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MaruuTHasi CUCTEMa OPHEHTAIMHU CHYTHUKA, OCHAIEHHOI0 TAHIAXKHBIM
maxoBukoM. M.IO. Opunnnukos, J[.C. Pongyrun. UIIM um. M.B.Kenaeima PAH,
Mocksa, 2011r., 28 c., oubnuorpadus: 13 HanmenoBanwnii, 10 pucynkos, 1 Tabnuia

PaccmatpuBaercs CIlyTHUK, OCHAILIEHHBI MAarHUTHOM CUCTEMOW OPUEHTALUU U
TaHTaXXHBIM MaxOBUKOM. Mccriemyercst ObICTPOJCHCTBUE CHUCTEMBI B MEPEXOIHOM
pEeXHME B 3aBUCUMOCTH OT HAKJIOHEHUsI OpOuTHI cnyTHUKA. [IpoBoauTCS cpaBHEHUE
C CHCTEMOW, BKJIFOYAKOIIEW TOJBKO MArHUTHBIE KaTyLIKA. B ycTaHOBUBIIEMCS
pEeXKMME TPaBUTAIMOHHOM OPUEHTAlMM PAaCCMATPUBAIOTCS MaJIble JIBHXKCHHS B
OKPECTHOCTH TIOJIOKEHHUsI paBHOBecus. Mcciaemyercs TOYHOCTh OpPUEHTALMH U
OBICTpOJICHCTBUE anropuTrMa JeMII(pUPOBAHUSI. Uccnenyercs aITOPUTM
IPOU3BOJILHOM, HO 3a/JlaHHOM OpUEHTAIlMU CIYyTHUKA B IUIOCKOCTH OPOUTHI.
[TIpoBoaMTCS YKCIIEHHOE MOJETUPOBAHUE.

KiuoueBble cj10Ba: MarHuTHasi CUCTEMa OPUEHTAIMW, TAHTaXHBIA MaXOBUK,
OCpEIHCHHAasT MOJIeJJb MArHUTHOTO TIOJIS 3eMJIH, OBICTPOJICHCTBHE CHCTEMBI
OpPUECHTALNU

Active magnetic attitude control system of a satellite equipped with a
flywheel. M.Yu. Ovchinnikov, D.S. Roldugin. Keldysh Institute of Applied
Mathematics of Russian Academy of Sciences, 2011, 28 p., 13 items of bibliography,
10 figures, 1 table

Attitude motion of a satellite equipped with a single flywheel and active
magnetic attitude control system is considered. Time-response of the system in a
transient mode with respect to the orbit inclination is studied. Comparison with the
system consisting of magnetic coils only is conducted. Small steady-state motion near
the gravitational orientation is considered. Accuracy and time-response is studied. An
algorithm of arbitrary but given orientation in the orbital plane is proposed and
studied. Numerical analysis is carried out.

Key words: active magnetic control, flywheel, averaged geomagnetic field
model, time-response



Introduction

Active magnetic attitude control systems (MACS) are widely used for satellite
orientation and stabilization. MACS are especially attractive for small satellites.
There is no consumption of any limited resources, the system has low mass,
dimensions, cost and energy requirements. Other common actuators like reaction
wheels or propulsion system cannot match these requirements. MACS however have
less accuracy. Another fundamental problem of MACS is impossibility to provide
arbitrary control torque. The torque lies in a plane perpendicular to the vector of
geomagnetic induction. So MACS are often used for the initial angular velocity
damping or with other actuators.

Spin stabilization was one of the first methods used in satellite orientation since
the beginning of the space era. A satellite spinned fast about its axis of symmetry
acquires the properties of a gyroscope and maintains its axis attitude in the inertial
space for a considerable amount of time. MACS are often used on spin-stabilized
satellites. A satellite equipped with a flywheel is considered in this paper. Such a
wheel can have big angular velocity and angular momentum which are considered
constant during the functioning. This allows for the same principle to be used without
spinning the whole satellite. In this case the axis of a flywheel maintains its attitude
in the inertial space. If the satellite is subjected to the gravity-gradient torque the
attitude when the axis of a flywheel is perpendicular to the orbital plane is stable.
Stability problem of a satellite equipped with a flywheel is studied, for example, in
[1] and [2]. If the whole system is dissipative the satellite tends to orientate so the
axis of a flywheel is perpendicular to the orbital plane. Passive damping devices may
be used [3]. But the problem of satellite attitude in the orbital plane arises. Gravity-
gradient torque may be used again. Principal axes of inertia of a satellite coincide
with the radius-vector of a satellite and normal to it in the orbital plane. However,
gravity-gradient torque may be of the same or even smaller order as disturbing
torques if principal moments of inertia are commensurable. Besides, arbitrary
orientation of some axis in the orbital plane may be required. For example, if one
conducts an orbital maneuvering, it is necessary to have particular orientation of the
axis of thruster for the optimal delta vee. To provide arbitrary orientation in the
orbital plane, initial angular velocity damping and flywheel axis attitude MACS can
be used.

Attitude control system with magnetorquers and a flywheel is thoroughly
covered in the literature. The main focus in most papers is placed on the numerical
analysis and flight results. Small satellite GURWIN [4] launched in 1998 reached the
accuracy of 2°. In the paper [5] MACS algorithm and flight results of REIMEI small



satellite, launched in 2004, are presented. Using MACS and a flywheel this satellite
was stabilized with accuracy of 0.2°. In [6] equations of motion are analytically
solved using asymptotical methods. This work, however, only deals with the small
oscillations in the vicinity of the gravitational orientation. It is shown that the time-
response of chosen algorithm increases when the orbit inclination rises'.

