

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 55 за 2010 г.</u>

Гинзбург С.Л., Дьяченко В.Ф.

Численное исследование неустойчивости стационарного потока нейтральной плазмы

Рекомендуемая форма библиографической ссылки: Гинзбург С.Л., Дьяченко В.Ф. Численное исследование неустойчивости стационарного потока нейтральной плазмы // Препринты ИПМ им. М.В.Келдыша. 2010. № 55. 11 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=2010-55</u>

ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ им. М.В. КЕЛДЫША РОССИЙСКОЙ АКАДЕМИИ НАУК

С.Л. Гинзбург, В.Ф. Дьяченко

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ НЕУСТОЙЧИВОСТИ СТАЦИОНАРНОГО ПОТОКА НЕЙТРАЛЬНОЙ ПЛАЗМЫ

Москва

С.Л. Гинзбург, В.Ф. Дьяченко

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ НЕУСТОЙЧИВОСТИ СТАЦИОНАРНОГО ПОТОКА НЕЙТРАЛЬНОЙ ПЛАЗМЫ

Аннотация

Трехмерная компьютерная модель взаимодействия плазмы с электромагнитным полем в рамках уравнений Максвелла – Власова применена для расчета движения релятивистского нейтрализованного потока плазмы. Рассматривается влияние начальной скорости потока на процесс.

S.L. Ginzburg, V.F. Dyachenko

NUMERICAL STUDY OF THE INSTABILITY OF A NEUTRAL PLASMA FLOW

Abstract

A three-dimensional numerical model that describes the interaction of plasma with electromagnetic field in the framework of Maxwell – Vlasov equations is used for simulating the flow of relativistic neutralized plasma. The influence of initial velocity on the process is studied.

Введение

Данная работа является продолжением работ [1–7]. Она посвящена изучению неустойчивости релятивистских джетов и содержит описание полученных на 3D модели результатов расчета движения с релятивистской скоростью нейтрализованного слоя плазмы, состоящей из электронов и протонов, в вакууме. В работе показана зависимость процесса перераспределения начальной кинетической энергии протонов джета между протонами, электронами и возникающим электромагнитным полем от начальной скорости частиц. Авторы благодарны В.М. Чечеткину и Н.Н. Фимину за предложенную для расчетов тему и полезное обсуждение результатов.

1. Постановка задачи

Взаимодействие бесстолкновительной плазмы с электромагнитным полем описывается 3D системой уравнений Максвелла-Власова. При указанном ниже выборе единиц измерения система имеет вид:

$$\begin{split} & \frac{\partial \mathbf{E}}{\partial t} - \nabla \times \mathbf{H} + \mathbf{j} = \mathbf{0}, \ \nabla \bullet \mathbf{E} = \rho, \\ & \frac{\partial \mathbf{H}}{\partial t} + \nabla \times \mathbf{E} = \mathbf{0}, \ \nabla \bullet \mathbf{H} = 0, \\ & \frac{\partial f_{e,p}}{\partial t} + \mathbf{v}_{e,p} \bullet \frac{\partial f_{e,p}}{\partial \mathbf{x}} + q_{e,p} \Big(\mathbf{E} + \mathbf{v}_{e,p} \times \mathbf{H} \Big) \bullet \frac{\partial f_{e,p}}{\partial \mathbf{p}} = 0, \end{split}$$

где **E**(*t*,**x**), **H**(*t*,**x**) – соответственно вектора электрической и магнитной напряженности самосогласованного поля; $f_{e,p}(t, \mathbf{x}, \mathbf{p}) - \phi$ ункции распределения, $\mathbf{v}_{e,p} = \partial w_{e,p} / \partial \mathbf{p}_{e,p} - c$ корости, $w_{e,p} = [(m_{e,p})^2 + (\mathbf{p}_{e,p})^2]^{1/2}$ – энергии, $m_{e,p}$ – массы покоя, $q_{e,p}$ – заряды, соответственно, электронов (q_e =-1) и протонов (q_p =1) джета.

