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Магнитная система ориентации спутника, оснащенного тангажным 
маховиком. М.Ю. Овчинников, Д.С. Ролдугин. ИПМ им. М.В.Келдыша РАН, 
Москва, 2011г., 28 с., библиография: 13 наименований, 10 рисунков, 1 таблица 

Рассматривается спутник, оснащенный магнитной системой ориентации и 
тангажным маховиком. Исследуется быстродействие системы в переходном 
режиме в зависимости от наклонения орбиты спутника. Проводится сравнение 
с системой, включающей только магнитные катушки. В установившемся 
режиме гравитационной ориентации рассматриваются малые движения в 
окрестности положения равновесия. Исследуется точность ориентации и 
быстродействие алгоритма демпфирования. Исследуется алгоритм 
произвольной, но заданной ориентации спутника в плоскости орбиты. 
Проводится численное моделирование. 

 
Ключевые слова: магнитная система ориентации, тангажный маховик, 

осредненная модель магнитного поля Земли, быстродействие системы 
ориентации 

 
Active magnetic attitude control system of a satellite equipped with a 

flywheel. M.Yu. Ovchinnikov, D.S. Roldugin. Keldysh Institute of Applied 
Mathematics of Russian Academy of Sciences, 2011, 28 p., 13 items of bibliography, 
10 figures, 1 table 

Attitude motion of a satellite equipped with a single flywheel and active 
magnetic attitude control system is considered. Time-response of the system in a 
transient mode with respect to the orbit inclination is studied. Comparison with the 
system consisting of magnetic coils only is conducted. Small steady-state motion near 
the gravitational orientation is considered. Accuracy and time-response is studied. An 
algorithm of arbitrary but given orientation in the orbital plane is proposed and 
studied. Numerical analysis is carried out. 

 
Key words: active magnetic control, flywheel, averaged geomagnetic field 

model, time-response 
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Introduction 

Active magnetic attitude control systems (MACS) are widely used for satellite 
orientation and stabilization. MACS are especially attractive for small satellites. 
There is no consumption of any limited resources, the system has low mass, 
dimensions, cost and energy requirements. Other common actuators like reaction 
wheels or propulsion system cannot match these requirements. MACS however have 
less accuracy. Another fundamental problem of MACS is impossibility to provide 
arbitrary control torque. The torque lies in a plane perpendicular to the vector of 
geomagnetic induction. So MACS are often used for the initial angular velocity 
damping or with other actuators. 

Spin stabilization was one of the first methods used in satellite orientation since 
the beginning of the space era. A satellite spinned fast about its axis of symmetry 
acquires the properties of a gyroscope and maintains its axis attitude in the inertial 
space for a considerable amount of time. MACS are often used on spin-stabilized 
satellites. A satellite equipped with a flywheel is considered in this paper. Such a 
wheel can have big angular velocity and angular momentum which are considered 
constant during the functioning. This allows for the same principle to be used without 
spinning the whole satellite. In this case the axis of a flywheel maintains its attitude 
in the inertial space. If the satellite is subjected to the gravity-gradient torque the 
attitude when the axis of a flywheel is perpendicular to the orbital plane is stable. 
Stability problem of a satellite equipped with a flywheel is studied, for example, in 
[1] and [2]. If the whole system is dissipative the satellite tends to orientate so the 
axis of a flywheel is perpendicular to the orbital plane. Passive damping devices may 
be used [3]. But the problem of satellite attitude in the orbital plane arises. Gravity-
gradient torque may be used again. Principal axes of inertia of a satellite coincide 
with the radius-vector of a satellite and normal to it in the orbital plane. However, 
gravity-gradient torque may be of the same or even smaller order as disturbing 
torques if principal moments of inertia are commensurable. Besides, arbitrary 
orientation of some axis in the orbital plane may be required. For example, if one 
conducts an orbital maneuvering, it is necessary to have particular orientation of the 
axis of thruster for the optimal delta vee. To provide arbitrary orientation in the 
orbital plane, initial angular velocity damping and flywheel axis attitude MACS can 
be used. 

Attitude control system with magnetorquers and a flywheel is thoroughly 
covered in the literature. The main focus in most papers is placed on the numerical 
analysis and flight results. Small satellite GURWIN [4] launched in 1998 reached the 
accuracy of 2˚. In the paper [5] MACS algorithm and flight results of REIMEI small 
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satellite, launched in 2004, are presented. Using MACS and a flywheel this satellite 
was stabilized with accuracy of 0.2˚. In [6] equations of motion are analytically 
solved using asymptotical methods. This work, however, only deals with the small 
oscillations in the vicinity of the gravitational orientation. It is shown that the time-
response of chosen algorithm increases when the orbit inclination rises1. 

In present paper transient motion is studied along with the steady-state motion. 
In the transient mode MACS provide damping of initial angular velocity. Flywheel is 
considered spinning already. Note that initial angular velocity may be the result of a 
flywheel spinup as well as the result of the separation from the launch vehicle. A 
well-known “-Bdot” algorithm is used for the damping. The time-responses of 
systems with and without a flywheel are compared. In the steady-state motion the 
accuracy of the gravitational orientation is studied. An algorithm of arbitrary 
orientation in the orbital plane is proposed and studied. 

1. Problem statement 

Let’s describe the geomagnetic field model, reference frames and equations of 
motion used in this work. 

1.1. Reference frames 

Here the frames used in this paper are presented. 
OaZ1Z2Z3 is the inertial reference frame, Оa is the Earth center, OaZ3 axis is 

normal to the orbital plane, OaZ1 lies in the equatorial plane and is directed to the 

ascending node, OaZ2 is directed such that the reference frame is right-handed. 