In present paper transient motion is studied along with the steady-state motion.
In the transient mode MACS provide damping of initial angular velocity. Flywheel is
considered spinning already. Note that initial angular velocity may be the result of a
flywheel spinup as well as the result of the separation from the launch vehicle. A
well-known “-Bdot” algorithm is used for the damping. The time-responses of
systems with and without a flywheel are compared. In the steady-state motion the
accuracy of the gravitational orientation is studied. An algorithm of arbitrary
orientation in the orbital plane is proposed and studied.

1. Problem statement

Let’s describe the geomagnetic field model, reference frames and equations of
motion used in this work.

1.1. Reference frames

Here the frames used in this paper are presented.
0.Z,7,7; is the inertial reference frame, O, is the Earth center, O,Z; axis is

normal to the orbital plane, O,Z; lies in the equatorial plane and is directed to the
ascending node, O,Z; is directed such that the reference frame is right-handed.
OL,L,L; is the frame associated with the angular momentum of the satellite. O is
the satellite’s center of mass, OLj; axis is directed along the angular momentum, OL,
axis is perpendicular to OL; and lies in the plane parallel to the O,Z,Z, plane and
containing O, OL; is directed such that the reference frame is right-handed.

OXX,X; 1s the orbital reference frame, OX; lies in the orbital plane, is
perpendicular to the radius vector and directed as the orbital velocity does, OX; axis
is directed along the radius-vector of a satellite, OX, is directed such that the
reference frame is right-handed.

Ox;x;x; 1s the bound frame, its axes are directed along the principal axes of
inertia of the satellite.

! By inclination rise we mean the change in inclination from zero to 90°.



Reference frames mutual orientation is described using direct cosine matrices
Q,A,D expressed in tables

L L, L X Xy X X Xy X
Zi 4y 4 4 L a, a, a; X, d, d, d;
Z, 4y 49n 9 L, a), a, ay X, d, d, d, .
Zy 4y 4y G Ly ay a, ay X, dy dy, dy

We introduce indices Z,L,X,x to denote any vector components in frames
0,2,2>Z;, OL,L,L;, OX; X>X; and Ox;x,x; respectively. For example, for the first
component of a torque in these frames we write M, .M, ,M,,, M, .

1.2. Equations of motion

We will use Beletsky-Chernousko variables and Euler angles to describe
satellite dynamics. Beletsky-Chernousko variables is a set L, p,o,@,,0 [7], where
L 1s the angular momentum magnitude, angles p,o introduce its orientation with

respect to the O,Z,7,7Z; frame (Fig.1). Orientation of the Oxx,x; frame with respect
to the OL,L,L; is described using Euler angles @,y/,6. Direct cosine matrix Q takes

form
COS PCOSCO  —SINC  Sin PCOSO

Q=| cospsinoc coso sinpsino |. (0.1)
—sin p 0 cos p
Direct cosine matrix A takes form
cos@cosly —cosfsingsiny  —sin@cosy —cos@cos@siny  sin@siny
A =| cospsiny +cosfsinpcosy  —singsiny +cos@cos@cosyy —sinfcosy |. (0.2)
sin@sing sin@cos cosd

Ny
= ]

Z
Fig. 1. Angular momentum orientation in the inertial space



Let J =diag(4,B,C) be the tensor of inertia of the satellite. Its center of mass

moves on the circular keplerian orbit. The motion of a satellite not equipped with a
flywheel is described with equations [7]

dr dp 1 . do 1

T T = Vs =—M,,,

dt dt L dt Lsinp

do : : I 1 1 .
—t:Lsm@smgocosw(g—g)+z(Mu cosy — M, siny ),

(0.3)

d 1 sin’¢ cos’ 1 .
f:Lcos&[E— A¢_ B(pj+Lsine(Mchosy/+M2Ls1nl//),

c 2 2
d(//:L Sin"¢ _ cos” ¢
dt A B

where M,,,M,,,M,, are torque components in the OL,;L,L; frame.

J—%Mu coswctg&—%MZL (ctg p +siny ctgh)

If a satellite is equipped with a flywheel (let it be directed along the Ox; axis),
equations (0.3) are slightly different. We now find the analog of (0.3) for a satellite
with a flywheel. Three first equations in (0.3) don’t change. But the angular
momentum is now the sum of the angular momentum of a satellite and of a flywheel.
Consider equations for ¢,y,0. Satellite angular velocity components may be

expressed as
La La,, —h La
et 1 RN 7 0. = —33

b

47 B e
where £ is the angular momentum magnitude of a flywheel directed along the Ox,

(0.4)

o

axis. These components may be expressed [7] as

d dy ~ dp  do
w, :ECOSQ'FECZS] +Ea21 +E((Jllq21 + 61316]23) 5
do . dy  dp  do
@2 :_Esmgo—i_ dt ¥ dt W™ dt (a12q21 +a326]23), (0:5)

w; = % + Ci,_l)tyam + C;_,thB + a;l_j(am%l T 3353 ) .

These equalities can be easily derived from kinematics. We now multiply the first
equation in (0.5) by cos¢, the second by —sin¢@ and adding taking into account (0.4)
. All transformations in the right sides of (0.5) are omitted since they reproduce those
in [7]. The result is

% :Lsianin¢cos¢(%—%)+%(Mu cosy —M,, siny/)+%sin(p.

