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EQUATIONS WITH LORENTZ MEDIA ON THE BASIS OF
ALTERNATE DIRECTION IMPLICIT TIME-STEPPING
ALGORITHMS
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N.A. Zaitsev, I.L. Sofronov. Highly accurate schemes for 3D Maxwell
equations with Lorentz media on the basis of alternate direction implicit time
stepping algorithms.

Abstract. An algorithm for computation of 3D unsteady diffraction problems
for Maxwell equations in Lorentz media is suggested. The algorithm is based on the
alternate direction implicit scheme and pseudospectral approximation of spatial
derivatives. Order of approximation in time is equal to 2, 4 or 6. The Lorentz
dispersion is taken into account by means of introducing additional auxiliary
unknowns in the first order governing system. Computational cost of the algorithm

is of order O(N ’ )logN operations per time step, where N is a number of grid

points in one direction.

H.A. 3aiineB, N.JI. CodponoB. Cxemwvl 6vicoKol mouyHocmu 01 MpEXMEPHbIX
ypasnenuii Makceenna 6 cpedax Jlopenya 6asupyrowuecsi Ha HEABHBIX CXEMAX
nepeMeHHbIX HanpasieHuil.

AHHoTauus. [IpennoxeHn anropurm pacdera TPEXMEPHOM HECTAIMOHAPHOU
3amaun  audpakiyy, OMUChIBAEMOW ypaBHEHUsIMH MakcBemia B JIOPEHIEBBIX
cpenax. AJITOPUTM OCHOBAH Ha HEABHOM CXEME MEPEMEHHBIX HaIpPABICHUM C
MICEBAOCIIEKTPAIbHON  aAlPOKCUMAIMe  MPOCTPAHCTBEHHBIX  MPOU3BOJIHBIX.
[TopsimoK MHTErpUPOBAHUS IO BPEMEHH MOXET COCTaBIATH 2, 4, 6. JIopeHLeBckas
JIUCIIEPCUS] YYUTHIBAETCS IIyTEM BBEJCHUS BCIIOMOTATENIbHBIX HEU3BECTHBIX B
HCXOJHYI0 CUCTEMY YpPAaBHEHUN NEPBOrO MOpsiAKa. BbluumciauTenbHas CI0XHOCTh

aJIrOpUTMa OLICHUBACTCA BEIUYUHOU O(N ’ )logN omepaLMi Ha 11ar 10 BpEMEHH,

rac N — 4HCJI0 TOYEK CETKHU 10 OJHOMY HAIIPABJICHUIO.

Pabota BeinorHeHa nipu puHaHcOBOM noaaepkke PODU, rpant Nel0-01-00567.



Introduction

A numerical scheme for solving 3D Maxwell equations by Alternate Direction
Implicit time-stepping algorithms (ADI) has been proposed in [4]. The finite-
difference scheme provides unconditionally stable time stepping by using inversion
of tri-diagonal operators in each direction. It includes introducing a time level n +
1/2 between the adjacent time levels n and n + 1, and has second order accuracy in
both time and space.

Here we also apply the ADI scheme for 3D Maxwell equations and develop it
for the case of so-called Lorentz media. Next we enhance order of integration with
respect to time for ADI schemes and consider spectral approach for approximation
of spatial derivatives. As a result we obtain a high-order algorithm for solution of

extended equation Maxwell system in 2D with O(N ’ )10gN operations per time

level; N is number of grid points in one direction.

§1. Central symmetric ADI for Lorentz media

This section presents the ADI method for Lorentz media. This is a central-
difference time stepping scheme having the second order accuracy in time.

We consider Maxwell’s equations:

_:VXﬁ’ 1.1
Y (1.1)
OB _,

—=-VxEFE, 1.2
Y (1.2)
where
B=ul.,
13:808001:3+80F’,
— P —
P:Z s (1.3)
p=l

B (0)= [E-5)z,(5)d,

P s electric polarization vector, P is the number of Lorentz pole pairs, & is
electrical permittivity, &, is free-space permittivity (8.854x107" farads/meter), &,

1s the relative permittivity at infinite frequency (dimensionless scalar).