OL1L2L3 is the frame associated with the angular momentum of the satellite. О is 

the satellite’s center of mass, OL3 axis is directed along the angular momentum, OL2 

axis is perpendicular to OL3 and lies in the plane parallel to the OaZ1Z2 plane and 

containing O, OL1 is directed such that the reference frame is right-handed. 

OX1X2X3 is the orbital reference frame, OX1 lies in the orbital plane, is 
perpendicular to the radius vector and directed as the orbital velocity does, OX3 axis 
is directed along the radius-vector of a satellite, OX2 is directed such that the 
reference frame is right-handed. 

Ox1x2x3 is the bound frame, its axes are directed along the principal axes of 
inertia of the satellite. 

                                           
 
1 By inclination rise we mean the change in inclination from zero to 90. 
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Reference frames mutual orientation is described using direct cosine matrices 
, ,Q A D  expressed in tables 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

L L L

Z q q q

Z q q q

Z q q q

  

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

x x x

L a a a

L a a a

L a a a

  

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

x x x

X d d d

X d d d

X d d d

. 

We introduce indices , , ,Z L X x  to denote any vector components in frames 

OaZ1Z2Z3, OL1L2L3, OX1X2X3 and Ox1x2x3 respectively. For example, for the first 
component of a torque in these frames we write 1 1 1 1, , ,Z L X xM M M M . 

1.2. Equations of motion 

We will use Beletsky-Chernousko variables and Euler angles to describe 
satellite dynamics. Beletsky-Chernousko variables is a set , , , , ,L       [7], where 

L  is the angular momentum magnitude, angles ,   introduce its orientation with 

respect to the OaZ1Z2Z3 frame (Fig.1). Orientation of the Ox1x2x3 frame with respect 
to the OL1L2L3 is described using Euler angles , ,   . Direct cosine matrix Q  takes 

form 

cos cos sin sin cos

cos sin cos sin sin

sin 0 cos

    
    

 

 
   
  

Q .      (0.1) 

Direct cosine matrix A takes form 

cos cos cos sin sin sin cos cos cos sin sin sin

cos sin cos sin cos sin sin cos cos cos sin cos

sin sin sin cos cos

           
           

    

   
      
 
 

A . (0.2) 

 
Fig. 1. Angular momentum orientation in the inertial space 
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Let ( , , )x diag A B CJ  be the tensor of inertia of the satellite. Its center of mass 

moves on the circular keplerian orbit.  The motion of a satellite not equipped with a 
flywheel is described with equations [7] 

3L

dL
M

dt
 , 1

1
L

d
M

dt L


 , 2

1

sin L

d
M

dt L




 , 

 

 

2 1

2 2

1 2

1 1 1
sin sin cos cos sin ,

1 sin cos 1
cos cos sin ,

sin

L L

L L

d
L M M

dt A B L

d
L M M

dt C A B L

     

    


     
 

 
     

 

  (0.3) 

 
2 2

1 2

sin cos 1 1
cos ctg ctg sin ctgL L

d
L M M

dt A B L L

       
 

     
 

 

where 1 2 3, ,L L LM M M  are torque components in the OL1L2L3 frame. 

If a satellite is equipped with a flywheel (let it be directed along the Ox2 axis), 
equations (0.3) are slightly different. We now find the analog of (0.3) for a satellite 
with a flywheel. Three first equations in (0.3) don’t change. But the angular 
momentum is now the sum of the angular momentum of a satellite and of a flywheel. 
Consider equations for , ,   . Satellite angular velocity components may be 

expressed as 

31
1

La

A
  , 32

2

La h

B
 

 , 33
3

La

C
         (0.4) 

where h  is the angular momentum magnitude of a flywheel directed along the Ox2 
axis. These components may be expressed [7] as 

 1 31 21 11 21 31 23cos
d d d d

a a a q a q
dt dt dt dt

         , 

 2 32 22 12 21 32 23sin
d d d d

a a a q a q
dt dt dt dt

          ,    (0.5) 

 3 33 23 13 21 33 23

d d d d
a a a q a q

dt dt dt dt

         . 

These equalities can be easily derived from kinematics. We now multiply the first 
equation in (0.5) by cos , the second by sin  and adding taking into account (0.4)

. All transformations in the right sides of (0.5) are omitted since they reproduce those 
in [7]. The result is 

 2 1

1 1 1
sin sin cos cos sin sinL L

d h
L M M

dt A B L B

            
 

. 

We multiply the first equation in (0.5) by sin , second by cos  and adding. This 

leads to 
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 
2 2

1 2

sin cos 1 1 cos
cos ctg ctg sin ctg

sinL L

d h
L M M

dt A B L L B

       


 
      

 
. 

Substituting these two relations to (0.5) we get 

 
2 2

1 2

1 sin cos 1 cos cos
cos cos sin

sin sinL L

d h
L M M

dt C A B L B

      
 

 
      

 
. 