We multiply the first equation in (0.5) by sin¢, second by cos¢ and adding. This
leads to



dy sinp cos’p | 1 1 . h cosg
=L + ——M, cosyctgd——M,, (ctgp+sinyctgld)—— :
dt { A B ) o (clgptsiny cigd) B sind
Substituting these two relations to (0.5) we get
do 1 sin’p cos’o . h cosgcosd
—=Lcosf| —— — + M, cosy + M, siny )+ ———.
dr ( T B ) Temg Mucosy +Maysing )+ 5=

This allows us to write the equations of motion of a satellite equipped with a
flywheel directed along the Ox; axis
dL dp 1 do 1

da a4 Lw dt:Lsinp

M,,,

do 1 1 1 h
— =Lsmn#sinpcosp| ——— |+—(M,, cosy —M,, siny )+ —sin@, 0.6
r Q@ (0(14 Bj L( 2L 4 1L W) B ® (0.6)

+ 2 2
@=LCOSQ[%—SIH $_Los ¢j+ ! (Mchosw+M2Lsinl//)+£—cosq)cosg

dt A B Lsin®@ B sin@

c 2 2
dl/l:L[sm $ (p]—%MILcoswctg@—%MzL(ctgp+sinwctg9)—ﬁcos¢

dt A B B sin@
where the angular momentum is the sum of those of a satellite and of a flywheel.
Beletsky-Chernousko variables are convenient for the analysis of transient
motion. The angular velocity magnitude is described with the magnitude of angular
momentum, which is only one variable. Steady-state motion is better studied using
Euler angles. In this case variables o,,,,,,a,8,y are used. Here @, are the
components of satellite angular velocity in the Ox;x,x; frame (i=1,2,3), Euler angles
a, B,y describe the orientation of the Ox;x,x; frame with respect to the OX, X,.XG;.
Direct cosine matrix D takes form
cosacos f+sinasin fsiny  —cosasin f+sinacos fsiny  sincosy
D= sin fcosy cos ffcos ¥ —siny |. (0.7)
—sincos f+cosasin fsiny  sinasin f+cosacos fsiny  cosacos y
Equations of motions of the satellite subjected to the gravity-gradient torque and
torque produced by the interaction between MACS and geomagnetic field are
do,
dt
do,
dt

A= = ho, +(B-C)(w,0, - 30ydydy )+ M.,

B

=—(A4- C)(a)la)3 - 3a)§d31d33) +M,,,



C d;)3 = —ho, (B - A)( o0, ~30d, dy, )+ M,
! (0.8)

da 1 .
—= (o, sin B + w, cos ) — o,

dt cosy
dd—'f =, +tgy(wsin B+ w,cos ),
ﬂ:a)lcos,b’—a)zsin,b’
where M, ,M, ,M,  are torque components in the Oxx,x; frame, @, is the orbital
velocity.

1.3.  Averaged geomagnetic field model

Let’s describe the geomagnetic field model used in this work. Geomagnetic
induction vector is often modeled using Gauss decomposition [8]. It is impossible to
use this model for an analytical study, so a number of simplifications are introduced.
We describe three most common models. If only three first terms in the
decomposition are taken into account one has the inclined dipole model. The
geomagnetic field is one of the dipole inclined at the angle 168°26' to the Earth axis.
This model allows rather compact analytical expression but still too complicated to
be used in an analytical investigation. Further simplification, the direct dipole model,
1s widely used. In this case the field is one of the dipole directed along the Earth axis
and antiparallel to it. Geomagnetic induction vector moves almost uniformly on the
almost circular cone as a satellite moves along the orbit. This model however doesn’t
allow to obtain the solution of equations of motion in the explicit form in the cases
considered in this work. We introduce further simplification, modeling the
geomagnetic induction vector moving uniformly on the circular cone. To do so, we
need inertial reference frame O,Y,;Y,Y;. Here O, is the Earth center, O,Y; axis 1is
directed along the Erath axis, O,Y; axis lies in the equatorial plane and is directed to
the ascending node, O,Y; is directed so the whole frame is right-handed. If we now
translate the geomagnetic induction vector to the O, point, the cone is tangent to the
0,Y;, its axis lies in the plane O,Y,Y; (Fig. 2). Cone half-opening angle satisfies [9]
the relation

3sin 2i

2(1—3sin2i+\/1+3sin2i)

where i is the orbit inclination. Geomagnetic induction vector moves uniformly on

tg®=

(0.9)

the cone with the doubled orbital velocity, y =2u+ y, where u =@t is argument of

latitude. Without loss of generality we assume y, =0.



Ys

A 4

Oa YZ

Y1
Fig. 2. Averaged geomagnetic field model

This model, sometimes called averaged, is used in the present work. This model
doesn’t allow to take into account non-uniformity of the induction vector movement
(as right dipole model does) and its diurnal change (as inclined dipole model does). It
however may be considered as a good trade-off between authenticity and simplicity
of geomagnetic field modeling. Comprehensive comparison of models may be found
in [8].

We need to know the geomagnetic induction vector in the frames O,Z;Z,Z; and
OXX>X;. In the frame OX, X,.X; it has form

sinicosu
v =B, cosi (0.10)

—sinisinu

B

where B, is its magnitude. To find it in the 0,Z,Z,Z; frame we introduce auxiliary
frame O,S5;5,S;. It is the frame O,Y;Y,Y; turned by angle ® about O,Y; axis.
Geomagnetic induction vector in this frame is

sin ®sin 2u
B=25,| sin®cos2u |.

cos®
Note that the O,Z,Z,7Z; frame is the frame O,Y;Y,Y; turned by angle i about

0,Y; axis or the frame O,S;S,S; turned by angle ® —i. So the magnetic induction
vector in the O,Z,Z,7Z; frame may be expressed as

1 0 0 sin®sin 2u sin ®sin 2u
B,=B8,|0 coso sino | sin@cos2u |=| sin®cosocos2u+sindcos® (0.11)

0 —-sind coso cos® —sin®sin d cos 2u + cos o cos O
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where 0 =0 —i. Lets exploit the expression (0.9). Figures 3 and 4 introduce the
relationships between ® and ® —i and the orbit inclination.

