Keldysh Institute  Publication search

Keldysh Institute preprints « Preprint No. 6, 2011

ISSN 2071-2898 (Print)
ISSN 2071-2901 (Online)

Ovchinnikov M. Y., Pen'kov V..,
Roldugin D.S.

Spin-stabilized satellite with

three-stage active magnetic
attitude control system

Recommended form of bibliographic references

Ovchinnikov M. Y., Pen'kov V.l., Roldugin D.S. Spin-stabilized satellite with three-stage active
magnetic attitude control system // Keldysh Institute Preprints. 2011. No. 6. 23 p.

URL: http://library.keldysh.ru/preprint.asp?id=2011-6&lg=e

Publications based on the preprint

M.Yu. Ovchinnikov, D.S. Roldugin, V.I. Penkov, Asymptotic study of a complete magnetic attitude
control cycle providing a single-axis orientation // Acta Astronautica, 2012, V. 77, pp. 48-60

DOI: 10.1016/j.actaastro.2012.03.001

URL: http://www.sciencedirect.com/science/article/pii/S0094576512000720



http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2011-6&lg=e
http://library.keldysh.ru/author_page.asp?aid=1097&lg=e
http://library.keldysh.ru/preprint.asp?id=2011-6&lg=e
http://dx.doi.org/10.1016/j.actaastro.2012.03.001
http://www.sciencedirect.com/science/article/pii/S0094576512000720

KELDYSH INSTITUTE OF APPLIED MATHEMATICS
RUSSIAN ACADEMY OF SCIENCE

M.Yu. Ovchinnikov, V.I. Pen’kov, D.S. Roldugin

Spin-stabilized satellite with

three-stage active magnetic attitude control system

Moscow
2011



Spin-stabilized satellite with three-stage active magnetic attitude control
system. M.Yu. Ovchinnikov, V.I. Pen’kov, and D.S.Roldugin. The Keldysh Institute
of Applied Mathematics of Russian Academy of Sciences, 2011, 23 p., 14 items of
bibliography, 9 figures

The angular motion of an axisymmetrical satellite equipped with the active
magnetic attitude control system is considered. Dynamics of the satellite is
analytically studied on the whole control loop consisting of a bundle of three
successive algorithms. Those algorithms are as follows: nutation damping, spinning
about the axis of symmetry, reorientation of the axis in the inertial space. In certain
cases explicit solutions of the equations of motion are obtained. The results are
verified by numerical simulation.

Key words: active magnetic attitude control, spin-stabilized satellite, averaged
geomagnetic field model, time-response

CnyTHHK Cc AKTHUBHOU MATHUTHOM cucreMoi OpHEeHTAIlNH,
cTaduIu3upyeMblid COOCTBEHHBIM BpalieHueM B Tpu 3tana. M.KO.OBYMHHUKOB,
B.W. Ilenwkos, J[.C.Ponayrun. UTIM um.M.B.Kenneima PAH, Mocksa, 2011r., 23
c., oubmmorpadus: 14 naumeHoBanuii, 9 puCyHKOB

PaccmarpuBaeTcss  OCECUMMETPHUYHBIA  CIYTHUK-TUPOCKOIL,  OCHAIIEHHBIN
AKTUBHOM MAarHMTHOM CHUCTEMOW OPUEHTALMH, PEATU3YIOLIEW MOCIEN0BATENBHO TPU
3daKOHa YIIPpaBJICHHA, KOTOPBIC IMO3BOJIAIOT YCTAHOBHUTL OChb CUMMCTPHH CIIYTHHKA B
3aJIJaHHOM HAIlpaBJICHWM B HWHEPLUHAIBHOM HpocTpaHcTBe. Mccnenyrores Ttpu
QIrOpUTMa: TallleHue HYTAIIMOHHBIX KOJIEOAaHUH, pacKpyTKa BOKPYT OCH CUMMETPUU
U TIEPEOPUEHTALNS OCH CUMMETPUU B HMHEPUMAIBHOM IPOCTpaHCTBE. B pamkax
OCpG)IHGHHOﬁ MOJICIN I'€OMArHuTHOI' O I10JIs1 IMPOBOJAUTCA AHAJIUTHUUYCCKOC
HUCCIICA0BAHUC ypaBHeHI/Iﬁ ABWKCHUS CITYTHHKA JIJIA BCEX TPCX 3dKOHOB YITPABJICHH.
AHanu3upyeTcsi 3aBUCUMOCTb UX OBICTPOJEHCTBUS OT MapaMeTpPOB 3a1auHu.

