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Spin-stabilized satellite with three-stage active magnetic attitude control 

system. M.Yu. Ovchinnikov, V.I. Pen’kov, and D.S.Roldugin. The Keldysh Institute 

of Applied Mathematics of Russian Academy of Sciences, 2011, 23 p., 14 items of 

bibliography, 9 figures 

The angular motion of an axisymmetrical satellite equipped with the active 

magnetic attitude control system is considered. Dynamics of the satellite is 

analytically studied on the whole control loop consisting of a bundle of three 

successive algorithms. Those algorithms are as follows: nutation damping, spinning 

about the axis of symmetry, reorientation of the axis in the inertial space. In certain 

cases explicit solutions of the equations of motion are obtained. The results are 

verified by numerical simulation. 

Key words: active magnetic attitude control, spin-stabilized satellite, averaged 

geomagnetic field model, time-response 

Спутник c активной магнитной системой ориентации, 

стабилизируемый собственным вращением в три этапа. М.Ю.Овчинников, 

В.И. Пеньков, Д.С.Ролдугин. ИПМ им.М.В.Келдыша РАН, Москва, 2011г., 23 

с., библиография: 14 наименований, 9 рисунков 

Рассматривается осесимметричный спутник-гироскоп, оснащенный 

активной магнитной системой ориентации, реализующей последовательно три 

закона управления, которые позволяют установить ось симметрии спутника в 

заданном направлении в инерциальном пространстве. Исследуются три 

алгоритма: гашение нутационных колебаний, раскрутка вокруг оси симметрии 

и переориентация оси симметрии в инерциальном пространстве. В рамках 

осредненной модели геомагнитного поля проводится аналитическое 

исследование уравнений движения спутника для всех трех законов управления. 

Анализируется зависимость их быстродействия от параметров задачи. 

Ключевые слова: магнитная система ориентации, спутник, 

стабилизируемый собственным вращением, осредненная модель магнитного 

поля Земли, быстродействие системы ориентации 
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Introduction 

Spin stabilization is a common way to maintain a satellite attitude. Satellite 

acquires the property of a gyroscope while it is spinned around the axis of symmetry 

with a high angular velocity. Only spinning around the principal axis of maximum 

inertia is stable if the satellite is equipped with an energy dissipation device and it is 

no torque subjected [1]. This result is important since an energy dissipation device is 

necessary for any attitude control system including one for a spinning satellite. In the 

latter case attitude control system performance may be divided into three modes: 

angular velocity damping, spinning around the axis of symmetry, reorientation of the 

spin-axis to a required direction in the inertial space. These modes may be 

implemented consequently or combined. To conduct the whole control circle, satellite 

must be equipped with an active attitude control system to manage its angular 

velocity and attitude. 

In this paper we consider the most common way of attitude control of a spinning 

satellite. The method is based on the interaction between the geomagnetic field and 

satellite magnetized actuators. Magnetic attitude control systems (MACS) are 

especially used when it is critical to have low-cost and low-mass control system 

capable of implementing conventional algorithms for onboard computer. Principal 

methods of magnetic attitude control of a spinning satellite are considered in [2] and 

[3], in [4] general dynamical properties of a spin-stabilized satellite along with 

technical issues are discussed. Paper [5] is a comprehensive survey of works on 

satellite orientation and stabilization, steady-state motion stability and external 

torques effect including these problems for a spinning satellite. 

Five different algorithms are studied in this paper. “-Bdot” algorithm 

implemented by three coils is used for the initial angular velocity damping and by 

one coil is used as a damper of nutational motion. The algorithm is used 

simultaneously with the coarse reorientation algorithm or fine reorientation 

algorithm. Then spinning-up around the axis of symmetry is implemented (if still 

necessary) and fine reorientation is carried out. Dynamics of the satellite is studied 
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using averaging technique [6] for each algorithm and motion state. Results obtained 

allow us to analyze the dependence of primary satellite motion characteristics on the 

orbit inclination and other parameters of the satellite. In specific cases we could 

obtain preferable values of the parameters from the time-response point of view.  

1. Problem description 

Summarize all assumptions, introduce geomagnetic field model, reference 

frames, equation of motion and analysis technique. 