90 10
80 gt
7ot o
w [
GO+ @
8 g 6r
S0
gﬂ '?: 5k
40 ®
@ @ 4t
30F
3 .
20 a1
10F 1k
DD 1ID QID 3ID 4ID SID BID TID Bb g0 DD 1 ID 2ID 3ID x'iID SID Bb ?ID BID a0
argument of latitude, degrees argument of latitude, degrees
Fig. 3. Angle ® Fig. 4. The difference ® —i
It is seen that 6 =® —i doesn’t exceed 10°. Then (0.11) may be expressed as
sin ®sin 2u 0
B, ~ B,| sin®cos2u |+ B,0 cos® . (0.12)
cos® —sin®cos2u

Note that the second term may be neglected if the orbit is not close to the
equatorial or polar because cos® and sin® are commensurable and 6 is small
(0= 0(1)). Consider near-equatorial orbit. In this case sin® = ® ~i. Again ¢ is less

than i by magnitude and the second term is less than the first by magnitude too.
Near-polar orbit case is considered in the same way. So we can neglect the second
term in (0.12) in comparison with the first for any orbit inclination.

2. Analytical study
Let’s consider transient and steady-state motions of a satellite.
2.1.  Asymptotical methods. Averaging technique

We now describe the general technique for analyzing systems with slow and fast

variables. Consider equations
dx

—=€X(x,y),
;” (0.13)
?);:yo(x,y)+5Y(x,y).

Parameter ¢ is supposed to be small. All variables are divided into fast y and slow

x . Function X is 27 -periodic in y. We try to find the change of variables

x:;+8u1(;,;),y:;+5v1(;,;) (0.14)
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leading to the equations

%—5Al(x),%:yo(x,y)+831 (;) (0.15)

This is the common way of asymptotical methods for systems of the form (0.13) [10].
Change (0.14) contains variables of higher order of smallness in general case. But the
reasoning became rather complicated if y 1s indeed a vector. Functions u,,v, are

finite. Substituting (0.14) to (0.13) and taking into account (0.15) we get the equation
for u,

S5 (5)=x(5)- 4 () 016

i=1
where k& 1s a number of slow variables. Since X 1is periodic in y it can be

decomposed to the Fourier series

X(xy)=2a,. . (x)expi(Xn;y;).

We try to find , in a form

u, (;,;) = anlr_”nk (;) expi(an;j) + ch ()_c);j

Taking into account (0.16) we get

(;) _ a.nl,.‘.,nk (_x) ’
iy,
2/ (x)=a0 o (x) =4 ().
Function #, is finite so all ¢, are equal to zero. In opposite case u, may rise to
infinite value as ; rise. This leads to

a0 o(7)=4(7).

but a, , ()_c) 1s the mean value of X . So

4(x)= (Zi)k [ X(x3)dbredr, = X(5).

That means that 4, is the X averaged by all fast variables y. Taking into account

only the first order of smallness we obtain equations for slow variables evolution

xX= ;%—5)((_)
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For the time interval ¢[] % the accuracy of slow variables determination is

‘x—)_c‘D g. Equation for slow variables evolution are obtained by averaging initial
equations by all fast variables.
2.2.  Transient motion

Let’s consider transient motion of a satellite. Control torque generated by the
MACS is
M=mxB
where m is the magnetic dipole moment of a satellite. Control utilizes the “-Bdot”
algorithm. The magnetic dipole moment is [11]
m_ =-k——=
’ dt
where £ is the positive constant. The geomagnetic induction vector derivative in the
Ox x,x; frame is determined by its derivative in the O,Z;Z,Z; frame by the expression
dB. _ \rqr 4B,
dt dt
We consider fast rotations of a satellite. In this case the first term in (0.17)

o xB_. (0.17)

describing the change of B in the inertial space may be neglected in comparison with
the second. Such a case may occur on the first stage of satellite functioning. Satellites
often have big angular velocity after the separation from the launch vehicle. Note that
the angular momentum of a flywheel may be still higher than angular momentum of a
satellite itself by at least a magnitude. We consider the control torque
M, =k(w xB )xB_. (0.18)
We rewrite equations (0.6) introducing argument of latitude u instead of time,
dimensionless angular momentum magnitude / by the relation L =L/ where L, 1s

the initial magnitude and dimensionless torque M,

£:81M3L,d_p:gﬂu,d_o-: .g MZL:

du du du sinp

@=Ullcos9+ - (MIL COSV/+1\_/12Lsinl//)+ﬂw,

du sin@ sin@ 0.19)
du sin @

? =In,sinfsinpcosp + 8(]\_/12L cosy ~Mu Sil’ll//) + using
u
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2 ) 2 . 2 5
where g:ki, nlzﬂ 1 _sin"g cos g , Uzzﬁ SIn_ ¢ Cos @ |
C A B , A B

