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Annotation

The paper presents the results of testing acceleration measurement data ob-
tained by the accelerometer TAS3 onboard the spacecraft Foton M-3 during its
uncontrolled orbital �ight in September, 2007. Testing was carried out in two
ways. The �rst way consisted in comparison of the low-frequency component
in the measurement data with the acceleration calculated along the reconstruc-
tion of spacecraft attitude motion, the reconstruction being found by processing
onboard measurements of the Earth magnetic �eld. The second way used the
low-frequency component in the acceleration measurement data as a source infor-
mation for the alternative reconstruction of the spacecraft attitude motion. Then
both reconstruction were compared with each other. Both ways took into account
the correction of the acceleration data for the in�uence of magnetic �eld and some
other corrections. The results, obtained in both ways, con�rm the su�ciently high
accuracy of the accelerometer TAS3 in the frequency range 0.0002÷ 0.002 Hz.

Ò. Áîéçåëèíê, Ê. Âàí Áàâèíõîâ, Â.Â. Ñàçîíîâ. Ïðîâåðêà äàí-
íûõ èçìåðåíèé ìèêðîóñêîðåíèÿ, ïîëó÷åííûõ íà áîðòó ÊÀ "Ôî-
òîí Ì-3". Ïðèâåäåíû ðåçóëüòàòû òåñòèðîâàíèÿ äàííûõ èçìåðåíèé àêñåëå-
ðîìåòðà TAS3, ïîëó÷åííûõ âî âðåìÿ íåóïðàâëÿåìîãî îðáèòàëüíîãî ïîëåòà
ñïóòíèêà Ôîòîí Ì-3 â ñåíòÿáðå 2007 ã. Òåñòèðîâàíèå âûïîëíåíî äâóìÿ ñïî-
ñîáàìè. Â ïåðâîì ñïîñîáå ðåçóëüòàòû íèçêî÷àñòîòíîé ôèëüòðàöèè äàííûõ
èçìåðåíèé ñðàâíèâàþòñÿ ñ ðåçóëüòàòàìè ðàñ÷åòà ìèêðîóñêîðåíèÿ âäîëü ðå-
êîíñòðóêöèè âðàùàòåëüíîãî äâèæåíèÿ ñïóòíèêà, íàéäåííîé ïî äàííûì áîð-
òîâûõ èçìåðåíèé ìàãíèòíîãî ïîëÿ Çåìëè. Âî âòîðîì ñïîñîáå íèçêî÷àñòîò-
íàÿ ñîñòàâëÿþùàÿ â äàííûõ èçìåðåíèé ìèêðîóñêîðåíèÿ èñïîëüçóåòñÿ äëÿ
ïîñòðîåíèÿ ðåêîíñòðóêöèè âðàùàòåëüíîãî äâèæåíèÿ ñïóòíèêà, è ýòà ðåêîí-
ñòðóêöèÿ ñðàâíèâàåòñÿ ñ ðåêîíñòðóêöèåé, íàéäåííîé ïî èçìåðåíèÿì ìàãíèò-
íîãî ïîëÿ. Â îáîèõ ñïîñîáàõ â äàííûå èçìåðåíèé àêñåëåðîìåòðà âíîñèòñÿ
ïîïðàâêà çà âëèÿíèå ìàãíèòíîãî ïîëÿ è ðÿä äðóãèõ ïîïðàâîê. Ðåçóëüòàòû,
ïîëó÷åííûå îáîèìè ñïîñîáàìè ïîäòâåðäèëè äîñòàòî÷íî âûñîêóþ òî÷íîñòü
àêñåëåðîìåòðà TAS3 â äèàïàçîíå ÷àñòîò 0.0002÷ 0.002 Ãö.
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1. Testing acceleration measurement data obtained in Foton M-3. The
spacecraft Foton M-3 had the measurement system DIMAC on its board. The
system was designed and manufactured by the company RedShift Design and En-
gineering BVBA (Sint-Niklaas, Belgium). It supplied two kinds of measurement
data suitable for reconstruction of the microgravity environment onboard the
spacecraft. These were magnetic �eld and acceleration measurements. Magnetic
�eld measurements proved to be rather accurate and enabled to reconstruct the
spacecraft attitude motion [1]. The found reconstruction used for testing accelera-
tion measurements in a low-frequency range. Such testing is based on the formula
that expressed an acceleration at a given point of a spacecraft body through its
kinematic parameters and some other quantities. Recall that formula.

Let a spacecraft be a rigid body, and let a point P be �xed with its frame. The
di�erence between the gravitational �eld strength at the point P and the absolute
acceleration of that point is called a (residual) acceleration at the point P . We
denote the di�erence by b. This quantity plays a part of g in orbital experiments.
We assume that only the atmosphere drag is signi�cant among nongravitational
actions upon the spacecraft. Then b is de�ned by the formula [2]

b = r× ω̇ + (ω × r)× ω +
µe

|R|3

[
3 (R · r)R

|R|2
− r

]
+ cρa|v|v . (1)

Here, r is the radius vector of the point P with respect to the spacecraft center of
mass, the point O; ω is the absolute angular rate of the spacecraft; the dot above
a symbol denotes di�erentiation with respect to time t; µe is the gravitational
parameter of the Earth; R is the geocentric radius vector of the point O; v is the
velocity of the point O with respect to the Earth surface; ρa is the atmosphere
density at the point O; c is the spacecraft ballistic coe�cient.