KaroueBbie CJIoBa: MAar"HmuTHasda CUCTECMA OpHUCHTAIUH, CIIYTHHK,
CTaOMIIN3UPYEMBINT COOCTBEHHBIM BpaIlleHUEM, OCPEIHECHHAs MOJENb MAarHHUTHOTO

1oJ1st 3emMIiId, OBICTPOICMCTBUE CUCTEMBI OPUEHTAIIUU



Introduction

Spin stabilization is a common way to maintain a satellite attitude. Satellite
acquires the property of a gyroscope while it is spinned around the axis of symmetry
with a high angular velocity. Only spinning around the principal axis of maximum
inertia is stable if the satellite is equipped with an energy dissipation device and it is
no torque subjected [1]. This result is important since an energy dissipation device is
necessary for any attitude control system including one for a spinning satellite. In the
latter case attitude control system performance may be divided into three modes:
angular velocity damping, spinning around the axis of symmetry, reorientation of the
spin-axis to a required direction in the inertial space. These modes may be
implemented consequently or combined. To conduct the whole control circle, satellite
must be equipped with an active attitude control system to manage its angular
velocity and attitude.

In this paper we consider the most common way of attitude control of a spinning
satellite. The method is based on the interaction between the geomagnetic field and
satellite magnetized actuators. Magnetic attitude control systems (MACS) are
especially used when it is critical to have low-cost and low-mass control system
capable of implementing conventional algorithms for onboard computer. Principal
methods of magnetic attitude control of a spinning satellite are considered in [2] and
[3], in [4] general dynamical properties of a spin-stabilized satellite along with
technical issues are discussed. Paper [5] is a comprehensive survey of works on
satellite orientation and stabilization, steady-state motion stability and external
torques effect including these problems for a spinning satellite.

Five different algorithms are studied in this paper. “-Bdot” algorithm
implemented by three coils is used for the initial angular velocity damping and by
one coil is used as a damper of nutational motion. The algorithm is used
simultaneously with the coarse reorientation algorithm or fine reorientation
algorithm. Then spinning-up around the axis of symmetry is implemented (if still

necessary) and fine reorientation is carried out. Dynamics of the satellite is studied



using averaging technique [6] for each algorithm and motion state. Results obtained
allow us to analyze the dependence of primary satellite motion characteristics on the
orbit inclination and other parameters of the satellite. In specific cases we could

obtain preferable values of the parameters from the time-response point of view.

1. Problem description
Summarize all assumptions, introduce geomagnetic field model, reference

frames, equation of motion and analysis technique.

Angular motion of a spinning satellite equipped with MACS is examined in the
paper. MACS contains three mutually orthogonal magnetic coils. Assume that MACS
Is capable to develop a magnetic dipole moment in arbitrary direction but of limited
value wrt satellite. Only torque produced by the interaction of MACS with the
geomagnetic field is taken into account. Among number of geomagnetic field models
available we chose the averaged one to represent the geomagnetic field [7]. Angular
motion of a satellite is described by the Beletsky-Chernousko variables [8]. Satellite’s
orbit is assumed as a Keplerian circular one. MACS implements following
algorithms:

1. Nutation damping. Only single coil disposed along the axis of symmetry
of a satellite is used. It implements cut “-Bdot” algorithm.

2. Spinning of the satellite around its axis of symmetry. Two coils disposed
in its equatorial plane (i.e. plane perpendicular to the axis of symmetry) are used.