Angular motion of a spinning satellite equipped with MACS is examined in the 

paper. MACS contains three mutually orthogonal magnetic coils. Assume that MACS 

is capable to develop a magnetic dipole moment in arbitrary direction but of limited 

value wrt satellite. Only torque produced by the interaction of MACS with the 

geomagnetic field is taken into account. Among number of geomagnetic field models 

available we chose the averaged one to represent the geomagnetic field [7]. Angular 

motion of a satellite is described by the Beletsky-Chernousko variables [8]. Satellite’s 

orbit is assumed as a Keplerian circular one. MACS implements following 

algorithms: 

1. Nutation damping. Only single coil disposed along the axis of symmetry 

of a satellite is used. It implements cut “-Bdot” algorithm. 

2. Spinning of the satellite around its axis of symmetry. Two coils disposed 

in its equatorial plane (i.e. plane perpendicular to the axis of symmetry) are used.  

3. Fine spin axis reorientation in the inertial space.  

The choice of geomagnetic field model is one of the most crucial points for the 

success of whole work. Let us describe geomagnetic field model used in this paper. 

Magnetic induction vector is usually determined using decomposition to the Gauss 

series [9] 

V B ,       
1

0 01 0
cos sin cos

i
k m m m m

n n ni n
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  


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 
   

 
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where 0  is the longitude of the point where the induction vector is calculated, 

090   , 0  is the latitude of the point, r  is the distance to the point from the 

Earth center, R  is average Earth radius. m

ng  and m

nh  are Schmitt coefficients given in 

a table, m

nP  is a quasinormalised Legendre polynomial. It is impossible to use this 

model in the analytical study. So, a number of consequent simplifications are 

introduced. Inclined dipole model is derived from the Gauss model when one takes 

into account only three first terms. It describes the field of a dipole placed in the 

Earth center and inclined to its axis by 168°26'. This model admits rather compact 

analytical expression though it is still too complicated for the analytical study. 

Further simplification, the direct dipole model is wide used. In this model the 

geomagnetic field is one of the dipole placed in the center of the Earth and directed 

antiparallel to its axis of day rotation. Magnetic induction vector moves almost 

uniformly on the near-circular cone side while a satellite moves along the orbit. This 

model, though rather simple and suitable and allow to utilize powerful Floquet theory 

to study periodical solutions appeared from motion equations, nevertheless, does not 

allow us to get the solution of the equations of motions in terms of explicit formulas 

or quadratures. So, we go further on a way of simplification and compromising 

between complexity and veracity and introduce one more simplification considering 

the geomagnetic induction vector as moving uniformly on the circular cone side and 

its magnitude is constant. To do this we need to notify a reference system OaY1Y2Y3 

where Оa is the Earth center, OaY3 axis is directed along with the Earth axis, OaY1 lies 

in the Earth equatorial plane and is directed to the ascending node of the satellite 

orbit, OaY2 axis is directed so the whole system to be a right-handed. If the magnetic 

induction vector source point is translated to the Oa then the cone is tangent to the 

OaY3 axis, its axis lies in the OaY2Y3 plane (Fig. 1). The cone half-opening angle is 

given [7] by 

 2 2

3sin2
tg

2 1 3sin 1 3sin

i

i i


  
       (1.1) 



6 

 

where i  is the orbit inclination. The geomagnetic induction vector moves uniformly 

on the cone side with the doubled orbital angular speed, 02u    where is the 

argument of latitude, 0  is the orbital angular velocity. Without loss of generality we 

can assume 0 0  . 

 

Fig. 1. Averaged geomagnetic field model 

This model, sometimes called averaged, is used in our work. It does not allow 

us to take into account non-uniformity of geomagnetic induction vector motion (as 

right dipole model does) and its diurnal change (as inclined dipole model does) but it 

is considered as a good trade-off between the accuracy of modeling geomagnetic 

field and the possibility to get analytical result.  

Angle   is of great importance for our work. Expression (1.1) introduces the 

relationship between   and the orbit inclination. In fact, these angles are close, so we 

may consider i   for a qualitative analysis of the system time-response with 

respect to the orbit inclination since the maximum value of i   is about 10˚. 

Comprehensive comparison of models can be found in [9]. 

Let us introduce all necessary reference frames. 

OaZ1Z2Z3 is the inertial frame, got from OaY1Y2Y3 turning by angle   about OaY1 

axis. 
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OL1L2L3 is the frame associated with the angular momentum of a satellite. О is 

the satellite center of mass, OL3 axis is directed along the angular momentum, OL2 

axis is perpendicular to OL3 and lies in a plane parallel to the OaZ1Z2 plane and 

containing O, OL1 is directed such that the reference frame is right-handed. 