Lorentz media are characterized by a set of frequency-domain susceptibility
functions [1]
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GP a)P

2p(@0)=(& ~&,) , p=L..P;

2 . 2
o, + 21apa) 0]

P
3G, =1

p=1
The real-valued time-domain susceptibility functions y, (t) are obtained by the

(1.4)

inverse Fourier transform of (1.4):

2,(0)=y,e " sin(B,1), (1.5)
where
_ [.2 2
'Bp =\NOp ~%ps
G, w’
Vo =(&—&,)—".
p IBp
Two limitations for the time step follow from (1.5):
r< X, (1.6)
By
and
1
T<—. (1.7)
ap

Note that y, (1) = Re(;zp(l‘)), where

7,(0)=—iy P, (1.8)
Then
P, (1)= O]E(z ~8)7,(s)ds = O]E(z —s)a,e’" ds (1.9)
where 0 ' ’
a, ==y,
bp =—a,+i ﬂp,
and
P, (1) =Re( P, (1)),
ﬁ:%%ﬁ+%ﬂ
D= Re(ﬁ)

Let’s consider the recursive convolution method for Lorentz media. Using the
notation " =nr, where 7 is the time step, D" =D(t"), E" :E(z‘">,
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D" = D(t"), P = P(t") Eq. (1.3) can be written in the time-discrete form as
follows

N n DN
D" =¢g,6 E" +¢,P,
P
pn_zpn
= P
p=l

P = [EG" -9)7,()ds =Y [EC" -)7,()ds=Y. [ f(5)7,(s)ds,
0 m=1 P m=1 P

where f(s) = E(¢" —s). Using the piecewise-linear approximation of f(s) for
each m we obtain

Fioy~ e+ LOTED (_pmy_co ity 1o
T

where

oSS E@ -t E@ ") BT -ET

:An—m+1/2
T T T ’
my m—1
C’: — f(tm_l)— f(t ) f(t )tm_l _ En—m+1 _Crlntm_l-
T
" P ,
[ F)z,(s)ds = [ f(s)a,e”ds
. " . i (1.11)
t t
= apC,Z I e” ds + apC,L j se” ds.
1 sl
Jedr= Lo, Jreds = l{xeb" —lebx]
b b b
hence
" s=t" s=t"
- 1L s 1 R B
If(S)Zp(S)dS zapclg {b_ebp ] +apC)11 [b—|:seb1’ _b_ebp :l]
! P e P » e

b tm—l

_ Z_pe » |:En—m+1(0p +An—m+1/2wp:|’

p



where
An_m+1/2 B En—m _En—m+1
T
depends on time. The values
o =" -1
P
and
_ bt _&
w,=rte ;
p
don’t depend on time. Then
~ a o b m—1 _ _
Ppl’l :b_pze pl I:En m+1¢p +An m+]/2wp:|’ (112)
p m=1
P
B =gy, B+, P
= &,& &2 P
p=1
For the next time level
~ a ® m—1
nel _ 'p byt [ n+l-m+1 n+l-m+1/2 ]
Prt=—L% " | E™T g + A v,
p m=1

(1.13)
pra_p C bt I: n—m+1 n—m+1/2 :|
+e Z e E @, +A v,
p m=1
_p n+1 n+1/2 b,t »n
=L E"p, +A""y , |+e"" P,
p
~ Ll a b
n n n n T n
D™ =g E™! +goz —p(E Yo, +A +1/21//p)+e P
p=l bp
M n+l _én
Substituting for the time derivative @_ by the finite difference ——— we
! T

obtain
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En+1 . En
T

oD D" -D’ £, d
S [ ATy,
p:

ot T
(1.14)

1 P a P ~
+— E”“gOZ—pgop +5OZ¢pPp”
T =D, P

The deferred correction method suggested in [2] uses the absence of the even
derivatives in the truncation error in order to two orders of accuracy will be gained
each time when the basic second order scheme is re-run. Obviously, (1.14) is not a
central-difference formula. So we have to modify the recursive convolution method
and to obtain a central-difference in time scheme. First we obtain the required

governing equations. We take Pp as the auxiliary functions. Using (1.13) and (1.12)

