𝑎𝑦 (𝑅0)
𝑅𝑒𝑝[[𝑃𝐴[𝑇 ]]] ⇒ 𝐴𝑟𝑟𝑎𝑦[𝑇 ] if 𝑇 = 𝐼𝑛𝑡|𝐵𝑜𝑜𝑙𝑒𝑎𝑛|𝐹𝑙𝑜𝑎𝑡|𝐶ℎ𝑎𝑟 (𝑅1)
𝑅𝑒𝑝[[𝑃𝐴[(𝐴,𝐵)]]] ⇒ 𝑃𝑎𝑖𝑟𝐴𝑟𝑟𝑎𝑦(𝑅𝑒𝑝[[𝑃𝐴[𝐴]]], 𝑅𝑒𝑝[[𝑃𝐴[𝐵]]]) (𝑅2)
𝑅𝑒𝑝[[𝑃𝐴[(𝐴|𝐵)]]] ⇒ 𝑆𝑢𝑚𝐴𝑟𝑟𝑎𝑦(𝑅𝑒𝑝[[𝑃𝐴[𝐵𝑜𝑜𝑙𝑒𝑎𝑛]]], 𝑅𝑒𝑝[[𝑃𝐴[𝐴]]], 𝑅𝑒𝑝[[𝑃𝐴[𝐵]]]) (𝑅3)
𝑅𝑒𝑝[[𝑃𝐴[𝑃𝐴[𝐴]]]] ⇒ 𝑁𝑒𝑠𝑡𝑒𝑑𝐴𝑟𝑟𝑎𝑦(𝑅𝑒𝑝[[𝑃𝐴[𝐴]]], 𝑅𝑒𝑝[[𝑃𝐴[(𝐼𝑛𝑡, 𝐼𝑛𝑡)]]]) (𝑅4)
𝑅𝑒𝑝[[𝑃𝐴[𝑇𝑟𝑒𝑒[𝐴]]]] ⇒ 𝑇𝑟𝑒𝑒𝐴𝑟𝑟𝑎𝑦(𝑆𝑜𝑚𝑒(𝑅𝑒𝑝[[𝑃𝐴[𝐼𝑡𝑒𝑚[𝐴]]]])) if not empty (𝑅5)

⇒ 𝑇𝑟𝑒𝑒𝐴𝑟𝑟𝑎𝑦(𝑁𝑜𝑛𝑒) otherwise

i.e. as a type indexed type. We use Scala’s abstract classes shown in Fig. 14
and representation rules from Fig. 15. The function 𝑅𝑒𝑝 is a mapping from the
abstract type PA[A] to a concrete representation type which is built recursively
on the structure of the type A. This is similar to flattened representations [4] or
representation transformation [5], but encoded in Scala.

In the simplest case of PA[Unit] type, we just need to store the length of
array (rule 𝑅0). Rule 𝑅1 says that any parallel array with elements of Scala’s
value classes is represented as an ordinary array of unboxed values (an important
property if we want to achieve a better cache locality of array operations). When
the element type is a pair, then the array of pairs is represented as a pair of arrays
(rule 𝑅2).

This has the following benefits.

1. Some operations like those shown in Fig. 16 have a very efficient implemen-
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Figure 16 Efficient operations by non-parametric representation

def zip[A,B](a: PA[A], b: PA[B]): PA[(A, B)] = PairArray(a, b)

def unzip[A,B](a: PA[(A, B)]): (PA[A], PA[B]) = {

val pa = a.asInstanceOf[PairArray[A, B]]

(pa.a, pa.b)

}

def concat[A](a: PA[PA[A]]): PA[A] = a match {

case nested: NestedArray[A] ⇒ nested.arr

}

def unconcat[A,B](a: PA[PA[A]])(b:PA[B])

(implicit ea: Elem[B], epa: Elem[PA[B]]): PA[PA[B]] =

a match {

case nested: NestedArray[A] ⇒ SeqNestedArray(b, nested.segments)

}

tation which facilitates domain specific code optimizations.

2. It enables values to be stored unboxed in contrast to the 𝐴𝑟𝑟𝑎𝑦[(𝐴,𝐵)] type,
where the array contains references to Tuple objects.