Плотности заряда и тока

$$\rho = \sum q_{e,p} \int f_{e,p} d^3 p, \quad \mathbf{j} = \sum q_{e,p} \int \mathbf{v}_{e,p} f_{e,p} d^3 p,$$

с суммированием по всем сортам частиц.

Здесь и далее используется следующая система единиц:

длина - *L* - произвольный размер,

скорость – c - скорость света,

время – L/c,

масса частицы – *m* – масса покоя электрона,

импульс частицы – *mc*,

энергия частицы – mc²,

поле – mc^2/eL , где e – элементарный заряд, концентрация частиц – $mc^2/4\pi e^2L^2$, функция распределения по энергии – $L/4\pi e^2$.

В этих единицах масса электрона $m_e = 1$, протона $m_p = 1836$.

Область расчета определяется параметрами 0 < x < X, 0 < y < Y, 0 < z < Z. По осям *x* и *y* заданы периодические граничные условия. Внешние границы закрыты для входа извне частиц и любых видов энергии.

Задача решалась численным методом, основные принципы алгоритма которого (разностная схема для уравнений Максвелла и метод макрочастиц для уравнения Власова) изложены в [8-9].

2. Результаты расчетов

В работе описаны результаты расчета движения плотного джета в вакууме с различной начальной скоростью.

В качестве основной модели выбрана модель варианта расчета [3]. В начальный момент t=0 электромагнитное поле отсутствует. Электронейтральная плазма (джет), состоящая из электронов и протонов с равной концентрацией $n_e = n_p = 2 \cdot 10^8$ каждого типа частиц, заполняет прямоугольный параллелепипед 0 < x < 0.3, 0 < y < 0.3, 2 < z < 3 (граничные значения X=Y=0.3, Z=5). Все частицы имеют скорость вдоль оси *z*, равную 0.99999, (если не оговорено иное). Кинетическая энергия электрона в этом случае равна 222.6, протона – 408929.

На рис.1 представлено поведение во времени кинетической энергии протонов, электронов и энергии электромагнитного поля. На рис.2 показаны функции распределения по кинетической энергии всего ансамбля электронов $F_e(W)$ и протонов $F_p(W)$ на момент времени t=0.5.

Рис.1 W – суммарная кинетическая энергия протонов и электронов, W_p – кинетическая энергия протонов, W_e – кинетическая энергия электронов, U – энергия электромагнитного поля.

Рис.2 Распределение F_e электронов и F_p протонов по энергиям на время t=0.5.

Основным результатом расчета является почти равномерное распределение к моменту времени $t_0 \approx 0.5$ первоначальной кинетической энергии протонов между протонами, электронами и появившимся электромагнитным полем (см. рис.1). Тогда же наблюдается (см. рис.2) близость функций распределения по кинетической энергии $F_{e,p}(W)$ всего ансамбля электронов и протонов, которые сильно отличаются от первоначальных дельта – функций распределения частиц (кинетическая энергия всех электронов – 222.6, протонов – 408929). Рис.2 демонстрирует наличие двух процессов: протоны заметно теряют энергию, электроны существенно свою энергию увеличивают. Появляются «убегающие» по энергии вперед частицы обоих типов, что наиболее характерно для электронов.

Аналогичные результаты получены и в рассмотренных далее вариантах расчета.

Опишем результаты расчета варианта, в котором импульсы частиц (следовательно, и скорости) изменены на случайную величину $0.01*P_{z0}*sin(случ. число)$, где P_{z0} – импульс частиц при t=0 (при прочих равных условиях). Очевидно, $0.01*P_{z0}$ – достаточно большая величина для начального импульса протона, поэтому процесс перераспределения энергии протонов на начальном этапе прошел быстрее во времени, чем в основном варианте и $t_0 \approx 0.4$, (см. рис.1 и рис.3).

На рис.3 показана зависимость от времени кинетических энергий частиц и поля, на рис.4 - 5 изображены функции распределения по энергиям всего ансамбля электронов и протонов на два момента времени t=0.5 и t=1, демонстрирующие их близость.