We used formula (1) in two ways. According to the �rst way, we reconstructed
the spacecraft motion in a time interval with length of a few hours by magnetic
measurements; we calculated the acceleration along the reconstruction by formula
(1) in the point of accelerometer location. Then we compared the calculation re-
sults with the results of the low-frequency �ltration of acceleration measurement
data in the same interval. When both results were in a good agreement we sup-
posed the acceleration �ltered data were right [3]. The second way consisted in a
direct use of the acceleration �ltered data for a reconstruction of the spacecraft
attitude motion [4]. We made such a reconstruction and compared it with the
reconstruction based on processing the magnetic measurements. We realized both
ways for the acceleration measurements obtained in Foton M-2 [3, 4]. Below we
describe similar results for the measurements made in Foton M-3.

2. Calculation of quasi-steady accelerations by reconstruction of
spacecraft attitude motion. The method of the reconstruction consists in
following [1]. We assign a time interval t0 ≤ t ≤ t0 + T and, using the magnetic
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measurements, construct in it the functions ĥi(t) (i = 1, 2, 3) approximating the
components of the strength H of the local magnetic �eld in the spacecraft device
coordinate system y1y2y3. The axis y1 is the longitudinal axis of the spacecraft;
it is directed from the landing capsule to the device unit. We suppose that the
local magnetic �eld coincides with the Earth one at the point O and calculate
its components Hi(t) (i = 1, 2, 3) in the Greenwich coordinate system Y1Y2Y3
along the spacecraft orbit basing on the analytical model IGRF. Certain relations
should link two sets of functions obtained. The condition of the closest �t of these
relations in the interval t0 ≤ t ≤ t0 + T de�nes the solution of the spacecraft
attitude motion equations that approximates the real motion.

The gravitational and some other torques are taken into account in those
equations [1]. The equations are written in the coordinate system x1x2x3 formed
by the principal central axes of inertia of the spacecraft. The angles between the
axes xi and yi did not exceed several degrees. Denote by ‖ gij ‖ 3

i,j=1 the matrix
of transition from the system x1x2x3 to the system Y1Y2Y3, where gij was the
cosine of the angle between the axes Yi and xj. The phase vector of the attitude
motion equations consists of the quantities g1i, g2i, and the components ωi of the
spacecraft angular rate ω in the system x1x2x3 (i = 1, 2, 3). The quantities g3i

are calculated by formulas g31 = g12g23 − g13g22, etc. The matrix of transition
from the system x1x2x3 to the device coordinate system y1y2y3 is denoted by
‖ bij ‖ 3

i,j=1. Here bij is the cosine of the angle between the axes yi and xj. We
consider the solution of the motion equations minimizing the functional

Φ =
3∑

i=1

{
N∑

n=0

[
ĥi(t0 + ns)− hi(t0 + ns)

]2
− (N + 1)∆2

i

}
, (2)

∆i =
1

N + 1

N∑
n=0

[ hi(t0 + ns)− hi(t0 + ns) ] , s =
T

N
,

hi(t) =
3∑

j,k=1

Hj(t)gjk(t)bik

as an reconstruction of the real attitude motion of the spacecraft in the interval
t0 ≤ t ≤ t0 + T . Functional (2) is minimized on the initial conditions of the
solution at the point t0 and parameters of the mathematical model. The latter
include some parameters of the motion equations and three angles specifying the
transition matrix ‖ bij ‖. Usually, we take T = 100 ÷ 400 min and s ≈ 1 min.
Examples of the reconstructions, obtained in this way, are presented in [1].

Figs. 1a, 1b, and 1c contain the plots (lines without marks) of acceleration
components bi (i = 1, 2, 3) calculated by formula (1) for three time interval from
[1]. The components relate to the system y1y2y3. Calculations were made for
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the point P = (0.074 m,−0.184 m,−0.307 m) in that system. The accelerometer
TAS3, a unit of the system DIMAC, was located near this point.

3. Filtration of low-frequency component from TAS3 data. The ac-
celerometer TAS3 operated continuously during the whole �ight. It measured an
apparent acceleration (−b) and was located near the furnace POLIZON. Its sen-
sitive axes were parallel to the axes of the device coordinate system but axes
1 and 3 (x and z) had opposite directions. TAS3 produced the data in a wide
spectral range. They have a sample rate equal to 1000 readings per second. We
investigate below only the low-frequency component of these data. Our purpose
is to compare it with the acceleration calculated by formula (1).

Comparison is justi�ed if both functions have approximately the same spec-
trum. It means we have to extract from the measured data the component with
frequencies of no more than some hundredths of a hertz. The extraction, i.e., the
low-frequency �ltration, was made by using discrete Fourier series independently
for each vector component.

Let M and N be natural numbers, and xk (k = 0, 1, . . . ,MN) be a segment of
the measurement data of any acceleration component. The measurement xk was
made at the instant t0 + k∆t, ∆t > 0. The low-frequency component, contained
in these data, was represented by the following expression

x(t) = aN + aN+1 (t− t0) +
N−1∑
n=1

an sin
πn(t− t0)

NM∆t
, (3)

where an are coe�cients. These coe�cients were found by the least squares
method. To calculate them, the simple explicit formulas are available [2]. Some
oscillations with relatively high frequencies are often revealed in expression (3),
which was obtained in this way. In order to remove them, the coe�cients an at
highest harmonics in (3) were multiplied by the factors (N −n)/(N −N1), where
N1 is the integer part of the number N/2 and n = N1 + 1, . . . , N − 1. We didn't
use expressions (3) directly but dealt with their values

x̃n = x(tn) , tn = t0 + nδt (n = 0, 1, . . . , N) , δt = M∆t. (4)

We call these values the �ltered data and denote their vector components by
Bi(t) (i = 1, 2, 3). The functions Bi(t) are de�ned on the mesh {tn}.