This allows us to write the equations of motion of a satellite equipped with a 
flywheel directed along the Ox2 axis 

3L

dL
M

dt
 , 1

1
L

d
M

dt L


 , 2

1

sin L

d
M

dt L




 , 

 2 1

1 1 1
sin sin cos cos sin sinL L

d h
L M M

dt A B L B

            
 

, (0.6) 

 
2 2

1 2

1 sin cos 1 cos cos
cos cos sin

sin sinL L

d h
L M M

dt C A B L B

      
 

 
      

 
, 

 
2 2

1 2

sin cos 1 1 cos
cos ctg ctg sin ctg

sinL L

d h
L M M

dt A B L L B

       


 
      

 
 

where the angular momentum is the sum of those of a satellite and of a flywheel. 
Beletsky-Chernousko variables are convenient for the analysis of transient 

motion. The angular velocity magnitude is described with the magnitude of angular 
momentum, which is only one variable. Steady-state motion is better studied using 
Euler angles. In this case variables 1 2 3, , , , ,       are used. Here i  are the 

components of satellite angular velocity in the Ox1x2x3 frame (i=1,2,3), Euler angles 
, ,    describe the orientation of the Ox1x2x3 frame with respect to the OX1X2X3. 

Direct cosine matrix D  takes form 

cos cos sin sin sin cos sin sin cos sin sin cos

sin cos cos cos sin

sin cos cos sin sin sin sin cos cos sin cos cos

           
    

           

   
   
    

D . (0.7) 

Equations of motions of the satellite subjected to the gravity-gradient torque and 
torque produced by the interaction between MACS and geomagnetic field are 

 21
3 2 3 0 32 33 1( ) 3 ,x

d
A h B C d d M

dt

          

 22
1 3 0 31 33 2( ) 3 ,x

d
B A C d d M

dt

        
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  

 

23
1 1 2 0 31 32 3

1 2 0

3 ,

1
sin cos ,

cos

x

d
C h B A d d M

dt
d

dt

   

     


     

  
     (0.8) 

 3 1 2tg sin cos ,
d

dt

          

1 2cos sin
d

dt

       

where 1 2 3, ,x x xM M M  are torque components in the Ox1x2x3 frame, 0  is the orbital 

velocity. 

1.3. Averaged geomagnetic field model 

Let’s describe the geomagnetic field model used in this work. Geomagnetic 
induction vector is often modeled using Gauss decomposition [8]. It is impossible to 
use this model for an analytical study, so a number of simplifications are introduced. 
We describe three most common models. If only three first terms in the 
decomposition are taken into account one has the inclined dipole model. The 
geomagnetic field is one of the dipole inclined at the angle 168°26' to the Earth axis. 
This model allows rather compact analytical expression but still too complicated to 
be used in an analytical investigation. Further simplification, the direct dipole model, 
is widely used. In this case the field is one of the dipole directed along the Earth axis 
and antiparallel to it. Geomagnetic induction vector moves almost uniformly on the 
almost circular cone as a satellite moves along the orbit. This model however doesn’t 
allow to obtain the solution of equations of motion in the explicit form in the cases 
considered in this work. We introduce further simplification, modeling the 
geomagnetic induction vector moving uniformly on the circular cone. To do so, we 
need inertial reference frame OaY1Y2Y3. Here Оa is the Earth center, OaY3 axis is 
directed along the Erath axis, OaY1 axis lies in the equatorial plane and is directed to 
the ascending node, OaY2 is directed so the whole frame is right-handed. If we now 
translate the geomagnetic induction vector to the Oa point, the cone is tangent to the 
OaY3, its axis lies in the plane OaY2Y3 (Fig. 2). Cone half-opening angle satisfies [9] 
the relation 

 2 2

3sin 2
t g

2 1 3sin 1 3sin

i

i i
 

  
       (0.9) 

where i  is the orbit inclination. Geomagnetic induction vector moves uniformly on 
the cone with the doubled orbital velocity, 02u    where 0u t  is argument of 

latitude. Without loss of generality we assume 0 0  . 
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Fig. 2. Averaged geomagnetic field model 

This model, sometimes called averaged, is used in the present work. This model 
doesn’t allow to take into account non-uniformity of the induction vector movement 
(as right dipole model does) and its diurnal change (as inclined dipole model does). It 
however may be considered as a good trade-off between authenticity and simplicity 
of geomagnetic field modeling. Comprehensive comparison of models may be found 
in [8]. 

We need to know the geomagnetic induction vector in the frames OaZ1Z2Z3 and 
OX1X2X3. In the frame OX1X2X3 it has form 

0

sin cos

cos

sin sin
X

i u

B i

i u

 
   
  

B          (0.10) 

where 0B  is its magnitude. To find it in the OaZ1Z2Z3 frame we introduce  auxiliary 

frame OaS1S2S3. It is the frame OaY1Y2Y3 turned by angle   about OaY1 axis. 
Geomagnetic induction vector in this frame is 

0

sin sin 2

sin cos2

cos

u

B u

 
   
  

B . 

Note that the OaZ1Z2Z3 frame is the frame OaY1Y2Y3 turned by angle i  about 
OaY1 axis or the frame OaS1S2S3 turned by angle i . So the magnetic induction 
vector in the OaZ1Z2Z3 frame may be expressed as 

0

1 0 0 sin sin2 sin sin2

0 cos sin sin cos2 sin cos cos2 sin cos

0 sin cos cos sin sin cos2 cos cos
Z

u u

B u u

u

   
   

     
             
             

B  (0.11) 
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where i    . Lets exploit the expression (0.9). Figures 3 and 4 introduce the 
relationships between   and i  and the orbit inclination. 