3. Fine spin axis reorientation in the inertial space.

The choice of geomagnetic field model is one of the most crucial points for the
success of whole work. Let us describe geomagnetic field model used in this paper.
Magnetic induction vector is usually determined using decomposition to the Gauss
series [9]

B=VV,V= —Rzikﬂ( R]MZL(g;ﬂ (t)cosmA, +hy' (t)sinm4, )Pn’“ (cos 3)
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where A, is the longitude of the point where the induction vector is calculated,
9=90"-¢,, 6, is the latitude of the point, r is the distance to the point from the
Earth center, R is average Earth radius. g,' and h'' are Schmitt coefficients given in

a table, P" is a quasinormalised Legendre polynomial. It is impossible to use this

model in the analytical study. So, a number of consequent simplifications are
introduced. Inclined dipole model is derived from the Gauss model when one takes
into account only three first terms. It describes the field of a dipole placed in the
Earth center and inclined to its axis by 168°26'. This model admits rather compact
analytical expression though it is still too complicated for the analytical study.
Further simplification, the direct dipole model is wide used. In this model the
geomagnetic field is one of the dipole placed in the center of the Earth and directed
antiparallel to its axis of day rotation. Magnetic induction vector moves almost
uniformly on the near-circular cone side while a satellite moves along the orbit. This
model, though rather simple and suitable and allow to utilize powerful Floquet theory
to study periodical solutions appeared from motion equations, nevertheless, does not
allow us to get the solution of the equations of motions in terms of explicit formulas
or quadratures. So, we go further on a way of simplification and compromising
between complexity and veracity and introduce one more simplification considering
the geomagnetic induction vector as moving uniformly on the circular cone side and
its magnitude is constant. To do this we need to notify a reference system O,Y,Y,Y;
where O, is the Earth center, O,Y; axis is directed along with the Earth axis, O,Y; lies
in the Earth equatorial plane and is directed to the ascending node of the satellite
orbit, O,Y, axis is directed so the whole system to be a right-handed. If the magnetic
induction vector source point is translated to the O, then the cone is tangent to the
O,Y3 axis, its axis lies in the O,Y,Y; plane (Fig. 1). The cone half-opening angle is
given [7] by
3sin2i

2(1—3sin2 i -+ +/1+ 3sin’ i)

tgo®=

(1.1)



where i is the orbit inclination. The geomagnetic induction vector moves uniformly

on the cone side with the doubled orbital angular speed, y =2u+ y, where is the
argument of latitude, @, is the orbital angular velocity. Without loss of generality we

can assume y, =0.
Ys

v

Oa Y2

Y1
Fig. 1. Averaged geomagnetic field model

This model, sometimes called averaged, is used in our work. It does not allow
us to take into account non-uniformity of geomagnetic induction vector motion (as
right dipole model does) and its diurnal change (as inclined dipole model does) but it
is considered as a good trade-off between the accuracy of modeling geomagnetic
field and the possibility to get analytical result.

Angle © is of great importance for our work. Expression (1.1) introduces the
relationship between ® and the orbit inclination. In fact, these angles are close, so we
may consider ®~i for a qualitative analysis of the system time-response with
respect to the orbit inclination since the maximum value of ®—i is about 10°.
Comprehensive comparison of models can be found in [9].

Let us introduce all necessary reference frames.

0.Z:Z,Z3 is the inertial frame, got from O,Y,Y,Y5 turning by angle ® about O,Y,

axis.



OL;L,L; is the frame associated with the angular momentum of a satellite. O is
the satellite center of mass, OL; axis is directed along the angular momentum, OL,
axis is perpendicular to OL3 and lies in a plane parallel to the O,Z,Z, plane and
containing O, OL, is directed such that the reference frame is right-handed.

Ox1XoX3 IS the bound frame, its axes are directed along the principal axes of
inertia of the satellite.

Reference frames mutual orientation is described with the direct cosine matrices

Q,A expressed in the following tables

Ll L2 L3 Xl X2 X3
Zl qll qu q13 Li a11 aiZ a13
ZZ qu q22 q23 L2 a'21 a'22 a'23

Zy Oy Op O L, a; a, a

We introduce low indices Z,L,x to denote the vector components in frames
0,212,735, OL;L,L3 and Ox;x,X3 respectively. For example, for the first component of
a torque in these frames we write M, , M, ,M,, .