In the examples below, expressions (3) were constructed using data segments
with a length of 360 min. The segments correspond to intervals 10, 14, and 16
considered in [1]. The above procedure was applied at ∆t = 0.001 s, M = 30000,
and N = 720. The spectrum of functions, obtained in this way, lies within the
limits from 0 to 0.017 Hz. TAS3 measurements have erroneous constant biases in
each their vector component and so we changed values of the coe�cients aN to
have zero means of data (4).
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Figs. 1a, 2a, and 3a allow to compare the low-frequency component in TAS3
measurements with its calculated analog. The plots, marked by daggers, present
the results of the �ltration; the plots without daggers represent the results of cal-
culation by formula (1). The marked functions were obtained from the respective
data (4) by the following modi�cations. First we changed the sign of the func-
tion B2(t) (thereby we made the transform −b → b). Then we added the con-
stant biases ∆bi to the functions Bi(t) to obtain the equalities 〈Bi + ∆bi〉 = 〈bi〉
(i = 1, 2, 3). Here we use the notation

〈f〉 =
1

N + 1

N∑
n=0

f(tn)

for any function f(t) de�ned on the mesh {tn}.
One can see from the �gures that vector components b1 of calculated and �l-

tered accelerations are closed when amplitudes of their oscillations are su�ciently
large. Coincidence of components b1 in Figs. 2a, 3a is good. Their coincidence in
Fig. 1a is worse. It is di�cult to say about any coincidence in the case of vector
components b2 and b3 for calculated and �ltered accelerations.

4. Correction of �ltered TAS3 measurement data. The discrepancy of
�ltered acceleration data and their calculation analog was explained in [3]. It is
due to the in�uence of the Earth magnetic �eld on the accelerometer. We can
compensate this in�uence by the transformation

Bi −
3∑

j=1

mijhj → Bi (i = 1, 2, 3) ,

where mij are constants. We suppose here and below that the sign of the com-
ponent B2 has been changed. If we make the correction for the magnetic �eld, it
is naturally to make simultaneously some other corrections [3]. Namely the cor-
rection for infra low-frequency errors, the correction for the shift of TAS3 time
scale, the correction of the spacecraft ballistic coe�cient, and the correction for
misalignment of the TAS3 sensitive axes with respect to the axes yi. We specify
the later correction by the vector ϑ = (ϑ1, ϑ2, ϑ3) of in�nitesimal rotation of the
TAS3 axes with respect to the system y1y2y3. The components of ϑ regards both
to the system y1y2y3 and to the system formed by the corresponding sensitive
axes of TAS3. The correction of the ballistic coe�cient c is speci�ed by means of
multiplication of c by the factor χ: χc → c. This correction compensates short
time variations of c and ρa within a long interval, in which c was de�ned. Taking
into account all these correction and assuming they allow to remove all possible
errors, we can write

B1(t) + ϑ2B3(t)− ϑ3B2(t)− Z1(t)−
3∑

j=1

m1jhj(t + τb) =

6



=
3∑

j=1

c1j(t + τb)[x
(1)
j + xj] + χb

(a)
1 (t + τb) ,

B2(t) + ϑ3B1(t)− ϑ1B3(t)− Z2(t)−
3∑

j=1

m2jhj(t + τb) =

=
3∑

j=1

c2j(t + τb)[x
(2)
j + xj] + χb

(a)
2 (t + τb) , (5)

B3(t) + ϑ1B2(t)− ϑ2B1(t)− Z3(t)−
3∑

j=1

m3jhj(t + τb) =

=
3∑

j=1

c3j(t + τb)[x
(3)
j + xj] + χb

(a)
3 (t + τb) ,

Zi(t) = A
(K+1)
i + (t− t0)A

(K+2)
i +

K∑
k=1

A
(k)
i sin

πk(t− t0)

Nδt
.

Here, the functions Zi(t) compensate infra low-frequency errors in TAS3 data; τb

is the shift of DIMAC time scale with respect to the time scale used for description
of the spacecraft attitude motion; the functions cij(t) and b

(a)
j (t) are de�ned by

relations (see (1), ei are unit vectors along the axes yi)

ei × ω̇ + (ω × ei)× ω +
µe

|R|3

[
3 (R · ei)R

|R|2
− ei

]
=

3∑
j=1

cjiej ,

cρa|v|v =
3∑

j=1

b
(a)
j ej ;

the quantities xj set the origin of TAS3 coordinate system with respect to the

spacecraft mass center; x
(k)
j (j = 1, 2, 3) are the coordinates of the TAS3 sensor

for the axis yk in the TAS3 own coordinate system:

x
(1)
1 = −56.2 mm, x

(1)
2 = 48.5 mm, x

(1)
3 = −57.0 mm,

x
(2)
1 = −36.5 mm, x

(2)
2 = 22.3 mm, x

(2)
3 = −70.5 mm,

x
(3)
1 = −31.0 mm, x

(3)
2 = 48.5 mm, x

(3)
3 = −27.8 mm.