Fig. 3. Angle   Fig. 4. The difference i  

It is seen that i     doesn’t exceed 10˚. Then (0.11) may be expressed as 

0 0

sin sin 2 0

sin cos2 cos

cos sin cos2
Z

u

B u B

u


   

         
        

B .     (0.12) 

Note that the second term may be neglected if the orbit is not close to the 
equatorial or polar because cos  and sin  are commensurable and   is small 

(  1o  ). Consider near-equatorial orbit. In this case sin i   . Again   is less 

than i  by magnitude and the second term is less than the first by magnitude too. 
Near-polar orbit case is considered in the same way. So we can neglect the second 
term in (0.12) in comparison with the first for any orbit inclination. 

2. Analytical study 

Let’s consider transient and steady-state motions of a satellite. 

2.1. Asymptotical methods. Averaging technique 

We now describe the general technique for analyzing systems with slow and fast 
variables. Consider equations 

 

   0

, ,

, , .

dx
X x y

dt
dy

y x y Y x y
dt







 
        (0.13) 

Parameter   is supposed to be small. All variables are divided into fast y  and slow 

x . Function X  is 2 -periodic in y . We try to find the change of variables 

   1 1, , ,x x u x y y y v x y            (0.14)  
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leading to the equations 

     1 0 1, ,
d x d y

A x y x y B x
dt dt

    .      (0.15) 

This is the common way of asymptotical methods for systems of the form (0.13) [10]. 
Change (0.14) contains variables of higher order of smallness in general case. But the 
reasoning became rather complicated if y  is indeed a vector. Functions 1 1,u v  are 

finite. Substituting (0.14) to (0.13) and taking into account (0.15) we get the equation 
for 1u  

     1
0 1

1

,
k

i
i i

u
y x X x y A x

y


 

         (0.16) 

where k  is a number of slow variables. Since X  is periodic in y  it can be 

decomposed to the Fourier series 

     
1,...,, exp

kn n j jX x y a x i n y  . 

We try to find 1u  in a form 

       
11 ,...,, exp

kn n j jj ju x y b x i n y c x y    . 

Taking into account (0.16) we get 

   
1

1

,...,

,...,
k

k

n n

n n

j j

a x
b x

i n y



, 

       0 0,...,0 1j jc x y x a x A x  . 

Function 1u  is finite so all jc  are equal to zero. In opposite case 1u  may rise to 

infinite value as  y  rise. This leads to 

   0,...,0 1a x A x , 

but  0,...,0a x  is the mean value of X . So 

 
  

   1 1

1
... , ...

2
kk

k

A x X x y dy dy X x


   , 

That means that 1A  is the X  averaged by all fast variables y . Taking into account 

only the first order of smallness we obtain equations for slow variables evolution 

 ,
d x

x x X x
dt

  . 
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For the time interval 1t �  the accuracy of slow variables determination is 

x x  � . Equation for slow variables evolution are obtained by averaging initial 

equations by all fast variables. 

2.2. Transient motion 

Let’s consider transient motion of a satellite. Control torque generated by the 
MACS is 

 M m B  
where m  is the magnetic dipole moment of a satellite. Control utilizes the “-Bdot” 
algorithm. The magnetic dipole moment is [11] 

x
x

d
k

dt
 

Β
m  

where k  is the positive constant. The geomagnetic induction vector derivative in the 
Ox1x2x3 frame is determined by its derivative in the OaZ1Z2Z3 frame by the expression 

T Tx Z
x x

d d

dt dt
  

B B
A Q ω B .        (0.17)  

We consider fast rotations of a satellite. In this case the first term in (0.17) 
describing the change of B in the inertial space may be neglected in comparison with 
the second. Such a case may occur on the first stage of satellite functioning. Satellites 
often have big angular velocity after the separation from the launch vehicle. Note that 
the angular momentum of a flywheel may be still higher than angular momentum of a 
satellite itself by at least a magnitude. We consider the control torque 

 x x x xk  M ω B B .         (0.18) 

We rewrite equations (0.6) introducing argument of latitude u  instead of time, 
dimensionless angular momentum magnitude l  by the relation 0L L l  where 0L  is 

the initial magnitude and dimensionless torque M , 

3L
dl

lM
du

 , 1L
d

M
du

  , 2
sin

L
d

M
du

 


 , 

 
 

1 21

1 22

cos cos
cos cos sin ,

sin sin
cos

cos ctg ctg sin ctg ,
sin

L L

L L

d
l M M

du
d

l M M
du

       
 

         


   

    
  (0.19) 

 2 13 sin sin cos cos sin sinL L
d

l M M
du

              
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where 
2
0

0

kB

L
  , 

2 2
0

1
0

1 sin cosL

C A B

 


 
   

 
, 

2 2
0

2
0

sin cosL

A B

 


 
  

 
, 

0
3

0

1 1L

A B



   
 

, 
0

h

B



 . 

We assume that the control torque is small in a sense of small change of angular 
momentum for one revolution on the orbit in comparison with its value. It means that 
  is small. Variables , ,l    are obviously slow, variable u  is fast. We need to know 

which of the variables , ,    are slow and which are fast. Consider the angular 

momentum of a flywheel to be prevailing in comparison with the angular momentum 
of a satellite itself, without a flywheel. This assumption is not valid if a flywheel is 
used on a satellite with a mass by a magnitude greater than the  design of a flywheel 
suggests or the angular velocity of a satellite exceeds several tens degrees per second 
(for a small satellite). If the angular momentum of a flywheel is big, the angular 
momentum of a system satellite-flywheel is directed almost along the Ox2 axis. In 
this case angle    us close to zero, angle   is close to 90˚. Variables ,   are slow, 

variable   is fast. We now can obtain the equations for slow variables. We need first 

to find the torque in the OL1L2L3 frame. Angular momentum in the frame OL1L2L3 is 