we have
ap ' P n+l _P n
P2 —lim—£2—*~2
ot 70 T
_ liml a_p|:En+1 +An+l/2 :|_|_ bpri) " _]3 "
B =0 1 b ¢p l//P € 4 )4
p
da ~ a
=lim{| ZE™ +P" &+ +lim —pAnH/Z&}
70 b P T =0 | p T
P p
=a,E+b,P,
since
bt
: e’ =1 . .
hm&:hm =limb " =b ,
=0 T 7—0 T r—>0 P p
. . ;1 ..
hrnﬁ =lime” ——llm& =0.
=0 T 70 bp >0 T
Thus the desired equations read:
OP - -
—atp =a,E+b,P, p=1..P, (1.15)
and
oD OF P OP
—=¢&6,—+& Re Z L
ot = ot
OF P
=g,&,—t¢&,Re ZapE+bp ;
Ot p



For the Lorentz media
oD U
—=¢,6,—+¢&,Re prPp
ot ot
since a, = =iy ,.

Hence, the governing system is as follows

OF 1 <
—:—VXH——RG s 1.16
ot &6, &, {;[ ]] e
o _ ly.p (1.17)
ot Y7,
oP, L
—+t=aE+bP, p=1,..P (1.18)

ot
Note that equations (1.18) are ODEs (not PDEs).

Using the notation € = &,¢&,,, the governing system (1.16) — (1.18) is written in a

matrix form
ou
— = Au+ Bu (1.19)
ot
where
~ \T
=(E*, E’, E°, H', H', H", P,
10H" ¢ Re i oP; 1oH? 1-¢ Re i opP;
e 0y &, “o| Ot & Oz &, | Ot
x e[ oP | : - e[ oP ]
10H _ % pe Z i _1oH" 1 % Re Z »
E 0z ¢, “o| ot & Ox &, 01| ot
vor e ($lon o ey (IR
E Ox ¢, “o| ot g Oy £, “o| ot
Au = - -1, Bu= - -
1 0E’ 1 oF
M 0Oz u oy
1 oF” 1 oE"
U Ox U Oz
1 0E" 1 0E
u oy M Ox
c,a,E+ch P (1-c))a,E+(1-c5)b, P,
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where ¢,,..., ¢, are arbitrary constants (some weights),
GPP ~ ~
ot p PP

The equation (1.20) exactly coincides with the equation considered in [2] and hence
all the techniques are applicable. So the ADI for solving (1.20) reads

(1—3Aju"+“2 :(1+£Bju",
2 2
<

(l_szun+l :(1+£Ajun+l/2.
| 2 2

If central differences of the second order accuracy are used to approximate spatial
derivatives in A and B then the ADI scheme (1.21) is absolutely stable and deals
with three-diagonal matrices only. One can use central differences of the fourth
order accuracy and deals with five-diagonal matrices. If a spectral method is used to
approximate spatial derivatives then all matrices will be dense. The stability of the
scheme is not investigated yet and must be checked at least numerically.

(1.21)

§2. The deferred correction formulas for the fourth order

Following [2] let’s find the local error of the ADI scheme (1.21). To do this we
have to substitute the expansions

2 3 4 5
T I(7t 1(7 1(7 1(7
un+l :un+1/2+5utn+l/2+5(5j ulnt+l/2+§(5j u[r[z;—l/Z_,_Z(E) ulrllt-;—l/2+§ E T/I,',l;,l/z‘i'

2 3 4 5
:un+1/2+£un+l/2+%un+l/2+Lun+1/2 T oon+/2, T n+l/2

B t 1t 48 1t +ﬂ ttt +M”ztm

T 1(zY 1(zY 1(zY 1(zY
un :un+l/2__uln+l/2+_ i utrtz+l/2__ e utnt;rl/2+_ i utrtz;trl/Z__ s utrtz;trtl/2+
2\ 2 32 41\ 2 SN2

2 3 4 5
ne1/2 T2 T ops/2 T a2 0 T pe/2 T n+1/2

\9)