We considered relations (5) as a means for determining the unknown constants
ϑi , xi, A

(k)
i , mij , χ, and τb. We look for these quantities in the following way.

Let τb be given. We consider relations (5) at the points tn de�ned by formulas
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(4). The quantities Bi(tn) have been calculated by the �ltration; the quantities
cij(tn + τb) and b

(a)
i (tn + τb) are calculated by interpolation with the aid of �nite

Fourier series. Those series have been constructed basing on a proper solution
of the spacecraft motion equations. We obtain as a result the overdetermined
linear system with the unknown quantities ϑi , xi, A

(k)
i , mij , and χ. We treat

the problem of �nding its solution as a standard linear regression problem. We
solve it by the least squares method for each τb in the uniform mesh with the
step 1 s and calculate the standard deviation σb(τb) of discrepancies in (5). The
value τ ∗b = argmin σb(τb) is considered to be the required estimate of τb; the
solution of the regression problem at τb = τ ∗b gives the required estimates of the
quantities listed above. The standard deviations of these quantities, calculated
at �xed τb = τ ∗b , are adopted as accuracy characteristics of the found estimates.
We emphasize the standard deviations are calculated at �xed τb and are so-called
conditional standard deviations. The unconditional standard deviation στ of the
estimate τ ∗b is calculated by the formula

σ2
τ = 2σ2

b (τ
∗
b )

[
(3N − 3K − 20)

d2σ2(τ ∗b )

dτ 2
b

]−1

.

Figs. 1, 2, and 3 with indices 'b' and 'c' illustrate some solutions of the regres-
sion problem at K = 5. Figs. 1b, 2b, and 3b contain the plots of the functions b̂i(t)
and bi(t) (i = 1, 2, 3), which are de�ned by the left-hand and right-hand sides of
formulas (5) respectively. The plots of the functions b̂i(t) are marked by daggers.
These functions represent the corrected measurement data. The functions bi(t)

are the calculated analog of the functions b̂i(t). Figs. 1c, 2c, and 3c contain the
plots of the di�erences ∆bi(t) = b̂i(t)− bi(t) (i = 1, 2, 3). The functions b̂i(t) and
bi(t) are in a good agreement with each other. The di�erences ∆bi(t) are small
and look as irregular oscillations with su�ciently high frequencies. The �gure
captions contain the values of σb, τb, and στ . These quantities for various interval
are in a good agreement too.

We don't quote all results obtained by solving the regression problem because
according to [1] this approach gives acceptable results only for large |ω|. Therefore
we list only the results related to the interval shown in Fig. 3:

χ = 0.922 (0.016),

ϑ1 = −0.043 (0.011), ϑ2 = −0.050 (0.0033), ϑ3 = 0.005 (0.0027),

x1 = 21.7 (0.57) cm, x2 = −23.1 (0.092) cm, x3 = −24.6 (0.092) cm,

‖ mij ‖=

∥∥∥∥∥∥
−186.4 (1.3) −112 (1.4) −180 (1.4)

4 (1.3) −164 (1.5) −113 (2.3)
−29 (1.3) −54 (2.3) −148 (1.9)

∥∥∥∥∥∥ .
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Here, the unit of ϑi is radian, the unit of mij is 10−7m/(s2 ·Oe), the numbers in
brackets are respective standard deviations.

5. Pared-down mathematical model of spacecraft attitude motion
[4]. The spacecraft is assumed to be an axially symmetric rigid body. To write
equations of its motion and relations, used in processing measurement data, we
introduce four right-hand Cartesian coordinate systems. Two of these systems are
the same that were de�ned in Section 2. They are the Greenwich system Y1Y2Y3
and the spacecraft �xed system x1x2x3. We assume additionally to Section 2 that
the axis x1 is a spacecraft axis of symmetry so the spacecraft inertia tensor has
the matrix diag (I1, I2, I2) in the system x1x2x3.

Two another coordinate systems are the auxiliary system z1z2z3 and the quasi
inertial system X1X2X3. The auxiliary system serves for writing down the equa-
tions of spacecraft attitude motion. The axis z1 coincides with the axis x1. The
axes x2 and x3 are obtained from the axes z2 and z3 by rotating the system z1z2z3
through the angle ϕ around the axis z1. To specify a kinematic relation between
the systems x1x2x3 and z1z2z3 we assume that the absolute angular rate of the
latter system has zero component along the axis z1. Let w2, w3 be components
of this angular rate along the axes z2, z3 and let the spacecraft absolute angular
rate ω has components (ω1, ω2, ω3) in system x1x2x3. Then ϕ̇ = ω1 and

ω2 = w2 cos ϕ + w3 sin ϕ , ω3 = −w2 sin ϕ + w3 cos ϕ . (6)

The quasi inertial system X1X2X3 serves for graphic representation of the
spacecraft attitude motion. The axis X2 is directed along the vector R × Ṙ at
every instant; the axis X3 lies in the plane Y1Y2 and is directed to the ascending
node of the spacecraft osculating orbit. The absolute value of the angular rate of
this system did not exceed 5◦ per day.