 0,0,
T

L LL .  Angular momentum in the frame Ox1x2x3 can be found as 

T
x LL A L . That leads to  31 32 33, ,

T

x L a a aL  and the angular velocity in the 

Ox1x2x3 frame is 31 32 33

1 1 1
, ,

T

x

h
L a a a

A B L C

       
ω . Next, 

11 31 12 32 13 3331

11 12 13

21 22 23 32 21 31 22 32 23 33

31 32 33
2 2

33 31 32 32 33

1 1 11

1 1 1 1

1 1 1 1

L x

h
a a a a a aa

A B L CAa a a
h h

L a a a a L a a a a a a
B L A B L C

a a a
ha a a a a

C A B L C

            
                                     

ω Aω










. (0.20) 

Taking into account (0.12) the geomagnetic induction vector in the frame 
OL1L2L3 is 

11 1 21 2 31 3

0 12 1 22 2 32 3

13 1 23 2 33 3

T
L Z

q B q B q B

B q B q B q B

q B q B q B

  
     
   

B Q B       (0.21) 

where  
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1

2

3

sin sin 2 0

sin cos2 cos

cos sin cos2

B u

B u

B u


     

             
           

. 

According to (0.20) and (0.21) fast variable   is present only in (0.20) while 

fast variable u  is present only in (0.21). Taking into account the form of the control 
torque (0.18) we can average (0.20) by   first and then find the torque averaging 

(0.18) by u . To average (0.20) by   we write matrix (0.2) taking into account 

0,
2

   , 

cos cos sin sin

sin sin cos cos

1

     
     
 

  
     
 
 

A . 

That leads to 

 1
0,0,

T

L L h
B

   
 

ω . 

Control torque averaged by   is 

    
2

2 20 0
0 1 3 2 3 1 2, ,

T

L L L L L L L L L L

kL B
k l h B B B B B B

B 
      M ω B B  (0.22) 

where 0 0/h h L . 

In order to average (0.22) by u  we need expressions 
2

0

1

2ij i jB B B du



  , ( , 1,2,3i j  ).         

Some calculation leads to 2
11 22

1
sin

2
B B   , 2

33 cosB   , 

2 2
23

1
cos sin

2
B       

 
, 12 13 0B B  . Taking into account (0.22) we can now 

write equations for slow variables evolution. Equations for , ,l    are separated from 

the equations for ,  . We consider only the first group of equations. For the 

transient motion the main variable of interest is the angular momentum magnitude l . 
Equations for the evolution of , ,l    are 

         2 2 2
0 13 11 23 22 33 33 23 21 31 22 321 1 1

dl
l h l q B q B q B B q q q q

du
             , 

   0 11 13 11 21 23 22 31 33 33 23 21 33 31 23

d
l h q q B q q B q q B B q q q q

du

          ,  (0.23)  
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   0 12 13 11 22 23 22 23 22 33 32 23

1

sin

d
l h q q B q q B B q q q q

du

 

       . 

Here new parameter 
2
0

0

kB

B



  is introduced. But if the torque is small in a sense 

described above this new parameter is small again. All the reasoning about slow and 
fast variables is valid. Taking into account  (0.1) and expressions for ijB  equations 

(0.23) take form 

  2 2
0 sin sin cos sin sin

dl
l l h

du
            , 

    2 2
0 sin cos sin cos sin

d
l h

du

             , 

 0 cos ctg
d

l h
du

       

where 2 21
cos sin

2
     . We neglect terms of the order   since  1o  . The 

system takes form 

  2 2
0 sin sin

dl
l l h

du
       , 

 0 sin cos
d

l h
du

       ,        (0.24) 

0
d

du


 . 

These equations are similar to those obtained in [11] except for the multiplier 

 0l h . We divide this first equation in (0.24) by the second 
2 2sin sin

sin cos

dl
l

d

 
   

 
 . 

Integrating this relation we get 

   2 2
0ln sin ln tg ln tg 1

2
l C

       

where    2 2
0 0 0sin ln tg ln tg 1

2
C

      is integration constant. This leads to 

     2 2
0exp sin ln tg ln tg 1

2
l C

        
 

     (0.25) 

and 
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    
0

0
0 sin cos

d
u u

l h





 
   

  
 .      (0.26) 

Expressions (0.26) and (0.25) deliver the solution of (0.24) in quadratures. 
Figure 5 introduces the result of decreasing of the angular momentum 

magnitude for a set of inclinations and 0.1  , 0 0.9h  . 

 
Fig. 5. Angular momentum damping 

This figure shows that the time-response of the algorithm, that is the rate of angular 
momentum damping, rises when orbit inclination increases for a given 0h . Similar 

result was obtained for the “-Bdot” algorithm in case of a satellite without a flywheel 
[12] and for a spin-stabilized satellite [13]. The cone half-opening angle in the 
averaged geomagnetic field model increases with the inclination. This results in the 
increased amplitude of the geomagnetic induction vector change. This vector is 
constant for the equatorial orbit and angular momentum is almost not damped. In 
case of polar orbit geomagnetic induction vector lies in the orbital plane. It has the 
most change in the direction and damping rate is maximal. 

Let’s consider the impact of a flywheel’s angular momentum magnitude 0h  on 

the time-response of the damping algorithm. Figures 6 and 7 introduce the value of 
the angular momentum of a satellite itself with respect to its initial value in percents. 
Figure 6 corresponds to the value of angular momentum after 10 circles of a satellite 
on the orbit, Figure 7 corresponds to 2 circles. It is seen that the value of a flywheel 
angular momentum has insignificant impact on the time-response. Slight inclination 
of the curves indicate that time-response rises when 0h  rise. It is especially clear if 

one consider the curve corresponding to the value of angular momentum equal to 
70% in the Figure 7. 