We assume that the control torque is small in a sense of small change of angular
momentum for one revolution on the orbit in comparison with its value. It means that
¢ 1s small. Variables /, p,o are obviously slow, variable u is fast. We need to know
which of the variables ¢,,0 are slow and which are fast. Consider the angular
momentum of a flywheel to be prevailing in comparison with the angular momentum
of a satellite itself, without a flywheel. This assumption is not valid if a flywheel is
used on a satellite with a mass by a magnitude greater than the design of a flywheel
suggests or the angular velocity of a satellite exceeds several tens degrees per second
(for a small satellite). If the angular momentum of a flywheel is big, the angular
momentum of a system satellite-flywheel is directed almost along the Ox, axis. In
this case angle ¢ us close to zero, angle € is close to 90°. Variables ¢, are slow,

variable i is fast. We now can obtain the equations for slow variables. We need first

to find the torque in the OL;L,L; frame. Angular momentum in the frame OL;L,L; is

LL:(O,O,L)T. Angular momentum in the frame Ox;x,x; can be found as

L =A'L,. That leads to L =L(ay,a,,a,) and the angular velocity in the

T
Oxx,x; frameis @ =L %aﬂ,%(an—%j,%aBJ . Next,
1 1 1 h) 1
1—46131 1_46111%1 +Eal2 ) T +Ea13%3
o, =Am, =L ;: ZZ Zi l(%_ﬁj =L 1021%1"'1022 0321 +laz3a33 . (020
B L A B L) C
@ Gy Gy 1 1,1 A
Eaﬁ 1—4031 +E%z ) 7 +E%

Taking into account (0.12) the geomagnetic induction vector in the frame
OL,L,L; is
9,8, + 4,,B, + ¢;,B,
B, = QTBZ =B)| 4,8, +q,,B, + 43, B, (0.21)
938, + 45,8, + 43,8,

where
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B, sin®sin2u 0
B, |=|sin®cos2u |+ cos®
B, cos® —sin®cos2u

According to (0.20) and (0.21) fast variable y is present only in (0.20) while

fast variable u is present only in (0.21). Taking into account the form of the control
torque (0.18) we can average (0.20) by w first and then find the torque averaging

(0.18) by u. To average (0.20) by w we write matrix (0.2) taking into account
/4
zoaez_a
4 2

cosy —@cosy —Osiny  siny
A=|siny —@siny +6cosy —cosy |.
@ 1 0
That leads to

1 T
(@,), =(O,O,E(L —h)) .
Control torque averaged by v is
kL,B,
<Ml>u/ :k(<mL>W xBL)xBL :#

where hy=h/L,.

In order to average (0.22) by u we need expressions

T
(l _hO)(BlLBSL’B2LBSL’_Bl2L _BZZL) (0.22)

1 2z o
B, :Z_([BiBjdu, (i, j=1,2,3).

: 1 .
Some calculation leads to B,=B,, = Esm2 0, B, =co0s’ @,

1 . .
B, = 5(0032 ® —Esm2 @), B, =B, =0. Taking into account (0.22) we can now

write equations for slow variables evolution. Equations for /, p,o are separated from
the equations for @,0. We consider only the first group of equations. For the
transient motion the main variable of interest is the angular momentum magnitude /.
Equations for the evolution of /, p,o are

11028, (102 B+ (1 02) B~ B0, 425)]

dp
du = 5(1 - ho)[QHQBBn + 451918y, + 43195855 + By (%1%3 T 4319 )] ) (0.23)
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do _

1
E - ‘9(1 - ho)m[qlqusBu + 40928, + By (%2%3 T 93,9 )] .

2
0

w,B

Here new parameter ¢ = is introduced. But if the torque is small in a sense

described above this new parameter is small again. All the reasoning about slow and
fast variables is valid. Taking into account (0.1) and expressions for B, equations

(0.23) take form

dr_ —el(1- ho)(sin2 @ +7sin® p— 5iycospsinpsin0') ,
du

d : : .

d—’;) =—¢(I- ho)(nsmpcosp +dnsin O'(cos2 p —sin’ p)) :
do

= g8 (1 —hy)ncosoctgp

where 7 = cos’ @—%sinzG). We neglect terms of the order &0 since o :0(1). The

system takes form

dl . :
E = —gl(l —ho)(sm2 ®+ 77s1n2 ,0),

dp
E:_g
do _
du
These equations are similar to those obtained in [11] except for the multiplier
(I—h,). We divide this first equation in (0.24) by the second

(l—ho)nsinpcosp, (0.24)

0.

dl _Zsin2®+77sin2p
dp nsin pcosp

Integrating this relation we get
In/=sin’@In(tgp)+ gln(tg2 o+ 1) -C,

where C, =sin’ ®ln(tg po) + %ln(tg2 P+ 1) 1s integration constant. This leads to

I(p)= exp(sin2 Oln(tgp)+ %ln(tg2 o+ 1) — Coj (0.25)

and
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T dp ——c(u—u,) (0.26)
. = o) :
b (Z(p) —ho)nsmpcosp
Expressions (0.26) and (0.25) deliver the solution of (0.24) in quadratures.
Figure 5 introduces the result of decreasing of the angular momentum
magnitude for a set of inclinations and ¢ =0.1, 4, =0.9.
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=
w
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0.955
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0 05 1 15 2 25 3 35 4 45 5 .
circles

Fig. 5. Angular momentum damping
This figure shows that the time-response of the algorithm, that is the rate of angular
momentum damping, rises when orbit inclination increases for a given /,. Similar

result was obtained for the “-Bdo¢” algorithm in case of a satellite without a flywheel
[12] and for a spin-stabilized satellite [13]. The cone half-opening angle in the
averaged geomagnetic field model increases with the inclination. This results in the
increased amplitude of the geomagnetic induction vector change. This vector is
constant for the equatorial orbit and angular momentum is almost not damped. In
case of polar orbit geomagnetic induction vector lies in the orbital plane. It has the
most change in the direction and damping rate is maximal.