We denote the transition matrix from the system z1z2z3 to the Greenwich
system by ‖ gij ‖ 3

i,j=1. Here gij is the cosine of the angle between the axes Yi and
zj. The matrix elements are expressed as functions of the angles γg, δg, and βg,
which are de�ned in the following way. The system Y1Y2Y3 can be transformed
to the system z1z2z3 by three sequential rotations (we suppose all coordinate
origins are in the same point O, the spacecraft mass center): 1) through the angle
δg + π/2 around the axis Y2, 2) through the angle βg around the new axis Y3, 3)
through the angle γg around the new axis Y1, which coincides with the axis z1.

We specify the attitude of the system z1z2z3 with respect to the system
X1X2X3 by the angles γ, δ, and β, which are de�ned similarly to the angles
γg, δg, βg.

The complete system of the spacecraft motion equations consists of two sub-
systems. The �rst subsystem describes the motion of the point O and coincides
with the analogous subsystems in [1, 4]. The second subsystem describes the
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rotation of the system z1z2z3. This subsystem consists of Poisson's kinematic
equations for the �rst two rows of the matrix ‖ gij ‖ as well as Euler's dy-
namic equations for the angular rates w2, w3. We take into account four external
torques in Euler's equations: 1) gravitational torque, 2) restoring aerodynamic
torque, 3) torque from the Earth magnetic �eld, 4) constant torque permanently
directed along the axis x1. Calculating the aerodynamic torque, we assume the
external envelope of the spacecraft is a sphere, its center being in the axis x1. Cal-
culating the torque from the Earth magnetic �eld, we assume the own spacecraft
dipole moment is parallel to the axis x1. The second subsystem has the form

ẇ2 + λ ω1w3 = −3µe

R5 (1− λ)z1z3 + pEρavv3 −mh′3 ,

ẇ3 − λ ω1w2 =
3µe

R5 (1− λ)z1z2 − pEρavv2 + mh′2 ,

ġ11 + w2g13 − w3g12 = ωeg21 , (7)

ġ12 + w3g11 = ωeg22 , ġ13 − w2g11 = ωeg23 ,

ġ21 + w2g23 − w3g22 = −ωeg11 ,

ġ22 + w3g21 = −ωeg12 , ġ23 − w2g21 = −ωeg13 ,

ω1 = Ω + ε(t− t0) , λ =
I1

I2
, R =

√
z2
1 + z2

2 + z2
3 , v =

√
v2

1 + v2
2 + v2

3 .

Here, zi, vi, and h′i are the components of the vectors R, v, and H (see Sections 1
and 2) in the system z1z2z3; the parameters p and m specify the aerodynamic
and magnetic torques respectively; εI1 is the constant torque along the axis x1;
ωe is the angular rate of the Earth rotation; E is the scale factor. We use in
(7) the explicit solution of the equation ω̇1 = ε, Euler's equations for ω1; Ω is a
parameter; a choice of the instant t0 will be speci�ed below.

We use 1000 s as a unit of time and 1000 km as a unit of length at numerical in-
tegrating equations (7). Then the units of the other quantities are following: [vi] =
km/s, [ωi] = [wi] = 10−3s−1, [p] = cm/kg, [h′i] = 0.1Oe, [m] = 10−5Oe−1s−2,
[ε] = 10−6s−2, [ρa] =kg/m3, E = 1010. The atmosphere density is calculated
according to model [5]. The Earth magnetic �eld is calculated according to the
analytical model IGRF. The third row of the transition matrix ‖ gij ‖ is calcu-
lated at integration as a cross-product of its two �rst rows. We de�ne a motion
of the system x1x2x3 and the functions ω2(t), ω3(t) for a solution of equations
(7) by the relation ϕ = Ω(t − t0) + ε(t − t0)

2/2 and formulas (6). The variables
g1i and g2i are not independent owing to orthogonality of the matrix ‖ gij ‖. The
initial values of g1i and g2i are expressed in terms of the angles γg, δg, and βg on
this reason.

The parameter λ in (7) is known: λ = 0.255. The parameters p, m, and
ε are estimated by processing measurement data along with initial values of a
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spacecraft attitude motion, i. e., they are �tted parameters. We have also the
variant of data processing, in which λ is among the �tted parameters.

Equations (7) and some other mathematical models, used below, are simpler
than analogous models in [1] and in Sections 2, 4. We did that to reduce the total
number of �tted parameters and to avoid the use of a priori information and
regularization techniques in statistical procedures. To compensate this simpli�-
cation we content ourselves with processing of simple spacecraft motions when
the angular rate ω1 is su�ciently large.

6. Statistical technique of reconstruction of Foton M-3 attitude mo-
tion by magnetic �eld measurements. Equations (7) were successfully used
for processing measurement data obtained in Foton M-2 and Foton-12 [4, 6]. But
their using restricted oneself to motions with large values of ω1. Foton M-3 had
lesser values of this quantity. So we had to test equations (7) by data from Foton

M-3 specially. We used for testing the magnetic �eld measurements. This testing
proved to be successful and provided us with a bench-mark to check the acceler-
ation measurement. We processed the magnetic measurements by the technique
[4], which was similar to the technique mentioned in Section 2. We use below
notations of that section without any explanation.

We assume that the system y1y2y2, which is used for interpretation of the
magnetic measurements, coincides with the system x1x2x3. The transition matrix
from the system x1x2x3 to the system z1z2z3 has the form

‖ bij ‖ 3
i,j=1 =

∥∥∥∥∥∥
1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

∥∥∥∥∥∥ .