Ox1x2x3 is the bound frame, its axes are directed along the principal axes of 

inertia of the satellite. 

Reference frames mutual orientation is described with the direct cosine matrices 

,Q A  expressed in the following tables 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

L L L

Z q q q

Z q q q

Z q q q

, 

1 2 3

1 11 12 13

2 21 22 23

3 31 32 33

x x x

L a a a

L a a a

L a a a

. 

We introduce low indices , ,Z L x  to denote the vector components in frames 

OaZ1Z2Z3, OL1L2L3 and Ox1x2x3 respectively. For example, for the first component of 

a torque in these frames we write 1 1 1, ,Z L xM M M . 

We use the Beletsky-Chernousko variables to represent the motion of the 

satellite. These variables are , , , , ,L       [8] where L  is the angular momentum 

magnitude, angles ,   represent its orientation with respect to OaZ1Z2Z3 frame (Fig. 

2). Orientation of the frame Ox1x2x3 with respect to OL1L2L3 is described using Euler 

angles , ,   . The same variables were first introduced by Bulgakov [11] for a 

gyroscope movement problem. The equations for an axisymmetrical satellite were 

first proposed by Beletsky [12] and for a satellite with arbitrary moments of inertia by 

Chernousko [13]. Equations of a free rigid body motion about its center of mass in 

variables , ,    were first proposed by Wittaker [13] but evolutionary equations 

were not considered. Direct cosine matrix Q  takes form 

cos cos sin sin cos

cos sin cos sin sin

sin 0 cos

    

    

 

 
 


 
  

Q .      (1.2) 
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Direct cosine matrix A  is a common transition matrix for Euler angles and is of the 

form 

cos cos cos sin sin sin cos cos cos sin sin sin

cos sin cos sin cos sin sin cos cos cos sin cos

sin sin sin cos cos

           

           

    

   
 

    
 
 
 

A .(1.3) 

 

Fig. 2. Angular momentum attitude in the inertial space 

Inertia tensor of the satellite is ( , , )x diag A A CJ . Angular motion of the 

satellite in a circular Keplerian orbit is described [8] by the equations 

3L

dL
M

dt
 , 1

1
L

d
M

dt L


 , 2

1

sin
L

d
M

dt L




 , 

 

 

2 1

1 2

1
cos sin ,

1 1 1
cos cos sin ,

sin

L L

L L

d
M M

dt L

d
L M M

dt C A L


 


  



 

 
    

 

    (1.4) 

 1 2

1 1
cos ctg ctg sin ctgL L

d L
M M

dt A L L


         

where 1 2 3, ,L L LM M M  are the torque components in OL1L2L3 frame. 

Equations of motion in Beletsky-Chernousko variables are convenient for the 

asymptotical methods implementation. If the torque acting on the satellite is small in 

a sense of a small ratio between angular momentum change during one orbit or one 
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revolution about its center of mass and its mean value on this interval then small 

parameter   may be introduced. Equations (1.4) are of the form 

     0, , , , ,
d d

t t
dt dt

   
x y

X x y y x Y x y       (1.5) 

where  , ,u y  are fast variables, while  , , ,l   x  are slow ones. So, we can 

use averaging technique [6] to determine slow variables evolution. In order to do it 

we need to average equations in the vicinity of the undisturbed solution of equations 

(1.4). However, since this motion is a regular precession, we need only to average 

separately the equations for slow variables over fast variables. After this we get 

evolutionary equations for slow variables with accuracy of the order of   on the time 

interval of order of 1/  . It also should be noted that it is necessary only to average 

over   and u  since the satellite is considered axisymmetrical. 

2. Nutation damping algorithm 

Nutation damping algorithm is constructed on the basis of well-known “-Bdot” 

damping control. If the polar component of the angular velocity is less than or equal 

to the necessary value, it is impractical to damp it and then spin again. In this 

situation only equatorial component should be damped. In order to do so, we use the 

“-Bdot” algorithm implemented by a single coil only. Magnetic dipole moment of the 

satellite  0,0,
T

x mm  in this case is determined by the expression 

1 3 3
x

x

d
k

dt

 
   

 

B
m e e ,         (2.1) 

where 2k  is a new positive coefficient, 3e  is a unit vector of the axis of symmetry of 

the satellite. The geomagnetic induction vector derivative in Ox1x2x3 frame may be 

obtained from its derivative in OaZ1Z2Z3 frame according to the relation 

Tx Z
x x

d d

dt dt
  

B B
A ω B .        (2.2) 

Nutation damping algorithm is used for the fast rotating satellite in our case. 