=u u +—u - +— —u
t 1t 1t et 24213
8 48 384 3840
n+l n n+l/2 27° n+1/2 27° n+1/2 n+1/2 7’ n+1/2 7’ n+1/2
u —u =71u, + 48 1t 3840 Uyy —+...=TU, + ﬁum + 1920 Uy
2 4 2 4
n+l n__ A, n+l/2 27 a2 2T i CAn+l/2 T a2 T pil)2
u" +u" =2u +—1u, — Uy, T +..=2u +—u, T+ —u,,
384 4 192

into the one-step form of the scheme

1—Zall1=EBlu = 1+L 4| 1+LB |u" =0.
2 2 2 2

The difference of the left hand size from 0 at a solution of the equation (1.20) gives
the estimate for the local error. After some algebra we have



2 3 5
(1+?ABJ( 2 +%u;’j”2 - 1;20 ul? +j

2 4
T T T
_5(A+B)(2un+l/2+?un+l/2+_un+1/2+”.j

i 192 1t
1 1 3 5
n+l1/2 3 n+l1/2 5 n+l/2 n+1/2 n+1/2
= 7u, +—— T Uy, + T Uy + — ABu + — ABu Uy,
24 1920 4 96

3 5

. A B n+l/2 A B n+1/2 A B n+l/2
(A4 B (A B L (44 B

et

+{%ABU:+1/2 —(A+B) trtz+1/2 4 tn”+1/2} 3
1 n+1/2 1 n+1/2 1 n+1/2 5
+ 9_6ABum _Q(A B)utttt +@ ittt

and obtain that the local error
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5n+1/2 :{iAButn-t-l/Z _é(A'FB)u;ZH/Z +%ut};+1/2}2_3

1 n 1 n L
+{9—6 ABI/lm 12 —E(A + B)I/lmtl/2 +@Mtttttl/2}fs (21)

+...

To get a fourth order accurate in time ADI algorithm, we would approximate O rl
by means of the second order accurate central differences:

n+l n
nety2 U U
t ~ °
T
n+2 n+l n n—1
n+1/2 1 n+3/2 n-1/2\ _ 1 (v ~u u —u
utt N — ut _ut — J—
22— 22' T T
n+2 _un+l _un +un—1 . (2 2)
= : ‘
272
2 1 1 -1
n+1/2 1( nl ,,) (o™ =2u"™" +u" u"" =2u" +u"
~—\U — = — —
it 1t 1t 2 2
T T
2 1 -1
u"™ =3u" +3u" —u"
= 5 :
T

Then we have

Sn+ 1 n+ 1 n+ 1 n+
5 1/2 :{ZABut 1/2_§(A+B)utl 1/2+ﬁum 1/2}2_3
ntl  n n+2 o on+l _ _on n-1
_ lABu u —l(A+B)u u Zu +u
4 T 8 27
1 un+2_3un+1+3un_un—l ;
+24 3 T
T

or

2
~ T T _
5n+1/2 :_AB(Un+1 _Mn)__(A+B)<Mn+2 _un+1 _un +un 1)
4 16
(2.3)
1
+ R
24
The procedure to increase the temporal order of accuracy from 2 to 4 consists of the
following steps:

(un+2 _ 3un+1 + 3un _un—l )

e Step the ADI scheme over some time interval [O, T ]
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e Using the numerical values from this solution, evaluate the approximation
(2.3) of the local truncation error 0”''* at each time level.
e Re-run the ADI scheme over the time [O,T ], with 0""""? as a RHS to the

equation.
Thus at the third stage we have to solve the following system:

(1_114)”%1/2 2(14—13)%” +15n+1/2’
2 2 2

1_£B Z/ln+1 _ 1+ZA un+1/2+15n+1/2
N2 2 2

12 Entl/2
where 8" = 5"V

A natural question is what to do at the vicinities of the ends of the interval [O,T ] ?

(2.4)

First of all, the approximation (2.3) uses points #"** and #""'. So we have to use
other approximations of (2.1) at points t=7/2 and t=T —7/2. Let’s derive
unilateral approximation of the second order for t=7—17/2. After some
calculations

n+1 n
ntli2 U —U
t ~ >
T
1 -1
pt U —4u" +u"
r = ’
2T
1 -1 - -2
1/n 1( . n) 1 3u" —4u" +u"  3u" —4u" +u"
u ~—\U —Uu = — _
It t t
T 2T 2T
3un+1 _7un+5un—1 _un—z .
— : :
2T
Let
n+l/2 ~ n+l n n—1 n-2 n-3
L CRau tau ta u' +a,u’ +asu
Using
2 3 4
n+l n+1/2+£ n+1/2+l T . a2 1 T nei2 1 T nen2
u ~ 7 t 7\ 2 u, 31 2 1t 41\ 2 1t
2 3 4
no_ o2 T n+1/2+l z n+1/2_1 T ne2 1 T . a2
u = ) t 2 1t 31l 2 tt 41\ 2 tit