Here, bij is the cosine of the angle between the axes zi and xj.
Following the least squares method, we consider a solution of system (7) as a

reconstruction of the real spacecraft motion in the interval t0 ≤ t ≤ t0 + T if it
provides minimum to functional (2), where the matrices ‖ gij ‖ and ‖ bij ‖ have
the just de�ned form. At that, we use the initial point t0 of the processed interval
as the instant t0 in (7). Functional (2) is minimized over 9 quantities: p, m, ε, Ω,
w2(t0), w3(t0), γg(t0), δg(t0), βg(t0). The �rst four quantities specify system (7),
the other quantities specify its solution.

We solve the minimization problem by Gauss�Newton's method and use ap-
propriate standard deviations to characterize the accuracy of approximating the
processed data and scattering the �tted quantities. The standard deviations are
calculated in the following manner. Let Φmin be the value of functional (2) at its
minimum point, C be the matrix of Gauss�Newton's normal equations at that
point (2C is approximately equal to the matrix of the quadratic form d2Φ at the
minimum point of Φ). Then the standard deviation of errors in processed data is
estimated by the quantity

11



σH =

√
Φmin

3N − 9
.

The standard deviations of the �tted parameters are equal to the square roots of
corresponding diagonal elements of the matrix σ2

HC−1. We denote the standard
deviations of the parameters p, m, and ε by σp , σm , and σε.

7. Real attitude motion of Foton M-3. The technique above was applied
for reconstructing the spacecraft motion in 5 time intervals. Some results are
presented in Table 1 and in Figs. 4a, 5a, ..., 8a. The table contains certain char-
acteristics of the intervals and the solutions of system (7) that approximate the
motion. In particular, it contains the parameters p, m, ε, and the standard de-
viations σH , σp , σm , σε. The �rst column of the table contains (in brackets)
the days of September 2007 that contains the respective interval. Interval 1 was
processed at λ = 0.286; the others intervals were processed at λ = 0.255. The
special value of λ for interval 1 was found by minimization of functional (2) over
10 quantities: λ and 9 parameters listed in Section 6. These change of λ compen-
sates the operation of the BIOBOX centrifuge: the centrifuge operated in interval
1 and was turning o� in the other intervals.

Figs. 4a, ..., 8a illustrate the accuracy of approximation of the functions ĥi(t)
(i = 1, 2, 3) and the spacecraft attitude motion relative to system X1X2X3. Each
�gure is divided naturally into three parts � left-hand, middle and right-hand.
The right-hand parts illustrate the quality of approximation of the functions
ĥi(t)−∆i by the functions hi(t) used in (2). Here, solid lines present plots of hi(t)

in the interval t0 ≤ t ≤ t0+T ; marks indicate the points
(
t0+ns, ĥi(t0+ns)−∆i

)
,

n = 0, 1, . . . , N . The middle parts of the �gures contain the plots of the angular
rates ωi(t). There are two plots in each coordinate system. The plots, obtained by
minimization of (2), are depicted by lines without marks. The left-hand sides of
the �gures contain the plots of time dependence of the angles γ, δ, and β. They
describe the motion of the system z1z2z3 with respect to the system X1X2X3.
There are again two plots in each coordinate system. The lines without marks
depict the plots obtained by minimization of (2).

These examples demonstrate the worse accuracy of approximation of the pro-
cessed data than it was obtained in [1]. Here the values of σH are about two
or three times greater than in [1]. Nevertheless the accuracy obtained is quite
enough for our purposes. The standard deviations of initial angles γg(t0), δg(t0),
βg(t0) are about 1.5◦ in the given examples; standard deviations of the angular
rates Ω = ω1(t0), w2(t0) = ω2(t0), w3(t0) = ω3(t0) are here about 0.0040 deg./s.
The mechanical interpretation of the found motion one can �nd in [1].

8. Statistical technique of reconstruction of Foton M-3 attitude mo-
tion by acceleration measurements. To reconstruct the spacecraft attitude
motion by TAS3 measurement data we use at bottom the same technique as in

12



Sections 2, 6. The technique uses the functions Bi(t) (i = 1, 2, 3), constructed
in Section 4, as a source information. It doesn't use them directly but deal with
their values (see (4)) B

(n)
i = Bi(tn) (n = 0, 1, . . . , N). Recall that 〈Bi〉 = 0.

Formula (1) allows to express vector components of a quasi-steady acceleration
in system x1x2x3 in terms of variables of equations (7) and coordinates of the
point P . We assume that point is a location of TAS3. Then we can derive from
(1) idealized calculation analogs for the functions Bi(t) with correct mean values:

bi = bai +
3∑

j=1

cijxj , bai = cρavui (i = 1, 2, 3) , (8)

c11 = ω2
2 + ω2

3 +
µe

R3 (3γ
2
1 − 1) , c23 = ω̇1 − ω2ω3 +

3µe

R3 γ2γ3 ,

c32 = −ω̇1 − ω3ω2 +
3µe

R3 γ3γ2 , etc. ,

u1 = v1 , u2 = v2 cos ϕ + v3 sin ϕ , u3 = v3 cos ϕ− v2 sin ϕ ,

γ1 =
z1

R
, γ2 =

z2 cos ϕ + z3 sin ϕ

R
, γ3 =

z3 cos ϕ− z2 sin ϕ

R
.