To represent the type PA[(A|B)], we use a triple of arrays (rule 𝑅3), where the
flags array is used to distinguish between Left and Right case of the Either type.
The invariant of this representation is that length(flags) = length(a) + length(b).

Even more interesting is the rule 𝑅4 where all the flattening happens. We use
representation for PA[PA[A]] proposed in [2] and keep all elements of the nested
parallel array in a single flat parallel array of values coupled with a parallel array
of segment descriptors (which by rules 𝑅2 and 𝑅1 is represented as a pair of
ordinary arrays).

The last rule 𝑅5 defines the representation of a parallel array when its element
type is a recursive data type. This representation is similar to one described in
[17]. To make it more clear, we take the example tree from [17] (see Fig. 9) and
show its encoding using our representation (see Fig. 17). Note that each level of
the tree is represented as a flat parallel array containing all the elements from
that level along with the segment descriptors that can be used to access those
elements.

6 Scala encodings

Given the representation rules from Fig. 15, we want to implement these rules
in the library. More specifically, our goal is to show how array representation
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Figure 17 Barnes-Hut tree representation

val m = 1.0f

val vel = (0f, 0f)

val ps = fromArray(Array(

((m,(12f,12f)), vel),

((m,(6f,10f)), vel),

((m,(6f,14f)), vel),

((m,(10f,6f)), vel),

((m,(14f,2f)), vel),

((m,(7f,7f)), vel),

((m,(5f,7f)), vel),

((m,(3f,3f)), vel),

((m,(3f,1f)), vel)

))

val area = ((0f,0f),(16f,16f))

val tree = buildTree(area, ps)

scala> tree: Samples.CentroidTree =

Tree((9.0,(8.625,8.125)),

TreeArray(Some(

PairArray(

PairArray((4.0, 2.0, 1.0, 2.0),

PairArray((4.5, 12.0, 12.0, 6.0),

(4.5, 4.0, 12.0, 12.0))),

NestedArray(

TreeArray(Some(

PairArray(

PairArray((2.0, 2.0, 1.0, 1.0, 1.0, 1.0 ),

PairArray((3.0, 6.0, 14.0, 10.0, 6.0, 6.0 ),

(2.0, 7.0, 2.0, 6.0, 10.0, 14.0))),

NestedArray(

TreeArray(Some(

PairArray(

PairArray((1.0, 1.0, 1.0, 1.0),

PairArray((3.0, 3.0, 7.0, 5.0),

(1.0, 3.0, 7.0, 7.0))),

NestedArray(

TreeArray(None),

PairArray((0, 0, 0, 0), (0, 0, 0, 0))

) ))),

PairArray((0, 2, 4, 4, 4, 4), (2, 2, 0, 0, 0, 0)))

))),

PairArray((0, 2, 4, 4), (2, 2, 0, 2) ))

))))
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Figure 18 Typeclass of parallel array element

trait Element[A] {

def replicate(count: Int, v: A): PA[A]

def replicateSeg(count: Int, v: PA[A]): PA[A]

def tabulate(len: Int)(f:Int ⇒ A): PA[A]

def tabulateSeg(len: Int)(f:Int ⇒ PA[A]): PA[A]

def empty: PA[A]

def singleton(v: A) = replicate(1,v)

def fromArray(arr: Array[A]) = tabulate(arr.length)(i ⇒ arr(i))

}

type Elem[A] = Element[A]

rules can be expressed in Scala, so that every instance of PA[A] is represented as
𝑅𝑒𝑝[[𝑃𝐴[𝐴]]].

Scala [24, 23] “is a general purpose programming language designed to ex-
press common programming patterns in a concise, elegant, and type-safe way. It
smoothly integrates features of object-oriented and functional languages, enabling
Java and other programmers to be more productive.“

As a statically typed language Scala has a very powerfull and expressive type
system which, combined with a flexible syntax, can be used to employ many high
level techniques and patterns such as type classes [7], datatype-generic program-
ming [25], type level programming [21] etc. We refer the interested reader to these
papers for details and assume familiarity with these techniques.

6.1 Typeclass Element[A]

If we want a type A to be an element-type of a parallel array (i.e. we need the
PA[A] type), an instance of the typeclass Element[A] should be defined for the type
A. To encode typeclasses in Scala we follow the CONCEPT pattern [7]. Fig. 18
shows the concept-interface(typeclass) Element and the convenience type-synonim
𝐸𝑙𝑒𝑚[𝑇 ].