17 
 

Fig. 6. Angular momentum magnitude after 10 
circles 

Fig. 7. Angular momentum magnitude after 2 
circles 

Consider equations (0.24) in the vicinity of equilibrium position. Equilibrium 

position are  0 , 0l h    and 0,
2

l h
   (note that const  ). Stability of these 

positions depends on the sign of   and, therefore, on the orbit inclination. If 

inclination is less than 45.5˚ the first position is stable, if greater – the second position 
is stable. We consider only the first position as the example. Linearized equation for 
the magnitude of angular momentum is 

2
0 sin

dx
h x

du
    

where 0x l h  . For a satellite equipped only with MACS this equation is [12] 

2
0 sin

dy
y

du
     

where 0

1

4 4 2

C C

A B
    , y l . 

It is seen, that the time response is close for systems with or without a flywheel 
and raises when the orbit inclination increases. The difference in the time-response 

rises when expressions 
C

A
, 

C

B
 decrease. When ,C A C B   the time-response 

differs by a half since 0h  is close to 1. For both systems we find the time *u  (in 

circles), that is the time necessary to reduce the angular momentum magnitude by a 
half. The relation between these parameters for two systems is 0 0/ h  and is close to 

1 when  0 0.9,1h   and principal moments of inertia are commeasurable (conditions 

A C  and B C  leading to 0   are not satisfied). The results for *u  for 

0 1.0247   are listed in the Table 1. The relation 0 0/ h  is close to 1 and the time-
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response of two systems is close, as it is shown in the linearized case. For all systems 

0.1  ,  3,3.1,3.2diagJ  kg·m2, 0 0.1  . 

 
Inclination, ˚ 10 20 30 40 50 60 70 80 90 
Without a flywheel 16.58 4.85 2.64 1.86 1.48 1.29 1.18 1.11 1.09 
Flywheel 0 0.9h   16.31 4.92 2.74 1.97 1.56 1.36 1.24 1.17 1.14 

Flywheel 0 0.95h   15.73 4.91 2.73 1.93 1.54 1.34 1.21 1.14 1.12 

Table 1. Time-response comparison for systems including MACS and a flywheel and 
system including only MACS 

2.3. Steady-state motion. Gravitational orientation 

We now consider the steady-state motion of a satellite when its angular velocity 
is small and the axes of the frames Ox1x2x3 and OX1X2X3 virtually coincide. A satellite 
is subjected to the gravitational and magnetic torques. This motion is called 
gravitational orientation. Its stability is provided by the gravity-gradient torque. 
Sufficient conditions of the stability of gravitational orientation are [1] 

0A C  ,  0 0B A h    ,  04 0B C h    . 

Since the angular momentum of a flywheel is considered big in comparison with 
the angular momentum of a satellite itself ( 0iih J � , 1,2,3i  ), only the condition 

0A C   may be considered. It provides the stability by a pitch angle (rotation in the 
orbital plane). Stability by roll and yaw angles is provided by a flywheel. MACS 
implements dipole magnetic moment 

d
k

dt
 

B
m .           (0.27) 

Let’s study the influence of the torque  M m B  on the gravitational 
orientation. We assume that this torque is small in comparison with gravitational. We 
rewrite equations (0.8) introducing argument of latitude instead of time 

 1
3 2 3 32 33 12

0

1
3 ,A A x

d
h d d M

du A





        

 2
1 3 31 33 22

0

1
3 ,B x

d
d d M

du B





      

 

 

3
1 1 2 31 32 32

0

1 2

1
3 ,

1
sin cos 1,

cos

C C x

d
h d d M

du C

d

du




  



       

   
     (0.28)  
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 3 1 2tg sin cos ,
d

du

         

1 2cos sin
d

du

      

where 
0

A

h
h

A
 , 

0
C

h
h

C
 , A

B C

A
 

 , B

C A

B
 

 , C

A B

C
 

 , 0/i i    

( 1,2,3i  ). 

Equations (0.28) allow the stationary solution 1 3 20, 0, 1           

if a satellite is subjected only to the gravitational torque. We try to find solutions, 
generated from this stationary one in case of small additional magnetic torque. We 
use Poincare method [10]. Equations (0.28) are of the form 

    x f x g x  

where  1 2 3, , , , ,     x , 
2
0

0

kB

B



 . We try to find the solution in a form 

 2
0 1 O   x x x  where  0 0,1,0,0,0,0x  is the stationary solution, 

 1 1 2 3 1 1 1, , , , ,w w w   x . That leads to 0 1d d

du du
 

x x
 

        2
0 0 1 0 O    f x F x x g x  where i

ij
j

f
F

x





. In order to find F  we need 

an explicit form of 32 33 31 33 31 32, ,d d d d d d : 
2

32 33 sin cos sin cos cos cos sin cosd d          , 
2

31 33 sin cos cos cos cos sin sin cosd d           , 
2 2 2

31 32 sin sin cos sin cos cos sin sin cos sin sind d                 
2 2cos sin cos sin    . 

That leads to 

 0

0 0 0 0 3

0 0 0 3 0 0

0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 1

1 0 0 0 1 0

A A A

B

C C

h

h

 




  
 
 
 

  
 
 
 

 

F x . 