Here, xj are the coordinates of the point P in the system x1x2x3; one has to use
substitution of indices 1 → 2 → 3 → 1 in order to obtain the other cij.

Formulas (8) don't take into account the in�uence of the Earth magnetic �eld
on the TAS3 data as well as infra low-frequency errors in them. We considered
these in�uence and errors in Section 4. We adopt models [4, 6] for their represen-
tation and write out the relations:

Bi(t) ≈ ∆bi + B̂i(t, τ) (i = 1, 2, 3) ,

B̂i(t, τ) = bi(t + τ) +
3∑

j=1

mijhj(t + τ) + Zi(t) , (9)

Zi(t) = Ai0(t− t0) +
K∑

k=1

Aik sin
πk(t− t0)

Nδt
.

Here, ∆bi, τ , mij , and Aik are constant parameters; functions bi(t) and hi(t)
are calculated along an appropriate solution of equations (7). As before, the
initial point t0 of the processed interval coincides with the instant t0 in (7). The
sense of some terms in (9) are following (see Section 4). The terms with hi(t)
characterize the in�uence of the Earth magnetic �eld on the measurements; the
terms ∆bi + Zi(t) compensate infra low-frequency errors (including erroneous
constant biases) in the measurements. The number K must not be large in order
to the frequency K/2Nδt is less than signi�cant frequencies of functions (8).
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We try to �t relations (9) by the least squares method and consider the
functional

Φb =
3∑

i=1

{
N∑

n=0

[
B

(n)
i − B̂i(tn, τ)

]2
− (N + 1)∆2

bi

}
, (10)

∆bi =
1

N + 1

N∑
n=0

[
B

(n)
i − B̂i(tn, τ)

]
.

It is obtained by transformation of the standard functional of least squares
method that arises at �tting relations (9) for the points t = tn. We minimize
the functional over initial conditions of a solution of equations (7) at the point t0
and the parameters p, m, ε, τ , c, xi , mij , Aik . There are 26+3K parameters in
aggregate. Variation of c in the minimizing process is realized as variation of the
dimensionless ratio χ = c/c0, where c0 is the value of ballistic coe�cient used in
the subsystem of the spacecraft orbital motion (the motion of the point O).

We treat functional (10) in the following way. We join 25 + 3K of its argu-
ments except τ in the vector z and consider (10) as the function Φb(z, τ). The
minimization of Φb(z, τ) over z and τ is reduced to calculating the function

Φ̂b(τ) = min
z

Φb(z, τ)

at a sequence of points τn ( n = 1, 2, . . . ), which converges to the limit τ∗ =

argmin Φ̂b(τ). We minimize Φb(z, τ) over z, when τ is �xed, by Gauss�Newton's
method. The quantities τ∗ and z∗ = argmin Φb(z, τ∗) are desired estimates of
τ and z. We separate τ from the complete set of arguments of function (10) to
simplify a preparation of the computer code for minimizing Φb(z, τ). We take τ1 =
0 and use design values of xi, χ = 1, mij = 0, and results of processing magnetic
measurements in the same interval t0 ≤ t ≤ tN as an initial approximation to
the minimum point of Φb(z, 0) in case of Zi(t) ≡ 0 (i = 1, 2, 3). Then we pass to
case of Zi(t) 6= 0, etc.

We use appropriate standard deviations to characterize the accuracy of the
approximation of �ltered data and scattering in the estimates τ∗, z∗. The standard
deviation σb of errors in the data B

(n)
i and the standard deviation στ of τ∗ are

calculated by the formulas

σb =

√
Φ̂b(τ∗)

3N − 3K − 26
, σ2

τ = 2σ2
b

[
∂2Φ̂b(τ∗)

∂τ 2

]−1

.

We evaluate the second derivative ∂2Φ̂b(τ∗)/∂τ 2 by di�erence approximation.
Standard deviations of the components of z∗ are calculated under assumption

that τ = τ∗ is known exactly, i.e., we use conditional standard deviations. We �nd
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them in the following way. Let C be the matrix of normal equations, which appear
at minimizing Φb(z, τ∗) over z by Gauss-Newton's method; at that C is calculated
at the point z∗ and 2C ≈ ∂2Φb(z∗, τ∗)/∂z2. The conditional standard deviations
of the components of z∗ are equal to the square roots of corresponding diagonal
elements of the matrix σ2

bC
−1. We denote the conditional standard deviations of

the quantities p, xi, mij by σp , σxi , σmij , etc.
9. Real attitude motion of Foton M-3 (continuation). The accelerometer

TAS3 operated during the whole �ight as well as the magnetometers. So we can
reconstruct the spacecraft motion by two ways. An acceleration and a strength of
a magnetic �eld have quite di�erent physical nature. Therefore we estimate the
coordination of measurement data of these quantities by comparing the spacecraft
motions reconstructed in both ways above. This comparison was made for 5
time intervals listed in Table 1. Table 2 and Figs. 4 � 8 contain the results of
processing the acceleration data in those intervals at K = 5. Table 2 contains
some �tted parameters minimizing functional (10) and appropriate conditional
standard deviations. Interval 1 was processed at λ = 0.286; the others intervals
were processed at λ = 0.255.