For each type A to be able to declare type PA[A], we require an implicit decla-
ration (value, conversion or parameter) of the type Elem[A] to be available in the
scope as an evidence that a typeclass instance exists for the typeclass Elem[A]. In
other words, if Scala’s implicit resolution for the type Elem[A] cannot succeed in
the scope then the typeclass instance Elem[A] is not defined for the type A in the
scope.

For each Scala’s value type A there is an implicit definition of the type 𝐸𝑙𝑒𝑚[𝐴]
which is declared in the library and those declarations are made available by
inheriting from Scalan trait.

For example:
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trait BarnesHut extends Scalan {

type Vector = PA[Float] // requires implicit Elem[Float]

// use PA methods over Vector datatype

...

}

These library definitions specify the base cases for inductive representation
rules from Fig. 15. They are declared in the library like this:

implicit val unitElement: Elem[Unit] = new UnitElement

implicit val intElement: Elem[Int] = new StdElement[Int]

implicit val doubleElement: Elem[Double] = new StdElement[Double]

...

The simpliest form of a parallel array is PA[Unit] which requires an instance
of Elem[Unit] typeclass which is represented by UnitElement shown above.

Next, for each value type T of Scala we use StdElement[T] class that repre-
sents(implements) an instance of the typeclass Elem[T]. In its implementation we
use the standard Array as the storage for array elements. For value types of Scala
the standard arrays have unboxed representation (since they are Java arrays). We
use them in our non-parametric representations of parallel arrays. As a remark:
note that unboxed arrays proved to have very attractive performance characteris-
tics due to cache locality, for which reason these unboxed representations can be
regarded as one of the enabling factors of efficient parallelization.

Having defined instances of Elem[A] and Elem[B] typeclasses, we can define an
instance for Elem[(A,B)] and Elem[(A|B)] like this:

implicit def pairElement[A,B](implicit ea: Elem[A], eb: Elem[B]): Elem[(A,B)] =

new Element[(A,B)] {

// implementation of methods of Element trait

...

}

implicit def sumElement[A, B](implicit ea: Elem[A], eb: Elem[B]): Elem[(A|B)] =

new Element[(A|B)]

{

// implementation of methods of Element trait

...

}

And similarly, given an instance of Elem[A], we can define Elem[PA[A]] using
the definition:

implicit def arrayElement[A](implicit ea: Elem[A]): Elem[PA[A]] =

new Element[PA[A]] {

// implementation of methods of Element trait

...

}
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And last, but not the least, following this pattern we define the element type
for the Tree[A] type:

implicit def treeElement[A](implicit ea: Elem[A]): Elem[Tree[A]] =

new Element[Tree[A]] {

// implementation of methods of Element trait

...

}

All these implicit definitions are made available by inheriting from the Scalan

trait. Even though their implementation is not specified in the Scalan trait and
these implicit definitions remain abstract they are available for implicit resolution
in Scalan code. Mixing Scalan code with concrete implementation, as shown in
Fig. 1, among other things provides concrete implementation (instances) for all
declared Element typeclasses.

6.2 Sequential reference implementation

In this paper we describe a reference implementation of our parallel array library.
Despite the use of the word ‘parallel’ the implementation we describe here is in
fact sequential.

This deliberate simplification allows us to concentrate on using Scala encodings
to implement non-parametric representations of arrays. We call them ‘parallel’ ar-
rays just by tradition. There is nothing inherently parallel in these representations
by itself. As shown in [5], these representations facilitate flattening transformation
which in turn leads to efficient implementation of nested parallelism.

In Fig. 19 we show the components of the Scalan library. We refer interested
reader to the source code [28] for details.

7 Conclusion

It is well known that non-parametric representation of parallel arrays alone is
able to reduce the running time by 50% [5] due to unboxing and cache locality.
Combined with flattening transformation, array fusion and other optimization
techniques along with parallel runtime, this approach can be a very promising pro-
gramming model not only covering a wide range of applications but also providing
a near to optimal performance (comparable to highly optimized hand-written C
code).

In this paper we showed how to express nested parallelism in the Scala lan-
guage using Scalan library primitives. We also showed that the Scala language is
expressive enough to encode non-parametric type-indexed representations of par-
allel arrays – specially designed data structures that fasilitate the implementation
of nested parallelism.