We use the Beletsky-Chernousko variables to represent the motion of the
satellite. These variables are L, p,o,¢,17,0 [8] where L is the angular momentum
magnitude, angles p,o represent its orientation with respect to O,Z,Z,Z; frame (Fig.
2). Orientation of the frame Ox;x,X3 with respect to OL;L,L; is described using Euler
angles ¢,y,60. The same variables were first introduced by Bulgakov [11] for a
gyroscope movement problem. The equations for an axisymmetrical satellite were
first proposed by Beletsky [12] and for a satellite with arbitrary moments of inertia by
Chernousko [13]. Equations of a free rigid body motion about its center of mass in
variables ¢,,60 were first proposed by Wittaker [13] but evolutionary equations

were not considered. Direct cosine matrix Q takes form

COsSpcosSc —Sino  Sin pcoso
Q=| cospsinc cosoc Sinpsino |. (1.2)
—sinp 0 CoS p



Direct cosine matrix A is a common transition matrix for Euler angles and is of the
form

COS@COSy —CosAsingsiny  —singcosy —cosdcosesiny  sin@siny
A=| cosgsiny +cos@singcosy  —singsiny +cosdcosepcosy  —sindcosy |.(1.3)

sin@sing sin@cos g cosd
A7,
L
Jo,
\
\
\
\
Oa ! >
1
7,
| 2
o~ |
L
¢
\
Z,

Fig. 2. Angular momentum attitude in the inertial space

Inertia tensor of the satellite is J, =diag(A, A,C). Angular motion of the

satellite in a circular Keplerian orbit is described [8] by the equations
dL dp 1 do 1

dt Mdt L “'dt Lsinp

MZL’

de 1 .

E:E(MZLCOSV/—MlLsmt//),

d 1 1 1 4
¢ -

—=LcosO| ——— |+ M., cosy + M, siny ),

dt (c Aj LsinH( w COSy+ My siny )

dy L 1 1 .

—=———M,, cosyctgd——M,, (ctgp+sinyctgl

at A L ou w Clg L ZL( gp y Clg )

where M, ,M,, ,M,, are the torque components in OL,L,L; frame.

Equations of motion in Beletsky-Chernousko variables are convenient for the
asymptotical methods implementation. If the torque acting on the satellite is small in

a sense of a small ratio between angular momentum change during one orbit or one



revolution about its center of mass and its mean value on this interval then small

parameter ¢ may be introduced. Equations (1.4) are of the form
—:gX(x,y,t),d—y:yo(x)+gY(x,y,t) (1.5)

where y =(¢,w,u) are fast variables, while x=(1, p,o,8) are slow ones. So, we can

use averaging technique [6] to determine slow variables evolution. In order to do it
we need to average equations in the vicinity of the undisturbed solution of equations
(1.4). However, since this motion is a regular precession, we need only to average
separately the equations for slow variables over fast variables. After this we get
evolutionary equations for slow variables with accuracy of the order of & on the time
interval of order of 1/ ¢. It also should be noted that it is necessary only to average

over ¢ and u since the satellite is considered axisymmetrical.

2. Nutation damping algorithm
Nutation damping algorithm is constructed on the basis of well-known “-Bdot”

damping control. If the polar component of the angular velocity is less than or equal
to the necessary value, it is impractical to damp it and then spin again. In this
situation only equatorial component should be damped. In order to do so, we use the

“-Bdot” algorithm implemented by a single coil only. Magnetic dipole moment of the

satellite m, :(O,O,m)T in this case is determined by the expression
m_ =-k | —*e, |e,, 2.1

X l( dt 3) 3 ( )
where k, is a new positive coefficient, e, is a unit vector of the axis of symmetry of
the satellite. The geomagnetic induction vector derivative in Ox;Xx,x3 frame may be
obtained from its derivative in O,Z,Z,Z5 frame according to the relation

dt dt

Nutation damping algorithm is used for the fast rotating satellite in our case.