Plots in the left-hand and right-hand parts of Figs. 4b, 5b, ..., 8b illustrate the
accuracy of approximation of the �ltered data by their calculated analogs. The
left-hand parts contain the plots of the functions ∆bi+B̂i(t, τ). They are depicted
by solid lines. The marks near these plots show the �ltered data

(
tn + τ, B

(n)
i

)
,

n = 0, 1, . . . , N . The right-hand parts of the �gures contain the plots of the
residuals e

(n)
i = B

(n)
i −B̂i(tn, τ)−∆bi (n = 0, 1, . . . N ; i = 1, 2, 3). These plots are

the broken lines with vertexes in the points
(
tn + τ, e

(n)
i

)
. The standard deviation

σb is a quantitative characteristic of the approximation accuracy. Its values are
given in �gure captions and in Table 2. These values are small nevertheless they
are about two times greater than in [3] and Section 4. This is no surprise because
we used there another way of constructing the calculated analog of the functions
Bi(t). The �gures and the values of σb in Table 2 demonstrate that the correction
for the magnetic �eld and the elimination of infra low-frequency errors allow
to coordinate acceleration measurement data and their calculated analog rather
exactly.

The middle parts of Figs. 4b, 5b, ..., 8b contain the plots of functions (8).
The plots illustrate the real quasi-steady accelerations near the point of TAS3
location.

The marked plots in the left-hand and middle parts of Figs. 4a, ..., 8a describe
the spacecraft attitude motion relative to the system X1X2X3. These plots are
de�ned at τ ≤ t−t0 ≤ T +τ . One can compare the plots with marks and without
them in the �gures and feel that spacecraft motions, found in both above ways,
coincide su�ciently well. Some discrepancies in the plots of the angles γ and δ are
caused by shifts on 360◦. They are not signi�cant. Figs. 4c,..., 8c con�rm that; they
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contain the plots of the quantities ai1 and a2i (i = 1, 2, 3). The quantities ai1 are
the components of the axis z1 unit vector in the system X1X2X3; the quantities
a2i are the components of the axis X2 unit vector in the system z1z2z3. These
plots give exhaustive presentation of spacecraft motion in intervals of Table 2. We
see in the �gures that motion reconstructions of axis z1, found by processing the
measurement data of di�erent types, coincide well. The coincidence is somewhat
worse in case of the motion reconstructions of the axis X2.

The found solutions have conditional standard deviations of the initial angles
γ(t0), δ(t0), β(t0) less than 2.1◦; conditional standard deviations of the quantities
Ω, w2(t0), w3(t0) are less than 0.0055 deg./s. These estimates are close to the
estimates obtained by processing the magnetic measurements. The estimates of
the parameters p, m, ε and their standard deviations in Table 2 somewhat di�er
from the respective estimates in Table 1.

We can obtain some information about accuracy of our motion reconstruction
comparing the estimates of c, τ , xi, and mij found by the technique of Section
8 with analogous estimates found in other ways. The estimates of the ratio χ
in Table 2 show that coe�cient c in (8) are closed to the value of c0 ≈ 0.0014
m2/kg that was obtained by smoothing two line elements. The estimates of xi, τ ,
and mij in the table can be compared with the estimates mentioned in Section 4.
Those estimates di�er in a way from the estimates in Table 2. But the technique
of Section 8 doesn't take into account that single-axis TAS3 sensors have certain
shifts with respect to each other (taking the shifts into account doesn't increase
the accuracy of the technique of Section 8). These shifts are about 50 mm. So we
got a proper agreement in this case.

The standard deviations of the estimates of mij in Section 4 are about the
same as in Table 2. Those estimates di�er from estimates in Table 2 but are
rather similar to them. The estimates of τ in Table 2 lie in the same range as
estimates of this quantity in [3], but they have more large scattering.

The correction of TAS3 measurement data for the Earth magnetic �eld and
the elimination of infra low-frequency errors allowed to achieve a good coincidence
of spacecraft motions reconstructed in di�erent ways. This good coincidence is not
surprising because acceleration measurements contain certain information about
the Earth magnetic �eld.

The use of expressions Zi(t) (i = 1, 2, 3) with K = 5 in formulas (5) and (9)
doesn't a�ect the frequencies above 0.00012 Hz in the comparison of the func-
tions Bi(t) and bi(t). Functions (8) and their analogues, used in Section 4, have
frequencies less than 0.002 Hz for the considered motions of Foton M-3 (com-
pare [3]). These facts testify to the su�ciently high accuracy of the accelerometer
TAS3 in the frequency range 0.0002÷ 0.002 Hz.

This work was partly supported by Russian Foundation for Basic Research
(project 08-01-00467).
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Table 1. Results of processing the magnetic field measurements. 
 

p  pσ  m  mσ  ε  εσ  Interval 
(date) 

0t  
UTC 

Hσ  
(γ ) 510− m/kg 217 sOe10 −−−  910− s 2−  

1 (19) 08:55:40 3053 –13.4 1.7 –0.81 0.13 0.3 0.43 
2 (21) 08:42:24 1657 –8.9 0.61 2.31 0.14 4.4 0.25 
3 (23) 07:09:05 2685 –2.0 1.4 0.46 0.26 1.3 0.33 
4 (24) 05:19:05 3098 –13.5 2.2 3.61 0.39 7.9 0.42 
5 (24) 19:12:27 4600 27.7 2.1 2.22 0.54 40.1 0.55 
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