Рис.3 W – суммарная кинетическая энергия протонов и электронов, W_p – кинетическая энергия протонов, W_e – кинетическая энергия электронов, U – энергия электромагнитного поля.

Рис.4

Рис.5

Рис.4,5 Распределение электронов F_e и протонов F_p по энергиям на моменты времени: t=0.5 (рис.4) и t=1 (рис.5). Очевидно, принципиальных отличий от основного варианта (рис.2) нет.

На рис.6 – 7 представлена эволюция проекций (P_x,z) и (P_z,z) фазовых портретов электронов и протонов от момента времени t=0 до времени t=1.

Рис.6 Проекции (P_{z}, z) фазовых портретов электронов и протонов при t=0 ($P_x=P_y=0$).

Рис.7(а, б) Проекции ($P_x z$) и ($P_z z$) фазовых портретов электронов и протонов при t=1.

На рис.8 дано распределение всего ансамбля электронов F_{ve} и протонов F_{vp} по скоростям вдоль осей x, y, z на момент t=1 ($\int_{1}^{1} F_{vep} dv = 1$).

Рис.8 Функции распределения F_v электронов и протонов по скоростям V_x, V_y, V_z при t=1.

Очевидно наличие сравнительно небольшого числа электронов и протонов, имеющих скорость вдоль осей х и у порядка 0.9 в обоих направлениях.

Далее описаны результаты расчета вариантов, в которых начальные скорости частиц (при прочих равных условиях основного варианта) имеют значения: $V_z=0.999 - (\gamma \approx 22.3), V_z=0.95 - (\gamma \approx 3.2), V_z=0.5 - (\gamma \approx 1.16)$. Начальная

энергия у уменьшена в 10, 70 и почти в 200 раз, соответственно, по сравнению с вариантом [3].

Рис.9 $V_z=0.999 - (\gamma \approx 22.3, t_0 \approx 0.2)$ Рис.10 $V_z=0.95 - (\gamma \approx 3.2, t_0 \approx 0.1)$ Рис.9,10 W – суммарная кинетическая энергия протонов и электронов , W_p и W_e – их кинетические энергии, U – энергия электромагнитного поля как функции времени.

На рис.11 показаны функции распределения $F_{e,p}$ (W) по энергиям электронов и протонов на момент времени $t_0=0.1$ для варианта $V_z=0.95$.

Рис.11 Распределение электронов F_e и протонов F_p (пунктир) по энергиям на момент времени t=0.1.

Очевидно, имеет место существенное ускорение электронов.

На рис.12-14 представлены результаты расчета варианта со скоростью частиц в начальный момент $V_z=0.5$ ($\gamma \approx 1.16$).

Рис.12 W – суммарная кинетическая энергия протонов и электронов, W_p – кинетическая энергия протонов, W_e – кинетическая энергия электронов, U – энергия электромагнитного поля как функции времени.

Очевидно, кинетическая энергия электронов на момент $t \approx 0.1$ существенно превосходит кинетическую энергию протонов.

На рис.13 показаны функции распределения $F_{e,p}(W)$ по энергиям электронов и протонов на момент времени $t \approx 0.1$ для варианта $V_z=0.5$.

Рис.13 Распределение электронов F_e и протонов F_p по энергиям на момент времени $t \approx 0.1$.

На рис.14 дано распределение электронов F_{ve} и протонов F_{vp} по скоростям вдоль осей x, y, z на момент $t \approx 0.1$.

Рис.14 Функции распределения частиц по скоростям V_x, V_y, V_z при *t* ≈ 0.1 .

К указанному времени скорость протонов вдоль оси z заметно упала. Электроны по скоростям вдоль осей x и у в обоих направлениях распределились практически равномерно. По всем направлениям появилась скорость $\approx |0.9|$

Во всех вариантах с различными начальными скоростями частиц также наблюдается почти равномерное распределение кинетической энергии протонов между протонами, электронами и возникшим электромагнитным полем: к моменту времени $t_0 \approx 0.2-$ в первом варианте, $t_0 \approx 0.1-$ во втором и к $t_0 \approx 0.055-$ в третьем.