That means we can neglect the first term on the right side of (2.2). It describes 
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geomagnetic induction vector change in the inertial space where it rotates with the 

velocity of the order of the orbital one. For a fast rotating satellite ( 0/L A  , 

0/L C  ) the torque takes form 

  1 3 3x x xk m ω B e e . 

In order to obtain dimensionless equations of the form (1.5) from (1.4) we 

introduce dimensionless torque LM  defined by 

2

1 0

0

LL

k B

C
M M .           (2.3) 

Next we introduce argument of latitude 0 0( )u t t   instead of dimensional 

time in (1.4) and dimensionless angular momentum l  according to the expression 

0L L l  where 0L  is the initial angular momentum magnitude. This leads to (1.4) 

being rewritten as 

3L

dl
M

du
 , 1

1
L

d
M

du l


 , 2

1

sin
L

d
M

du l





 , 

 

 

2 1

1 21

1
cos sin ,

1
cos cos sin ,

sin

L L

L L

d
M M

du l

d
l M M

du l


  


    



 

  

     (2.4) 

 1 22

1 1
cos ctg ctg sin ctgL L

d
l M M

du l l


           . 

Here notations 
2

1 0

0

k B

A



 , 0

1

0

1 1L

C A




 
  

 
, 0

2

0

L

A



  are introduced, their meaning 

is explained in section 1. We assume that moments of inertia A  and C  provide no 

resonance between 1 , 2  and 1 (u  rate of change) . 

Dimensionless equations averaging leads to  
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  2 21
2 1 3 sin sin

2

dl
l p p

du
        , 

 

 

2

2

1
3 1 sin cos sin ,

2

1
2 1 3 sin sin cos ,

2

d
p

du

d
p p

du


   


   

 

     

      (2.5) 

0
d

du


  

In order not to introduce new parameter, small parameter has the same notation but 

different expression, as it will be for each different algorithm. Equations (2.5) admit 

substitution ,        and ,       . It is impossible to obtain 

the solution of (2.5) in terms of explicit formulas. Let us first consider two special 

cases representing two stationary solutions for  . Trivial equation for   is omitted 

from now on.  

1. Initial condition 0 0  . Equations (2.5) take form 

2sin ,

sin cos .

dl
pl

du

d
p

du

 


  

 

 

         

 (2.6) 

Their solution is 

 0tg exp pu c    , 

 
 

0

0

1 exp 2 2

1 exp 2

p u c
l

c

  



 

where 0 0ln tgc  . It is clear that with inclination (and, therefore, with p ) rise the 

time-response also increases. Note that modulus in the last expression for   may be 

omitted. We will consider  0, / 2   for further analysis. There is no generality 

loss since the equations (2.5) admit substitution ,       . 

2. Case 0 / 2  . The equations are similar to (2.6), their solution is 
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  0tg exp 1 p u c       , 

 

 
0

0

1 exp 2 1 2

1 exp 2

p u c
l

c

     


. 

Contrary to the previous case, the time response lowers while inclination rises. 

Consider now general case. Divide the first equation in (2.5) by the third one 

and get 

tg
dl

d
l

  . 

That leads to solution 0cos cosl   . The first integral  1 , cosI l l   is obtained. It 

shows that the third component of angular velocity vector conserves in the fixed 

frame. Divide now the second equation in (2.5) by the third one and get 

 
 

22 1 3 sin
tg

3 1 sin cos

p p
d d

p


  

 

 
 


 

which leads to the first integral  

       2

2

1
, 3 1 ln tg 1 2 ln tg 3 1 ln cos

2
I p p p          .  

Now two first integrals satisfying conditions of the implicit function theorem are 

found and the solution of (2.5) is obtained in quadratures. 

There are three parameters which influence the time-response: 0 0, ,i   . As 

expected, with 0  rise the time response (the time necessary to lower  , and, 

therefore, the equatorial component of angular velocity sin /l A ) falls. Parameter i  

and 0  effect is presented in Fig. 3 and Fig. 4. 
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Fig. 3. Angle θ after 2 orbits, θ0=30°. 

 

Fig. 4. Angle θ after 15 orbits, θ0=70°. 

As seen from Fig. 3, if 0  is less than approximately 50˚ the time response rises 

with inclination rise, and if 0  is greater, it falls. Fig. 4 shows that if the algorithm is 

considered on greater time interval, there is some area where the best inclination (the 

one that provides minimum  ) is about 45˚. However, it is clear that for the greater 

inclination   would not exceed 14˚, while for the small inclination it may stay almost 

constant. So, it is preferable to use high-inclined orbit. 