Let’s consider the impact of a flywheel’s angular momentum magnitude 4, on

the time-response of the damping algorithm. Figures 6 and 7 introduce the value of
the angular momentum of a satellite itself with respect to its initial value in percents.
Figure 6 corresponds to the value of angular momentum after 10 circles of a satellite
on the orbit, Figure 7 corresponds to 2 circles. It is seen that the value of a flywheel
angular momentum has insignificant impact on the time-response. Slight inclination
of the curves indicate that time-response rises when 4, rise. It is especially clear if

one consider the curve corresponding to the value of angular momentum equal to
70% in the Figure 7.
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Consider equations (0.24) in the vicinity of equilibrium position. Equilibrium
position are [/=h,p=0 and /=hy,p :% (note that o =const). Stability of these

positions depends on the sign of 7 and, therefore, on the orbit inclination. If

inclination is less than 45.5° the first position is stable, if greater — the second position
is stable. We consider only the first position as the example. Linearized equation for
the magnitude of angular momentum is

_ —¢gh, sin® Ox
du
where x =/—h,. For a satellite equipped only with MACS this equation is [12]
@ _ —&h, sin’ @y
du
where A4, =—+£+l, y=I.
44 4B 2

It is seen, that the time response is close for systems with or without a flywheel
and raises when the orbit inclination increases. The difference in the time-response

: . c C :
rises when expressions Vi) decrease. When C << A4,C << B the time-response

differs by a half since 4, is close to 1. For both systems we find the time u~ (in

circles), that is the time necessary to reduce the angular momentum magnitude by a
half. The relation between these parameters for two systems is A4,/ 4, and is close to

1 when 4, [0.9,1) and principal moments of inertia are commeasurable (conditions

A<<C and B<<C leading to A, —> o are not satisfied). The results for u" for
A, =1.0247 are listed in the Table 1. The relation A4,/ A, is close to 1 and the time-
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response of two systems is close, as it is shown in the linearized case. For all systems
£=0.1, J=diag(3,3.1,3.2) kgm’, p,=0.1.

Inclination, ° 10 20 30 40 50 60 70 80 90
Without a flywheel [16.58 | 4.85 | 2.64 | 1.86 | 1.48 | 1.29 | 1.18 | 1.11 | 1.09
Flywheel #,=0.9 1631 | 492 | 2.74 | 1.97 | 1.56 | 1.36 | 1.24 | 1.17 | 1.14

Flywheel h,=0.95 |15.73 | 491 | 2.73 | 1.93 | 1.54 | 1.34 | 1.21 | 1.14 | 1.12

Table 1. Time-response comparison for systems including MACS and a flywheel and
system including only MACS

2.3. Steady-state motion. Gravitational orientation

We now consider the steady-state motion of a satellite when its angular velocity
is small and the axes of the frames Ox;x,x; and OX;X,X; virtually coincide. A satellite
is subjected to the gravitational and magnetic torques. This motion is called
gravitational orientation. Its stability is provided by the gravity-gradient torque.
Sufficient conditions of the stability of gravitational orientation are [1]

A-C>0, o,(B-A4)+h>0, 40,(B-C)+h>0.

Since the angular momentum of a flywheel is considered big in comparison with
the angular momentum of a satellite itself (2 J.@,, i=1,2,3), only the condition

A—C >0 may be considered. It provides the stability by a pitch angle (rotation in the
orbital plane). Stability by roll and yaw angles is provided by a flywheel. MACS
implements dipole magnetic moment
m= —k@ : (0.27)
dt
Let’s study the influence of the torque M=mxB on the gravitational
orientation. We assume that this torque is small in comparison with gravitational. We

rewrite equations (0.8) introducing argument of latitude instead of time
dQ 1

d_lzhAQ3 +0, (9293 —3d32d33)+ 2 M,
Uu 0

dQ 1

duz =0, (9193 - 3d31d33) + B—gM2x’

a2, =—h.Q, + 6, (ngz - 3dmdsz) + %MW

du Cay

(0.28)

da 1

— (Qsin B+Q,cos B) -1,
du cosy
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u

Q:Qcosﬁ—ﬂzsinﬂ
du

where 7, :L, h :L, 0, :ﬁ, 0, =ﬂ, 0, :ﬂ, Q =0 /o,
Aw, Co, A B C
(i=1,2,3).

Equations (0.28) allow the stationary solution a ==y =0,Q2, =Q, =0,Q, =1
if a satellite 1s subjected only to the gravitational torque. We try to find solutions,
generated from this stationary one in case of small additional magnetic torque. We
use Poincare method [10]. Equations (0.28) are of the form

x=f(x)+eg(x)
kB

where x=(Ql,Q2,Q3,a,ﬂ,7/), E= . We try to find the solution in a form

a)()
X=X, +&X, + 0(52) where  x,=(0,1,0,0,0,0) is the stationary solution,
dx, dx,

X, = (w, wy,wy, 0, B.7,). That leads to e =

=f(x,)+&(F(x,)x, +g(x0))+0(32) where F, :%. In order to find F we need
X

j
an explicit form of d,,d,;,d, d,;,d;,d;,:

. . 2 .
d,,d,, =sinacosasin fcosy +cos” acos Bsinycosy,
d,d,, = —sinacosacos Scosy +cos’ asin Bsinycosy,