2 3 !
un—l ~ un+l/2 _3_Tutn+l/2 +l 3_2-) U;H/z _i 3_2- uZ;1/2 +i 3_2- utftl;-l/Z
7 20 2 3102 410 2



2 3 4
0" ™2 _S_Tun+1/2 +l 5T L L5t L, 1[57
2 2\2) " 3!

2 3 4
_ 1t 1(7 1 (7t 1 (7t
un 3 ~ Z/1}14—1/2 __un+l/2 +E e Z/ln+l/2 R un+l/2 + | = Mn+1/2

we obtain

8 48 e 3 84 et
1

t

1/2 1/2 1 1/2 1 2 1/2 1 3 1/2 1 4 1/2
u, T rau" —tu T A —Ttu,  +—Tu,C+—1 u,,
2
{ 1

8 123 48 1273 3 84 it

1 1

1/2 2 1/2 1/2 4 1/2

Z_un+ / +7 un+ / _ z_3un+ / + r un+ /
2

1/2 3 1/2 9 2 1/2 27 3 1/2 81 4 1/2

+a_, {u"* —Eru’” + Ut - —u + "

3 it 48 it ﬁ T Uy,

5 25 125 625
"2 __Tutn+1/2 +§72u;’”/2 _ 23,2 4. n+l/2

4—8 Uy 384 T Uy,

w2 1 o 49 o s 343 5 Lan 2401 4 a0
+a ,qu —Erut +—7u, ——48 Tu,, +—384 Tu,,
where
2 —7 9 -5 1
a=—, a,=—, a4, =—, d,=——, ad,=—
1 ) 0 ) -1 ) ) ) 3
r? r’ r’ r’ r’
or

o 3un+1 . 7un + Sun—l _un—Z .
W2 - : 2.5)

1 -1 -2 -3
s 2u"T =Tu" +9u" = 5u"" +u”
it ~ 3
T
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and
2
Sz _ T—AB(M"“ —un)—i(A—FB)(?)MnH Ty 4 5y _unfz)
4 16 (2.6)
+L(2u”+1 —Tu" +9u"" —5u"? +u”‘3)
24

For the time moment =7 /2 we can use "~ obtained in the previous time
interval.

Formula (2.6) is acceptable if we want to get the fourth order of accuracy only.
But the six and higher orders are unavailable because the truncation error of (2.6) is
asymmetric.

Another way of operating is the over stepping. It means the following.
Let T = Nt. Then to obtain fourth order accuracy we have to rerun ADI after each

N time steps. Field u” for the current time interval is given, because it coincides
with #”" of the previous interval. Field u' we can calculate using information from

the previous interval. Levels u” for n=2,...,N —1 are calculated by the natural

way. But for calculating u™ weneed u""'. So we have to calculate it in advance, to
use it during the second run and to forget about it. The next time interval starts from

u™ . This way has some extra cost at each time interval (uN+l of the first run), but it
allows to use RHS in the form (2.3) only. Such RHS has only the odd degrees in the
truncation error, and hence, admits to increase of the order of accuracy.

The formal description of the both algorithms is as follows.
The first variant.

0) u’ and ™" are given.

1) Compute u” for n=1,...,N of the current time interval [ZO,tN] using the
standard ADI scheme (1.21).

2) Compute 6™ for n=0,..., N —2 by (2.3).

3) Compute 8"*""? for n= N —1 by (2.6).

4) Re-compute #" for n=1,..., N by means of the ADI scheme (2.4) using the

computed 5"1'? as the RHS.
The second variant.

0) u” and ™" are given.

1) Compute u” for n=1,..., N +1 of the current time interval [to, tN] using the
standard ADI scheme (1.21).

2) Compute 6™"? for n=0,..., N —1 by (2.3).