3. Spinning around the axis of symmetry 

In order to obtain the gyro property the satellite is spun around its axis of 

symmetry. In most cases initial spinning rate after the separation from the launch 

vehicle is already great, and previous analysis shows that it does not change. 

However it is valid for the ideal case without disturbing torques, actuators and 
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sensors errors, dynamic disballance in the satellite. The algorithm designed to 

increase the spinning rate is necessary. Magnetic dipole moment 

 5 2 1, 0
T

x x xk B B m         

 (3.1) 

is used. The third component of angular velocity rises since 

 2 23
5 1 2x x

d
C k B B

dt


  . 

We use Beletsky-Chernousko variables again. To do that we rewrite (3.1) in a 

form 

5 3x xk  m e B  

The torque in a fixed frame is as following 

 2

5 0 3 3x x xk B   M e B B e . 

Taking in to account T

x LB A B  we get it in OL1L2L3 frame, 

2 2

13 0 13 1 23 1 2 33 1 3

2 2

5 23 0 13 1 2 23 2 33 2 3

2 2

33 0 13 1 3 23 2 3 33 3

L L L L L

L L L L L L

L L L L L

a B a B a B B a B B

k a B a B B a B a B B

a B a B B a B B a B

   
 

    
    

M . 

Let this torque be small again. Then all the reasoning related to the asymptotical 

methods holds and averaged equations are 

  22 1 3 sin cos
dl

p p
du

       , 

 

  2

1
3 1 sin cos cos ,

1
2 2 1 3 sin sin ,

2

d
p

du l

d
p p

du l


   


  

  

      

      (3.2) 

0
d

du


  
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where 
2

5 0

0 0

k B

L



  is a new small parameter. Note that   is not necessarily small for 

equations (3.2) to be true. Consider it small after the nutation damping algorithm 

implementation. From (3.2) we have 

  22 1 3 sin
dl

p p
du

      , 

 
1

3 1 sin cos
d

p
du l


     ,        (3.3) 

  21
2 2 1 3 sin

2

d
p p

du l


         . 

If   is close to   the satellite should be spun in the opposite direction since 

 3 0 0  . This case can be studied in the same way. Equation for   is separated. 

From the first and second equations in (3.3) we have the first integral 

       2

1

1
, 3 1 ln 3 1 ln tg 1 2 ln tg

2
I l p l p p        . 

The solution in quadratures is obtained after solving the third equation in (3.3) 

directly. Note that in case 3 1 0p    equations lead to 2 / 3l u . Consider two 

special cases. 

1. If 0 0   then 0   (stationary solution) and 2l pu . The time-response rises 

with orbit inclination rise. 

2. If 0 / 2   then  1l p u   and the time response falls with orbit inclination 

rise. 
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Fig. 5. Angular momentum after 5 orbits, θ0=1° 

Fig. 5 brings the effect of 0  and i  on the time-response. For small 0  raising 

the inclination results in the time-response rise (special case 1), for 0  close to 90˚, 

the time-response falls with orbit inclination rise (special case 2). However, high-

inclined orbit is preferable again since the worst angular momentum magnitude is 

higher than for low-inclined orbit. 

Equatorial component of angular velocity does not rise, its derivative is 

 
  2sin

2 2 1 3 sin sin cos
d l

p p
du


          . 

Since   is close to 0 equatorial component lowers. Note that the nutation damping 

algorithm may be implemented simultaneously with the spinning algorithm. 

4. Reorientation of the axis of symmetry 

Consider the algorithm that brings the satellite rotating fast around its axis of 

symmetry, to the desired attitude of this axis in the inertial space. The algorithm is  

  4 30,0,
T

x k     m L e B         (4.1) 

where   L S L , S  is the necessary direction of the axis of symmetry, 4k  is a 

positive constant. Satellite dynamics is described using the Beletsky-Chernousko 

variables. So, we need to determine the torque in OL1L2L3 frame. In this case we have 

 3 0,0,1
T

L e  since the satellite is spinned around the axis of symmetry, so 

3iA C   ( 1,2i  ) and its angular momentum is directed almost along this axis 
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(if it is antiparallel the analysis is similar). Again, the magnetic dipole moment in 

Ox1x2x3 frame has the form  0,0,m


, and it has the same form in OL1L2L3 frame. 