.2 . . 2 . . .2 .
d, d,, =—sin” asin fcos f—sina cosa cos” fsiny +sinacosasin” Ssiny +

+cos’ asin Bcos Bsin’ 7.
That leads to
0 0 0,+h, 0 0 -30,
0 0 0 30, 0 0
Fx)o|fche 000 00
0 1 0 0 O 0
0 0 | 0O O 1
1 0 0 0 -1 0

To find g(xo) we need the derivative of the geomagnetic induction vector in the

Ox x,x3 frame
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de :DT dBX
dt dt
where ® , 1s relative angular velocity of a satellite in the Ox;x,x; frame. Note that

- (Drel X Bx

the stationary solution x, corresponds to zero relative velocity of the frames Ox;x,x;
and OX;X>X; and their coincidence. That is ®,, =0, D =E and therefore
de _ dBX

dt  dt
We use more accurate dipole model instead of averaged here. Geomagnetic induction

vector in the frame OX;X>X;1s B= 5, (smzcosu,cosz,—Zsmzsmu) , SO

.. ( .B B . !
g(x,)=sinicosi —ZZcosu,Ztgz,Esmu,O,O,O .

For the x; we finally get equations

dw, :(9A + hA)W3 -30,7, —2§sinicosicosu,

daw, =36, + 2sinicositgi,

;u ., (0.29)
W . . .

dua =(0.—h.)w, +Esmzcoszsmu,

da, dp, dy,

—_— =W y — — = +Ww 5 — =W, - .

du > du i du A

Equations for «, and w, are separated. General solution for ¢, and w, i1s the
oscillation near the stationary solution. Matrix of the homogeneous equations for
Biriw,w is
0 0,+h, 0 =30,
0. —h. 0 0 0
0 1 0 1
1 0 -1 0
We find its eigen values from the relation
det(W—-AE)=A"+alA’ +b
where a=1+36,—(0,+h,)(0.—h.), b=—(6. —h.)(40,+h,). That leads to

A? :%(—ai\/az —4b).

Here we again assume that the angular momentum of a flywheel is times bigger

than the angular momentum of a satellite, so a’ —4b=h’h’ + O(hjhc +hlh A) >0 and
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with it @ > 0. That means that all eigen values are complex and general solution is the
oscillation near the stationary solution. Forced solution is of greater interest. It shows
the influence of MACS and magnetic torque on the steady-state motion. So we now
try to find particular solution of (0.29). For ¢, we have

2sin’i

30,

that means that implementing MACS leads to the constant deviation in the orbital
plane. We try to find angles f,,7, in the form

b

B, =Asinu+ A,cosu, y, =B sinu+ B, cosu.

Therefore

w, =(4, — B, )sinu + (A4, + B)cosu, wy =—(A4, + B, )sinu+ (4, — B, )cosu.
Substituting these expressions to (0.29) and setting equalities between the constants
held by sinu and cosu we obtain the equations for 4, 4,,B,, B,

(1-6,—h,)A +(-1+46,+h,)B, :—2§sinicosi,
—(1-6,—h )4, +(-1+46,+h,)B =0,
(-1-6.+h.)4,—(1+6,.—h.)B =0,
(-1-6.+h. )4, +(1+6.—h.)B, zgsinicosi.

Solving allows us to find the forced solution of (0.29)
2sin’i
: 30,

B = sinicosi£—2§(1+ 0, —hc)+g(—1 +486, +hA))sinu,

7 :sinicosi(g(l—HA —hA)—2§(—1—(9C +hc)jcosu,

W, :sinicosi(—4§(1+<9c—hc)+§(56?A +2h, —2)jsinu,
w, =0,

.. B B
w, :smlcosz(—4z(1+(9c —hc)+E(5¢9A +2h, —2))00514.

The deviation from the stationary solution induced by MACS is found. Small
constant deviation occurs in the orbital plane. Small oscillations with orbital
frequency take place for the roll and yaw angles. Note that resonance may occur if
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eigen value 4 of matrix W is equal to *i. Parameters leading to these eigen values
are found from the expression

A =%(—ai\/a2 —4b):—1,

that leads to

—a+b+1=0,

and finally to

h.—06.-1=0.

In the considered case of a flywheel with big angular momentum its value 4. is not

commeasurable with ,.,1 and no resonance can occur.

2.4. Steady-state motion. Arbitrary orientation in the orbital plane

MACS may be used to provide any equilibrium position « =¢, in the orbital

plane and its stability. Gravity-gradient torque becomes disturbing one. We assume
that B,y 10, Q,,Q,10, Q,[11 after the transient motion. Direct cosine matrix (0.7)

takes form
cosax —fcosa+ysina sina

D=| 1 -7 . (0.30)
—sina@  fsina+ycosa cosa

Equations of motion (0.8) taking into account (0.30) and introducing argument
of latitude instead of time are

dQ, > . 1

Y —hAQ3+6’A(Q3—3(;/cos a+,6’s1nacosa))+A—w§M1x,
Q : 1

A« =30,sinacosa +—M,_,

du Bw,

aQ, . . ) 1

Y ——hCQI+t9C(Q1+3(7/smacosa—,6’s1n a))+c—w§M3x,
da

dp dy
W o 1% 0y Y _p.
o

Let’s assume that M, doesn’t depend on f,7,Q,,Q2,. We will generate M, so
that this requirement 1s met. Equations for «,Q2, are separated. We now consider the
problem of reorientation of a satellite to the arbitrary position in the orbital plane and
maintaining this orientation. The analysis is based on the equation
d’a

du’