-0, xB,. (2.2)

That means we can neglect the first term on the right side of (2.2). It describes
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geomagnetic induction vector change in the inertial space where it rotates with the

velocity of the order of the orbital one. For a fast rotating satellite (L/A>> @,

L /C >> w,) the torque takes form
m, =k ((®,xB,)e, )e,.
In order to obtain dimensionless equations of the form (1.5) from (1.4) we

introduce dimensionless torque M. defined by

2 —_—
M, = KBy Mc. (2.3)
@,C

Next we introduce argument of latitude u=a,(t—t,) instead of dimensional

time in (1.4) and dimensionless angular momentum | according to the expression

L=1L, where L, is the initial angular momentum magnitude. This leads to (1.4)

being rewritten as

ﬂzé‘ﬁ:ﬂ_,d—p:é‘}MlL, dng _1 MZL,
du du I du I'sin p

dé 1/— —
EZEI—(MZLCOSW—MlLS"’H//),

do
—— =nlcosf+¢
du m

(2.4)

ISIne(MlL COSl//-I—MZLSinl//),

?j_lg =1, —g%ﬁn cosy/ctge—e%ﬁn(ctgp+sinz//ctg¢9).

2
Here notations ¢ :kli, m :i(l—lj, n, L are introduced, their meaning
W, A ,\C A A,

Is explained in section 1. We assume that moments of inertia A and C provide no
resonance between n,, 77, and 1 (u rate of change) .

Dimensionless equations averaging leads to
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dl 1 - -

E:—Egl[Zp+(1—3p)3|n2p}sm219,

d—pzlg(?;p—l)SianOSpSinze,

du 2 2.5
d¢ 1 2 i )
E:_55[2p+(1—3p)3|n p}smecos@,

do_g

du

In order not to introduce new parameter, small parameter has the same notation but
different expression, as it will be for each different algorithm. Equations (2.5) admit
substitution p—>—p,p—>7—p and @ >—-60,0 > 7 —06. It is impossible to obtain
the solution of (2.5) in terms of explicit formulas. Let us first consider two special
cases representing two stationary solutions for p. Trivial equation for o is omitted
from now on.

1. Initial condition p, =0. Equations (2.5) take form

dl )
— =—¢plsin?®0,
du &P

a9 =—gpsinécosé.
du

(2.6)
Their solution is

[tg 6] =exp(—epu+c, ),

- 1+exp(—2peu +2¢, )
~ Ll+exp(2c,)

where ¢, =Intgé,. It is clear that with inclination (and, therefore, with p) rise the

time-response also increases. Note that modulus in the last expression for & may be

omitted. We will consider ee[o,nlz] for further analysis. There is no generality

loss since the equations (2.5) admit substitution & > -60,0 > 7 —-6.

2. Case p, = /2. The equations are similar to (2.6), their solution is
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tg0=exp| —&(1- p)u+c, |,

Lt exp| —2(1— p)eu + 2, |
- 1+exp(2c,) '

Contrary to the previous case, the time response lowers while inclination rises.
Consider now general case. Divide the first equation in (2.5) by the third one
and get

?ztgede.

That leads to solution Icosé = cosé,. The first integral 1,(1,0)=1cos@ is obtained. It

shows that the third component of angular velocity vector conserves in the fixed

frame. Divide now the second equation in (2.5) by the third one and get

2p +(1—3p)sin2,oOI
(3p—1)sin pcos p p

which leads to the first integral

=tgodo

Iz(p,H):%(Sp—1)In(tg2p+1)—2p|n\tgp\+(3p—1)In\cos¢9\.
Now two first integrals satisfying conditions of the implicit function theorem are
found and the solution of (2.5) is obtained in quadratures.

There are three parameters which influence the time-response: i,p,,6,. As
expected, with 6, rise the time response (the time necessary to lower €, and,
therefore, the equatorial component of angular velocity Ising/ A) falls. Parameter i

and p, effect is presented in Fig. 3 and Fig. 4.
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Fig. 4. Angle @ after 15 orbits, 6,=70°.

3, if p, is less than approximately 50° the time response rises

with inclination rise, and if p, is greater, it falls. Fig. 4 shows that if the algorithm is

considered on greater time interval, there is some area where the best inclination (the

one that provides minimum @) is about 45°. However, it is clear that for the greater

inclination & would not exceed 14°, while for the small inclination it may stay almost

constant. So, it is preferable to use high-inclined orbit.

3. Spinning around the axis of symmetry

In order to obtain the gyro property the satellite is spun around its axis of

symmetry. In most cases initial spinning rate after the separation from the launch

vehicle is already great, and previous analysis shows that it does not change.