We also showed in Section 4 how to apply this programming model to a nontra-
ditional application giving an implementation of a simple interpreter for lambda
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Figure 19 Structure of Scalan definitions
package scalan.dsl

trait ArraysBase {

trait Element[A] { /* see Fig. 18 */ }

trait PArray[T] { /* see Fig. 2 */ }

// definitions of abstract classes:

// UnitArray, PairArray, SumArray, NestedArray (see Fig. 14)

}

trait Arrays extends ArraysBase { /* see Fig. 3 */ }

package scalan.sequential

trait SeqImplementation extends ArraysBase {

// definitions of Element instances:

// stdElement, unitElement, pairElement, sumElement, arrayElement

// (see Section 6)

trait SeqPArray[T] extends PArray[T] { /* common implementations */ }

case class SeqUnitArray(override val len: Int)

extends UnitArray(len) with SeqPArray[Unit] {

// implementation of PA[Unit] (see Fig. 15 rule R0)

}

case class SeqStdArray[T](arr: Array[T])(implicit t: Elem[T], z:Zero[T])

extends StdArray[T](arr) with SeqPArray[T] {

// implementation of PA[T] (see Fig. 15 rule R1)

}

case class SeqPairArray[A, B](

override val a: PArray[A], override val b: PArray[B])

(implicit e:Elem[(A,B)])

extends PairArray[A,B](a,b) with SeqPArray[(A,B)] {

// implementation of PA[(A,B)] (see Fig. 15 rule R2)

}

case class SeqSumArray[A, B](

override val flags: PArray[Boolean],

override val a: PArray[A],

override val b: PArray[B])

(implicit ea: Elem[A], eb: Elem[B], e: Elem[(A|B)])

extends SumArray[A, B](flags, a, b) with SeqPArray[(A|B)] {

// implementation of PA[(A|B)] (see Fig. 15 rule R3)

}

case class SeqNestedArray[A](

override val arr: PA[A], override val segments: PA[(Int,Int)])

(implicit ea: Elem[A], epa: Elem[PA[A]])

extends NestedArray[A](arr,segments) with SeqPArray[PA[A]] {

// implementation of PA[PA[A]] (see Fig. 15 rule R4)

}

}
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calculus. Moreover, we believe that it is possible to apply this approach (in gen-
eral and our library in particular) to a whole range of so-called language-oriented
applications.

This is a work-in-progress report and a lot more has to be done to make it
applicable to real-world cases.

7.1 Limitations and further development

Our approach has some limitations, so that lifting them can be regarded as a goal
of future investigation and development.

1. First and the most important limitation is that our implementation is se-
quential (see more explanations in the subsection below).

2. The approach doesn’t directly support (mutually) recursive datatypes as PA
elements and the only way to encode parallel arrays of recursive datatypes
is to use the Tree[A] type constructor. We show in Section 4 how it can be
done using Expr datatype in combination with Scala extractors.

3. It may be possible to include exponential datatypes to define instances
Elem[A⇒ B] of array elements, and this extension seems to be straightfor-
ward and can employ techniques described in [20]

4. Each declaration of PA[T] requires the type T to be constructed as an element
type (see Fig. 4). This can be considered a limitation when integrating
parallel functions with the rest of the program. For each user defined class
(or case class) U a mapping to some element type T should be defined to
convert instances of Array[U] to Array[T] and then to PA[T]. A systematic
approach described in [25] can be used to alleviate this.

7.2 Notes on parallel implementation

Our sequential implementation can be regarded as just a test for our approach.
But it can also be used to simulate parallel evaluation for debuging purposes.
This simulaion can equally be used both to validate the correctness of particular
application and to validate a particular parallel implementation of the library
itself.

Considering possible parallel implementations, we see a range of alternatives
that can be regarded as directions for future investigation and development.

1. The most natural and logical choice is to use Scala’s parallel collections
framework [27] as a basis for representing parallel arrays and operations
from Fig. 2.

2. We can exploit the transformational nature of the nested parallel approach
and generate parallel code for particular back-end language (including Scala
in this role).
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3. Another option is to regard Scalan as a high-level embedded DSL and auto-
matically generate parallel code for some target heterogeneous architecture
like Open CL, CUDA, FPGA, etc [19].
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