3. Заключение

Задача о расчете движения с релятивистской скоростью нейтрализованного слоя плазмы, состоящей из электронов и протонов, в вакууме имеет точное решение – движение слоя нейтральной плазмы как целого с постоянной скоростью при отсутствии электромагнитного поля.

Исследование устойчивости этого тривиального решения можно проводить, вводя различные возмущения концентраций и скоростей. Но любой численный метод, округляя результат каждой арифметической операции, сам вводит в расчет возмущения, которые и малы, и случайны.

Таким образом, тривиальное решение неустойчиво. Отметим, что в одномерном варианте расчета задачи ($\partial/\partial x = \partial/\partial y = 0$) тривиальное решение оказывается устойчивым по отношению к случайным погрешностям.

Для всех вариантов расчета характерно перераспределение начальной энергии протонов между протонами, электронами и возникающим электромагнитным полем примерно в равных долях к некоторому моменту времени t₀.

Чем меньше начальная скорость частиц V_z , тем меньше время t_0 и тем большую энергию приобретают электроны в дальнейшем.

Литература

[1] С.Л. Гинзбург, В.Ф. Дьяченко, В.В. Палейчик, А.Л. Судариков,

В.М. Чечеткин. Плазменная неустойчивость в релятивистских джетах.

// Письма в астрономический журнал 2004, Т.30, №5.

[2] С.Л. Гинзбург, В.Ф. Дьяченко, В.В. Палейчик, А.Л. Судариков,

В.М. Чечеткин. Влияние позитронов и γ - фактора электронов на плазменную неустойчивость релятивистских джетов. // Препринт ИПМ им. М.В. Келдыша 2004, №28.

[3] С.Л. Гинзбург, В.Ф. Дьяченко. Численное исследование неустойчивости релятивистского потока плазмы. //Препринт ИПМ им. М.В. Келдыша 2009, №20.

[4] В.М. Чечеткин, В.Ф. Дьяченко, С.Л. Гинзбург, В.В. Палейчик,

Н.Н. Фимин, А.Л. Судариков. К вопросу о механизме возникновения жесткого космического гамма – излучения джетов активных ядер галактик. //Астрономический журнал 2009, Т.86, №6.

[5] <u>Chechetkin, V. M.;</u> <u>D'Yachenko, V. F.;</u> <u>Ginzburg, S. L.;</u> <u>Paleichik, V. V.;</u> <u>Fimin, N. N.;</u> <u>Sudarikov, A. L.</u>, "On the generation mechanism of hard cosmic gamma-ray emission from AGN jets", // Astronomy Reports, Volume 53, Issue 6, pp.501-509, 2009.

[6] <u>Vereshchagin, Gregory; Chechetkin, V. M.; Dyachenko, V. F.;</u>

<u>Ginzburg, S. L.; Fimin, N. N.; Ruffini, Remo; Siutsou, Ivan</u>. On kinetic instabilities in collisionless ultra-relativistic streaming cold electron-proton plasma.. American Physical Society, 2009 APS April Meeting, May 2-5, 2009.

[7] <u>Vereshchagin, Gregory; Chechetkin, V. M.; Dyachenko, V. F.; Ginzburg, S. L.;</u> <u>Fimin, N. N.; Ruffini, Remo;</u>, "On kinetic instabilities in collisionless ultrarelativistic streaming cold electron-proton plasma", International conference in honor Ya.B. Zeldovich 95th Anniversary "The Sun, the Stars, the Universe, and General Relativity", held in Minsk, Belarus on April 20-23, 2009.

[8] В.Ф. Дьяченко. О расчетах задач бесстолкновительной плазмы. // ЖВМ и МФ 1985, №4.

[9] В.Ф. Дьяченко Десять лекций по физической математике. // г. Москва Издательство «Факториал», 1997.

Содержание

Введение	
1. Постановка задачи	
2. Результаты расчетов	4
3. Заключение	10
Литература	11