However it is valid for the ideal case without disturbing torques, actuators and
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sensors errors, dynamic disballance in the satellite. The algorithm designed to

increase the spinning rate is necessary. Magnetic dipole moment
m, :k5(BZX’ _le O)T
(3.1)

Is used. The third component of angular velocity rises since

%=k5(512X+B§X).

We use Beletsky-Chernousko variables again. To do that we rewrite (3.1) in a
form

m, =—k.e, xB,

The torque in a fixed frame is as following

M, =k,| Bje;—B,(B,e;) |-

Taking in to account B, = ATBL we get it in OL,L,L3 frame,
a.B; —a,B: —a,B,B, —a,B,B,,

ML = ks aszg _a13BlLBZL - aszzzL _aGSBZLBSL
33385 - a13BlLBSL - aZSBZLB3L - a33832,_

Let this torque be small again. Then all the reasoning related to the asymptotical
methods holds and averaged equations are

dl :
o= g|:2p +(1—3p)sm2p}cosé’,

dp_:—8}(39—1)Sinpcos,ocose,

du I

o __1 (3.2)
49 _ 1 o o0 _(1_ L,

du 2|‘9[2 2p—(1-3p)sin ,o]sme,

do

— =0
du
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k.BS . : :
where £ =—-2 is a new small parameter. Note that & is not necessarily small for

Wy
equations (3.2) to be true. Consider it small after the nutation damping algorithm

implementation. From (3.2) we have

dl _ g[Zp +(1—3p)sin2p],

du

d—p:—g}(?)p—l)sinpcos,o, (3.3)
du I

do 1 o (1 . 5

" 2lg[2 2p-(1-3p)sin®p |6.

If 6 is close to x the satellite should be spun in the opposite direction since

a)3(0)<0. This case can be studied in the same way. Equation for & is separated.

From the first and second equations in (3.3) we have the first integral

L,(1,p)=(3p-1)Inl —%(Sp—1)In(tg2p+1)+2pln\tgp\.

The solution in quadratures is obtained after solving the third equation in (3.3)
directly. Note that in case 3p—1=0 equations lead to | =2/3¢u. Consider two
special cases.

1. If p, =0 then p=p, (stationary solution) and | =2¢pu. The time-response rises
with orbit inclination rise.
2.1f py=n12 then | :g(l— p)u and the time response falls with orbit inclination

rise.
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Fig. 5. Angular momentum after 5 orbits, ,=1°

Fig. 5 brings the effect of p, and i on the time-response. For small p, raising
the inclination results in the time-response rise (special case 1), for p, close to 90°,

the time-response falls with orbit inclination rise (special case 2). However, high-
inclined orbit is preferable again since the worst angular momentum magnitude is
higher than for low-inclined orbit.
Equatorial component of angular velocity does not rise, its derivative is
d(Ising)
du

Since @ is close to 0 equatorial component lowers. Note that the nutation damping

=g -2+2p+(1-3p)sin® p |sinfcosO.

algorithm may be implemented simultaneously with the spinning algorithm.

4, Reorientation of the axis of symmetry
Consider the algorithm that brings the satellite rotating fast around its axis of

symmetry, to the desired attitude of this axis in the inertial space. The algorithm is
m, =[0,0.k,(AL-[e,xB])] (4.1)
where AL=S—-L, S is the necessary direction of the axis of symmetry, k, is a

positive constant. Satellite dynamics is described using the Beletsky-Chernousko

variables. So, we need to determine the torque in OL,L,L; frame. In this case we have
e3L=(O,O,1)T since the satellite is spinned around the axis of symmetry, so

Alw|<<C|em,| (i=12) and its angular momentum is directed almost along this axis
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(if it is antiparallel the analysis is similar). Again, the magnetic dipole moment in
Oxy1XoX3 frame has the form (O,O,m)T, and it has the same form in OL;L,L; frame.
That leads to M, = B,(~B, m,B,m,0)’

where m =k, (AL -[e,xB])=k,L,B,(S, B, —S, B, ).