To find  0g x  we need the derivative of the geomagnetic induction vector in the 

Ox1x2x3 frame 
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Tx X
rel x

d d

dt dt
  

B B
D ω B  

where relω  is relative angular velocity of a satellite in the Ox1x2x3 frame. Note that 

the stationary solution 0x  corresponds to zero relative velocity of the frames Ox1x2x3 

and OX1X2X3 and their coincidence. That is rel ω 0 , D E  and therefore 

x Xd d

dt dt


B B
. 

We use more accurate dipole model instead of averaged here. Geomagnetic induction 

vector in the frame OX1X2X3 is  0 sin cos ,cos , 2sin sin
T

B i u i i u B , so 

 0 sin cos 2 cos ,2 tg , sin ,0,0,0
T

B B
i i u i u

A C
   
 

g x . 

For the 1x  we finally get equations 

 1
3 13 2 sin cos cosA A A

dw B
h w i i u

du A
      , 

 

2
1

3
1

3 2sin cos tg ,

sin cos sin ,

B

C C

dw
i i i

du
dw B

h w i i u
du C

 



 

  
       (0.29) 

1
2

d
w

du


 , 1

1 3

d
w

du

   , 1
1 1

d
w

du

   . 

Equations for 1  and 2w  are separated. General solution for 1  and 2w  is the 

oscillation near the stationary solution. Matrix of the homogeneous equations for 

1 1 1 3, , ,w w   is 

0 0 3

0 0 0

0 1 0 1

1 0 1 0

A A A

C C

h

h

 


  
  
 
  

W  

We find its eigen values from the relation 

  4 2det a b     W E  

where   1 3 A A A C Ca h h       ,   4C C A Ab h h     . That leads to 

 2 21
4

2
a a b     . 

Here we again assume that the angular momentum of a flywheel is times bigger 

than the angular momentum of a satellite, so  2 2 2 2 24 0A C A C C Aa b h h O h h h h      and 
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with it 0a  . That means that all eigen values are complex and general solution is the 
oscillation near the stationary solution. Forced solution is of greater interest. It shows 
the influence of MACS and magnetic torque on the steady-state motion. So we now 
try to find particular solution of (0.29). For 1  we have 

2

1

2sin

3 B

i


  , 

that means that implementing MACS leads to the constant deviation in the orbital 
plane. We try to find angles 1 1,   in the form 

1 1 2sin cosA u A u   , 1 1 2sin cosB u B u   . 

Therefore 

   1 1 2 2 1sin cosw A B u A B u    ,    3 2 1 1 2sin cosw A B u A B u     . 

Substituting these expressions to (0.29) and setting equalities between the constants 
held by sinu  and cosu  we obtain the equations for 1 2 1 2, , ,A A B B  

   1 21 1 4 2 sin cosA A A A

B
h A h B i i

A
         , 

   2 11 1 4 0A A A Ah A h B         , 

   2 11 1 0C C C Ch A h B        , 

   1 21 1 sin cosC C C C

B
h A h B i i

C
        . 

Solving allows us to find the forced solution of (0.29) 
2

1

2sin

3 B

i


   

   1 sin cos 2 1 1 4 sinC C A A

B B
i i h h u

A C
           

 
, 

   1 sin cos 1 2 1 cosA A C C

B B
i i h h u

C A
          

 
, 

   1 sin cos 4 1 5 2 2 sinC C A A

B B
w i i h h u

A C
         

 
, 

2 0w  , 

   3 sin cos 4 1 5 2 2 cosC C A A

B B
w i i h h u

A C
         

 
. 

The deviation from the stationary solution induced by MACS is found. Small 
constant deviation occurs in the orbital plane. Small oscillations with orbital 
frequency take place for the roll and yaw angles. Note that resonance may occur if 
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eigen value   of matrix W  is equal to i . Parameters leading to these eigen values 
are found from the expression 

 2 21
4 1

2
a a b       , 

that leads to 
1 0a b    , 

and finally to 
1 0C Ch    . 

In the considered case of a flywheel with big angular momentum its value Ch  is not 

commeasurable with ,1C  and no resonance can occur. 

2.4. Steady-state motion. Arbitrary orientation in the orbital plane 

MACS may be used to provide any equilibrium position 0   in the orbital 

plane and its stability. Gravity-gradient torque becomes disturbing one. We assume 
that , 0  � , 1 2, 0  � , 2 1 �  after the transient motion. Direct cosine matrix (0.7) 

takes form 

cos cos sin sin

1

sin sin cos cos

     
 
     

  
   
   

D .      (0.30) 

Equations of motion (0.8) taking into account (0.30) and introducing argument 
of latitude instead of time are 

  21
3 3 12

0

1
3 cos sin cos ,A A x

d
h M

du A
     




        

2
22

0

1
3 sin cos ,B x

d
M

du B
  




   

  23
1 1 32

0

1
3 sin cos sin ,C C x

d
h M

du C
     




         

2 1,
d

du


   3 ,

d

dt

     1

d

dt

    . 

Let’s assume that 2xM  doesn’t depend on 1 3, , ,    . We will generate 2xM  so 

that this requirement is met. Equations for 2,   are separated. We now consider the 

problem of reorientation of a satellite to the arbitrary position in the orbital plane and 
maintaining this orientation. The analysis is based on the equation 

 
2

2
3 sin cosB d r

d
M M

du

             (0.31) 
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where dM  and rM  are damping and restoring components of the torque respectively 

scaled by  2
0B . We introduce new variable 0     and restoring torque 

 2
0sinrM     . Let gravitational and damping torques be zero. That leads to the 

equation 
2

2
2

sin 0
d

du

     

of a mathematical pendulum oscillations near the position 0  . Introducing the 

damping component of the torque makes this position asymptotically stable. We use 
“-Bdot” algorithm, 

T TX
x rel X

d
k

du
    
 

B
m D ω × D B . 