That leads to  0 2 1, ,0
T

L L LB B m B m M   

where     4 3 4 0 0 2 1 1 2L L L Lm k k L B S B S B     L e B . 

Equations of motion (1.4) take a form 

0
dl

du
 , 

 

 

2

1 2 3

2

1 2

1 1
sin cos cos cos sin sin ,

2

1 1
sin sin cos ,

2 sin

d
S S S

du l

d
S S

du l


     


  



   

   

   (4.2) 

0
d

du


  

where 
2

4 0

0

k B



  is a small parameter. Equations (4.2) can be solved if 1 2 0S S  . 

That means the axis of symmetry should be oriented along the axis of the cone in the 

averaged geomagnetic field model. The only non-trivial equation appears 

sin
d

du


    

where 2

30.5 sinS    (note that from the first equation in (4.2) we have 1l  ). Its 

solution is 

 02arctg expc u     .        (4.3) 

Here 0 0tg / 2c  . Fig. 6 introduces   for different orbit inclinations in the range 

from 0 to / 2 . The time-response (time necessary to reorient the axis of symmetry) 

rises while orbit inclination rises. Angle   tends to 0 which corresponds to the 

necessary satellite attitude. 
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Fig. 6. Angle ρ with respect to time 

In case 2 0S  , 3 0S   (direction to the perigee of the orbit) one can obtain the 

first integral of (4.2). Divide the second equation in (4.2) by the third one 

 1 2 3

1 2

sin cos cos cos sin sin

sin cos

L L Ld

d L L

     

  

 


 
. 

For that particular direction 

sin cos cos

sin

d

d

   

 
  , 

which leads to 0 tg sinI    and (4.2) is solved in quadratures. 

Form (4.3) we conclude that the high-inclined orbit is definitely preferable. 

5. Numerical analysis 

Numerical simulation of the satellite motion with algorithms (2.1), (3.1) and 

(4.1) in fine reorientation mode for successive implementation is shown in Fig. 7, 8 

and 9. 

Numerical simulation was conducted with gravitational torque taken into 

account. Sensor measurements are modeled with small errors. Magnetic dipole 

moment implemented by coils is discrete one, dipole moment m  is substituted by 

 0 signm m . Following assumptions were made 

 Magnetometer and sun sensor are used. Maximum error for sun sensor is 

1°, for magnetometer is 4·10
-7

 T; 

 Inertia tensor  0.011,0.011,0.02diagJ  kg·m
2
; 
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 Dipole moment used for nutation damping is 0.8 А·m
2
, for spinning is 

0.1 А·m
2
, for reorientation is 0.8 А·m

2
, for nutation damping during spinning is 0.2 

А·m
2
; 

 Necessary axis of symmetry attitude in OaY1Y2Y3 frame is  1,1,0
T

; 

 Initial angular velocity is  0.1,0.1,0.01
T

 s
-1

; 

 Orbit inclination is 60°; 

 Right dipole moment is used to represent geomagnetic induction vector. 

 

Fig. 7. Nutation damping 

 

Fig. 8. Spinning around the axis of symmetry 
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Fig. 9. Fine reorientation in the inertial space 

More thorough numerical analysis for the real satellite can found, for example, 

in [18].  

6. Conclusion 

The orientation of the axis of symmetry of a spinning satellite in a given 

direction in the inertial space using proposed set of algorithms for the magnetic 

attitude control system is shown. Averaged technique is effectively used to obtain 

evolutionary equations and their first integrals in the frame of averaged geomagnetic 

field model. This allowed the effect of the orbit inclination and initial conditions on 

the satellite dynamics to be studied.  

Damping of the equatorial component or all components of the angular velocity 

is proved. Two coarse reorientation algorithms are considered, each one may be 

implemented right after the separation from the launch vehicle without initial 

detumbling. First integrals of averaged equations are obtained in case the necessary 

axis of symmetry attitude coincides with the axis of the averaged geomagnetic field 

model circular cone. It is shown that implementation of the spinning algorithm with 

the nutation damping at the same time leads to the spinning of the satellite without 

increase of equatorial component of angular velocity. In the fine reorientation mode 

the solution of the equations of motion is obtained in terms of explicit formulas for 
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the same special case. For the perpendicular direction the solution in quadratures is 

obtained.  

For all algorithms the dependence of the time-response with respect to the orbit 

inclination is studied and recommendation what values of inclination are privileged is 

given. 
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