Equations of motion (1.4) take a form
dl

— -0,
du

d—'o:lesin2®}(slcos,oc030+Szcos,osina—Sgsinp),

du 2 I

) ) (4.2)
=2 —Z¢sin?@———(=S,sinc +S,c0s5),

du 2 Isin p

99 o

du

2
where gzk“i is a small parameter. Equations (4.2) can be solved if S, =S, =0.
Wy

That means the axis of symmetry should be oriented along the axis of the cone in the

averaged geomagnetic field model. The only non-trivial equation appears

dp =-7nsinp
du

where 7=0.5£S,sin*@ (note that from the first equation in (4.2) we have | =1). Its
solution is

p = 2arctg| c,exp(—nu) . (4.3)

Here ¢, =tg 0, /2. Fig. 6 introduces p for different orbit inclinations in the range

from 0 to 7 /2. The time-response (time necessary to reorient the axis of symmetry)

rises while orbit inclination rises. Angle o tends to O which corresponds to the

necessary satellite attitude.
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circles

Fig. 6. Angle p with respect to time
In case S,=0, S,=0 (direction to the perigee of the orbit) one can obtain the
first integral of (4.2). Divide the second equation in (4.2) by the third one

dp sinp(L,cospcoso +L,cospsino —Lysin p)
do ~L,sino +L,coso '

For that particular direction

dp _ sinpcospcoso

do sinoc

which leads to 1, =tg psino and (4.2) is solved in quadratures.

Form (4.3) we conclude that the high-inclined orbit is definitely preferable.

5. Numerical analysis
Numerical simulation of the satellite motion with algorithms (2.1), (3.1) and

(4.1) in fine reorientation mode for successive implementation is shown in Fig. 7, 8
and 9.

Numerical simulation was conducted with gravitational torque taken into
account. Sensor measurements are modeled with small errors. Magnetic dipole
moment implemented by coils is discrete one, dipole moment m is substituted by

m,sign(m). Following assumptions were made

. Magnetometer and sun sensor are used. Maximum error for sun sensor is

1°, for magnetometer is 4-107 T;

. Inertia tensor J =diag(0.011,0.011,0.02) kg-m?;
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Dipole moment used for nutation damping is 0.8 A-m? for spinning is

0.1 A-m?, for reorientation is 0.8 A-m?, for nutation damping during spinning is 0.2

A-m?;

Necessary axis of symmetry attitude in O,Y,Y,Y; frame is (1,1,0)

T L
)

Initial angular velocity is (0.1,0.1,0.01)" s*;

Orbit inclination is 60°;

Right dipole moment is used to represent geomagnetic induction vector.

equatorial angular velocity component, 1/s

I/s

spinning rate,

0.16 T T T T T T

0.14

0.12

0.1 H

0.08
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0.04

0.02

() I L 1 by
) 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time, s

Fig. 7. Nutation damping
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0.08 | |
006 |
0.04 i
0.02 ]

0 F f 4
| ‘

-0.02 . : L ; : : : i :
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Fig. 8. Spinning around the axis of symmetry
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Fig. 9. Fine reorientation in the inertial space
More thorough numerical analysis for the real satellite can found, for example,
in [18].

6. Conclusion

The orientation of the axis of symmetry of a spinning satellite in a given
direction in the inertial space using proposed set of algorithms for the magnetic
attitude control system is shown. Averaged technique is effectively used to obtain
evolutionary equations and their first integrals in the frame of averaged geomagnetic
field model. This allowed the effect of the orbit inclination and initial conditions on
the satellite dynamics to be studied.

Damping of the equatorial component or all components of the angular velocity
is proved. Two coarse reorientation algorithms are considered, each one may be
implemented right after the separation from the launch vehicle without initial
detumbling. First integrals of averaged equations are obtained in case the necessary
axis of symmetry attitude coincides with the axis of the averaged geomagnetic field
model circular cone. It is shown that implementation of the spinning algorithm with
the nutation damping at the same time leads to the spinning of the satellite without
increase of equatorial component of angular velocity. In the fine reorientation mode

the solution of the equations of motion is obtained in terms of explicit formulas for
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the same special case. For the perpendicular direction the solution in quadratures is
obtained.

For all algorithms the dependence of the time-response with respect to the orbit
inclination is studied and recommendation what values of inclination are privileged is

given.
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