Note that omitting the first term in this expression is no longer valid since the 
angular velocity of a satellite is less or commeasurable with orbital. We assume that 
the damping component of the torque is negligible with respect to the restoring one, 

so 2/ 1    where 
2
0

0

kB

B



 . That allows us to omit small expressions in (0.30) 

since their contribution in (0.31) is of the order of   and  . We neglect 1 3,   

with the same argument. Taking into account (0.10) and (0.30) we have 

    

    

2

0 0

2

cos sin sin cos 1 sin cos cos sin

sin 0

sin sin cos cos 1 sin sin cos cos
x

u u u u

kB i

u u u u

   


   

     
   
       

m . 

The damping component of the torque is  2
2sin 2dM i  . Equation (0.31) may 

be rewritten as 
2

2 2 2
2

sin sin sin
d d

i i
du du

       . 

Consider homogeneous equation in the vicinity of the equilibrium position 0  . 

The equation is 
2

2 2
2

sin 0
d d

i
du du

      . 

Its solution in case 2/ 1    is 

 2 4 2 4
1 0

1 1
exp sin sin 4 sin

2 2
iu i u              

   
    (0.32) 

where 0 1,   are determined by the initial conditions. The solution (0.32) describe the 

damping oscillations. The rate of damping depends on the orbit inclination. We 
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consider now non-homogeneous equation and introduce the gravity-gradient torque. 
That leads to the equation 

 
2

2 2
2

sin
d d

i
du du

          

where 2
0 0sin 3 sin cosBi      . The forced solution is 

   
0

22 1 1
exp sin sin

2 2

u

u

i x u u x dx   


         
     

where  22 2 44 sin i      . Assuming 0 0u   we have the forced solution 

2 2 2

2 4
1 sin cos

sin 2 2 2 2
u u

i

    
  

               
 

And finally the solution of the equation 

 2
1 0

1 1
exp sin sin

2 2
iu u             

   
 

2 2 2

2 4
1 sin cos

sin 2 2 2 2
u u

i

    
  

               
.    (0.33) 

Gravity-gradient torque influence results in the increased deviation from the 
equilibrium position and small oscillation near this new position. The amplitude of 
both deviation and oscillation depends on the ratio between the gravity-gradient 
torque and the restoring component of the torque. Damping component magnitude 
and the orbit inclination also have impact on the accuracy of orientation since the 
deviation and amplitude depend not only on the gravitational torque (term 

0 03 sin cosB    in  ) but on the damping component too (term 2sin i  in  ). 

Implementing restoring torque causes extraneous components lying not in the 
orbital plane since 2 3 1 1 3M m B m B  . We assume, for example, that the restoring 

torque is generated using the first magnetorquer, so 2 3 0m m  . That leads to the 

torque 

   2 2 2
0 0

3

0, sin , sin
T

x

x

B

B
     

 
    
 

M .     (0.34) 

The third component is the extraneous one. It is difficult to find a solution for 

1 3, , ,     taking into account gravity-gradient torque, restoring torque (in this case 

it is extraneous one) and damping torque. If homogeneous system with only gravity-
gradient torque is considered its solution is oscillation near the stationary solution 

0   , 1 3 0   . Extraneous torque generates a forced solution that is small 

oscillation near the stationary solution or near slightly different new stationary 
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solution. This deviation is small because of a flywheel with big angular momentum. 
Damping torque forces damping of these oscillations. That means that the torque 
(0.34) with the damping torque allows a satellite to be oriented at arbitrary angle 0  

in the orbital plane. The accuracy is characterized by the solution (0.33). 

3. Numerical analysis 

Numerical analysis is carried out for the satellite with inertia tensor  4,5,3J  

kg·m2. Orbit inclination is 50˚. Dipole magnetic moment of magnetorquers in the 
transient mode is 1 А·m2. In the nominal motion dipole magnetic moment used for 
restoring is 1 А·m2, for damping is 0.1 А·m2. Flywheel angular momentum is 0.4 
N·m·s. 

 
Fig. 8. Transient motion without a flywheel. Initial conditions 30      , 

1 2 3 10 s    

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Fig. 9. Transient motion with a flywheel. Initial conditions 30      , 1 2 3 10 s    


 

 

Fig. 10. Reorientation in the orbital plane. Initial conditions 1      , 1 3 2 0.03 s    


, 

required attitude 0 180    
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In these Figures ii  ( 1,2,3i  ) are the angles between the axes of the Ox1x2x3 

and the OX1X2X3 frames. Figures 8 and 9 show that the time of transient motion is 
close for systems with or without a flywheel. Figure 10 introduces reorientation by 
angle 180˚ in the orbital plane. The axis of a flywheel conserve its orientation 
perpendicular to the orbital plane. 

Conclusion 

Transient and steady-state motions of a satellite equipped with MACS and a 
flywheel are considered. The solution in quadratures for the slow variables in 
transient motion is found. It is shown that the time-response rises when orbit 
inclination increases. For steady-state motion small oscillations near the stationary 
solution in gravity field is found. System time-response is evaluated. The time-
response for systems with or without a flywheel differs a little. An algorithm 
providing arbitrary orientation in the orbital plane in a steady-state motion is 
proposed. Small oscillations near this position are found. Numerical analysis is 
carried out. 
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