3) Re-compute #" for n=1,..., N by means of the ADI scheme (2.4) using the
computed 6""'? as the RHS.
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The objection of the first variant is the inability to get the sixth order of accuracy.
The objection of the second variant is the necessity to compute of one extra step at
each time interval of the length 7. However, even for fourth order scheme the
second variant could be more effective (in the sense of CPU time) because the
stencil in (2.6) i1s wider then in (2.3) and hence in spite of the same order of
accuracy has bigger coefficient of truncation error. On the other hand in the first
variant N =1 is applicable (i.e. only the (2.6) approximation is used), and hence
both runs of ADI can be done simultaneously. This leads to extremely small request
for memory: one needs to keep only 5 time levels in memory. (If we do so for the
second variant extra pay will be very big.)

§3. The deferred correction formulas for the sixth order

It was obtained in the previous section that the truncation error of ADI (1.21) is
defined by (2.1). For deriving the sixth order scheme we must approximate 5"
with 4™ order finite differences for the time derivatives of the first term (the factor
of *) and with 2™ order finite differences for time derivatives of the second term
(the factor of 7). In [2] the numerical values from ADI are suggested to be used to
compute the first term in the RHS of (2.1). But probably the accuracy of the data is
insufficient because the data contain an error of order z°. Thus the numerical values
from the forth order scheme are more preferable in our opinion. Besides, in the last
case we don’t need to keep the numerical values from ADI.

Anyway we have the approximation formulas

2 3 4 5
S5t (57 1(57 1 (57 1(57
un+3 ~ un+l/2 +7utn+l/2 +E ? uZH/Z +§ 7 u,}:—l/z +_' s u;:[—;—l/Z | == u;:;tl/Z

2 3 4 5
3r 1(37 1 (37 1(3r 1(3r
un+2 zun+l/2+?utrl+l/2+5 7 u;+l/2+§ 7 ut}::—l/Z_i__ - u;:;l/2+_ - l/l;:;tl/z

2 3 4 5
u! zun+1/2+£un+1/2+l T un+1/2+l z un+1/2+l T un+1/2+i z "2
2 t 2 2 11 3 ! 2 it 4 ! 2 et 5 ! 2 e
2 3 4 5
w2 T [T L7} . (7Y .. L(7) .
U~y _Euf 1/2+E(Ej u' 1/2_§(§j u’ 1/2+Z(Ej “tml/z _a(zj U,,,,,l/z
Un_l ~ un+l/2 _3_Tun+]/2 +l[3_’[j2 Z/er—l/Z _l[3_z-j3 Z//7-*—1/2 +l(3_’[j4 Z/ln+1/2 _l[zjs n+l/2
2 t 2 2 114 3 ! 2 it 4 ! 2 it 5 ' 2 22118
2 3 4 5
n-2 w12 T 15T w2 15T w2 15T w2 15T n+l/2
B u, B 7 i _§ 7 U, +Z 7 Uy ; 7 Uy
Let
n+l/2

Then we obtain



16

or
2 1 -1
n+1/2 _un+ +27un+ —27l/ln +l/ln

u = . 3.1
' 2471 G-l

Similarly, let

n+l/2 2

n+3 n+ n+l n n—1 n—-2
i ~ S3U +S2U +S1U +S01/l +S_11/l +S_21/l

and we obtain
o =Su" 4390 =34y —34u” +39u" —Su"?
! 487°

(3.2)

sz =" 130" =340 + 340" —13u" +u"

ult'"? ~ - (3.3)

for the fourth order approximation of the first group of derivatives in (2.1).
The second group of derivatives in (2.1) must be approximated at least with the
second order of approximation. We get finally:

n+2 +1 -1
T =3u" +3u”" —u”
it ~ 3 >

.
2 1 -1 -2
pa U =3u" A 2u" 20 =B v
w 4 > (3.4)
2T
3 2 1 -1 -2
s U =5u" 100" 10w + 5u”" —u”

e 5
T

Thus substituting (3.1)- (3.4) into (2.1) we estimate

~ 2
5n+1/2 :;_6AB(_un+2 +27un+1 _27un +un—1)

———(A+B)(=5u" +39u" ~34u"" ~34u" +39u" —5u")
384
L(—un” 130" =340 + 340" —13u"" +u”_2)
19
i (3.5)
+T— AB (u’”z —3u"™ + 3" — ™! )
96
T

—%(A + B)(u”+3 —3u" 4+ 2u" + 2u" =3+ u”‘z)

1

+—(u”+3 —5u™? +10u™" —10u" +5u" " —u" )
1920
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The formal description of the sixth order approximation computations is as follows.
0) u’, u" and u™* are given.