=30, sinacosa+(M,+M,) (0.31)
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where M, and M, are damping and restoring components of the torque respectively
scaled by Bw,. We introduce new variable é=a -, and restoring torque
M, =k*sin(e, — a). Let gravitational and damping torques be zero. That leads to the

equation

d>é

2
u

+x7siné =0

of a mathematical pendulum oscillations near the position &=0. Introducing the
damping component of the torque makes this position asymptotically stable. We use
“-Bdot” algorithm,
m_ :k(—DT&+mM xDTBXj.
du
Note that omitting the first term in this expression is no longer valid since the
angular velocity of a satellite is less or commeasurable with orbital. We assume that

the damping component of the torque is negligible with respect to the restoring one,

2
0

Bo,

so ¢/ Kk*<<1 where ¢=

. That allows us to omit small expressions in (0.30)

since their contribution in (0.31) is of the order of ¢f and &y. We neglect Q,,€Q,
with the same argument. Taking into account (0.10) and (0.30) we have
(cosasinu —sinacosu)+(Q, —1)(sina cosu —cosasinu)
m_ = kB,w,sini 0
(sinasinu + cosacosu)+(Q, —1)(—sinasinu —cosa cosu )
The damping component of the torque is M, = gsin’i (2 — Qz). Equation (0.31) may
be rewritten as

d’&

2
u

, . o.d .
+x° s1ncf+gs1n21d—§: gsin’i.
u

Consider homogeneous equation in the vicinity of the equilibrium position £=0.
The equation is

2
d—6:+1(2§+gsin2i£:0.
du du

Its solution in case &/ k> <<1 is

&E=¢ exp(—%gsin2 iujsin(%\/m{‘ —¢&’sin*i (u +¢, )) (0.32)

where &,,¢&, are determined by the initial conditions. The solution (0.32) describe the

damping oscillations. The rate of damping depends on the orbit inclination. We
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consider now non-homogeneous equation and introduce the gravity-gradient torque.
That leads to the equation

d2é

du?

( ,u)§ ni M

where 1= ¢gsin’i+36,sina, cosa,. The forced solution is

2 I . ,. (1
§=5J.,uexp(—§8sm l(x—u)jsm(ga)(u—x)jdx

Uy

2 . . . .
where o = \/ 4(/(2 + y) —&’sin*i . Assuming u, =0 we have the forced solution

fzzﬂ — ? 5 1-Esin| Ly |- Leos| Lu
w ESMi+w 2 2 2 2

And finally the solution of the equation

§=¢ exp(—%é‘sinz iu)sin(%a)(u + fo)) +

+2,u — f 5 1= Zsin| Lu |- Leos| Zu || (0.33)
o g SN I+® 2 2 2 2

Gravity-gradient torque influence results in the increased deviation from the
equilibrium position and small oscillation near this new position. The amplitude of
both deviation and oscillation depends on the ratio between the gravity-gradient

torque and the restoring component of the torque. Damping component magnitude
and the orbit inclination also have impact on the accuracy of orientation since the
deviation and amplitude depend not only on the gravitational torque (term

30,sina, cosa, in u) but on the damping component too (term £sin’i in ).
Implementing restoring torque causes extraneous components lying not in the

orbital plane since M, =m,B, —mB,. We assume, for example, that the restoring

torque is generated using the first magnetorquer, so m, =m, =0. That leads to the

torque

T
Bz
< 0.34
2 j (0.34)

3x

M =(O,K2 sin(a, —a),—x*sin(a, — )

The third component is the extraneous one. It is difficult to find a solution for
B,7,Q,,Q, taking into account gravity-gradient torque, restoring torque (in this case

it is extraneous one) and damping torque. If homogeneous system with only gravity-
gradient torque is considered its solution is oscillation near the stationary solution
B=r=0, Q =Q,=0. Extraneous torque generates a forced solution that is small

oscillation near the stationary solution or near slightly different new stationary
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solution. This deviation is small because of a flywheel with big angular momentum.
Damping torque forces damping of these oscillations. That means that the torque
(0.34) with the damping torque allows a satellite to be oriented at arbitrary angle ¢,

in the orbital plane. The accuracy is characterized by the solution (0.33).

3. Numerical analysis

Numerical analysis is carried out for the satellite with inertia tensor J = (4,5,3)

kg'm®. Orbit inclination is 50°. Dipole magnetic moment of magnetorquers in the
transient mode is 1 A'm’. In the nominal motion dipole magnetic moment used for

restoring is 1 A'm’, for damping is 0.1 A-m’. Flywheel angular momentum is 0.4
N-ms.

II|1 .|I|2 "I'S 3

200
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Fig. 8. Transient motion without a flywheel. Initial conditions o = f =y = 30",

a)lza)zza)3:10%
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In these Figures y,. (i=1,2,3) are the angles between the axes of the Oxx.x;

and the OX, X>X; frames. Figures 8 and 9 show that the time of transient motion is
close for systems with or without a flywheel. Figure 10 introduces reorientation by
angle 180° in the orbital plane. The axis of a flywheel conserve its orientation
perpendicular to the orbital plane.

Conclusion

Transient and steady-state motions of a satellite equipped with MACS and a
flywheel are considered. The solution in quadratures for the slow variables in
transient motion is found. It is shown that the time-response rises when orbit
inclination increases. For steady-state motion small oscillations near the stationary
solution in gravity field is found. System time-response is evaluated. The time-
response for systems with or without a flywheel differs a little. An algorithm
providing arbitrary orientation in the orbital plane in a steady-state motion is
proposed. Small oscillations near this position are found. Numerical analysis is
carried out.
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