1) Compute u” for n=1,..., N +2 of the current time interval [to,tN] using the
standard ADI scheme (1.21).

2) Compute 5™"? for n=0,..., N +1 using (2.3).

3) Re-compute #" for n=1,..., N + 2 by means of the forth-order scheme (ADI
scheme with RHS (2.4) using the computed 5”*"'? as the RHS).

4) Compute 5" for n=0,...,N +1 using (3.5).

5) Re-compute #" for n=1,..., N by means of ADI scheme with RHS (2.4) using

the computed 6™'"? as the RHS.

§4. Spatial discretization

We describe here pseudospectral approximation for spatial derivatives

4.1 Periodic case
Suppose we need to solve an L-periodic problem: u(s+ L)=u(s). Then we

choose the equidistant grid

s, =sy+As-j, j=-N/2,.,N/2-1 (N iseven)

where N is the number of grid steps per period, s, is the center of the interval of

interest,
As=L/N
is the grid step. The linear transformation
2
X=— (S — S, )
L

maps our spatial domain onto the fundamental domain [—7,77) with the equidistant

grid x; = jh where

he2Z
N
The derivative
du dulr
ds dx L

Denote u, =u (xj ) In order to compute the first derivative d_ in the same points
X

we have to
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(1) Compute the discrete Fourier transform
N/2-1

= (FN”).,; =h Y, eu,;

j=—N/2

(2)Multiply # : by i&, except that #_,, , is multiplied by 0:
[0, &=-N/2,
Ve =

iu,, othervise

(3) Compute the inverse transform and assign
N/2-1
du(x,) (F _1‘;) _ b igkh s
o« N -
dx k2w e

The same result can be obtained by multiplication of vector {u j} by a skew-

symmetric Toeplitz N x N matrix D" of clements

0 if k=,
o :L- Nfl ée,gzﬂ(k—j)/N: 1 ' h—
k,J N §:—N/2+l _(_1)k+J COt(ﬂ'—]] lf k i ]
2 N
see [3], 1.e.
N/2-1
(F N‘lﬁ) = > DMu,
g j=—N/2

Remark 1. Values x ; are never used.

Remark 2. From the practical point of view it is better to use indexes j=1,..., N
instead of j=—N/2,...N/2-1.

Remark 3. The discrete Fourier transform can be computed with great efficiency by
the fast Fourier transform (FFT) algorithm.

4.2. Non-periodic case

For non-periodic case the best approximation is given by the Chebyshev points,

x;=cos(jz/N), j=0,1,.,N.
In order to map the interval of interest [S,eﬁ,sri ght] onto the fundamental interval

[—1, 1] we use the following linear transformation:

X = %(Sleft _Sright)_l'

Then
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du du 2
ds dx L
. .. du _
To obtain the vector of derivatives d_ one can multiply the vector u by
X

(N + 1) X (N + 1) matrix, which we shall denote by DV

@zD(N)u
dx
where
(2N? +1
N+ for i=j=0
6
2N? +1
— N6+ for i=j=N
Di(,]}[):< —X
———= for 0<i=j<N
2(1-x7)
. i+
G D7 for i#j
¢ XX,
and
2 for i=0orN,
C. =
" |1 for O0<i<N
see [3].

On the other hand for given data {u j} defined at the Chebyshev points {x i } ,
0 < j < N, one can think of the same data as being defined at the equally spaced
points {(9].} in [O,ﬂ]:

szﬂ, X =cosé.
N
Then
du_du[a’le_ 1 du 1 du
dx  dé\ do sinf df  J1— 2 dO
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u
To calculate — one can use the FFT: the cos-FFT and the inverse sin-FFT.

N
u(@)=>a,cosnb,

n=0
du i .
— = —Z na, sin no,
d@ n=0

At x==%1,1ie. 8 =0, 7, L Hopital’s rule gives the special values
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