
Keldysh Institute • Publication search

Keldysh Institute preprints • Preprint No. 63, 2009

Klyuchnikov I.G.

Supercompiler HOSC 1.0:
under the hood

Recommended form of bibliographic references: Klyuchnikov I.G. Supercompiler HOSC 1.0:
under the hood. Keldysh Institute preprints, 2009, No. 63, 28 p. URL:
http://library.keldysh.ru/preprint.asp?id=2009-63&lg=e

http://keldysh.ru/index.en.shtml
http://keldysh.ru/index.en.shtml
http://library.keldysh.ru/prep_qf.asp?lg=e
http://library.keldysh.ru/preprints/default.asp?lg=e
http://library.keldysh.ru/preprint.asp?id=2009-63&lg=e
http://library.keldysh.ru/author_page.asp?aid=3145&lg=e
http://library.keldysh.ru/preprint.asp?id=2009-63&lg=e

KELDYSH INSTITUTE OF APPLIED MATHEMATICS
Russian Academy of Sciences

Ilya G. Klyuchnikov

Supercompiler HOSC 1.0:
under the hood

Moscow
2009

Ilya G. Klyuchnikov. Supercompiler HOSC 1.0: under the hood

The paper describes the internal structure of HOSC, an experimental super-
compiler dealing with programs written in a higher-order functional language.
A detailed and formal account is given of the concepts and algorithms the su-
percompiler is based upon.

Supported by Russian Foundation for Basic Research projects No. 08-07-
00280-a and No. 09-01-00834-a.

Илья Г. Ключников. Суперкомпилятор HOSC 1.0: внутренняя
структура

В работе описана внутренняя структура экспериментального суперком-
пилятора HOSC. Дано полное описание всех существенных понятий и
алгоритмов суперкомпилятора, работающего с функциональным языком
высшего порядка.

Работа выполнена при поддержке проектов РФФИ № 08-07-00280-a и
№ 09-01-00834-a.

3

Contents

1 Introduction 4

2 Notation 4

3 Input language 5
3.1 Basic definitions . 6

3.1.1 Free and bound variables 6
3.1.2 Equal expressions . 7
3.1.3 Free variables . 7
3.1.4 Bound variables . 7
3.1.5 Substitution . 7
3.1.6 Application of a substitution 8
3.1.7 Instance of an expression 8
3.1.8 Renaming . 8
3.1.9 Generalization . 8
3.1.10 Most specific generalization 9

3.2 λ-lifting . 9
3.3 Observables, contexts, redexes 9
3.4 Operational semantics . 10

4 Homeomorphic embedding 10
4.1 Extended homeomorphic embedding 11
4.2 Embedding of variables . 12
4.3 Diving . 12
4.4 Coupling . 12
4.5 Examples . 12

5 Generalization 13
5.1 Most specific generalization of coupled expressions 13
5.2 Common functor rule . 13

5.2.1 Variable . 13
5.2.2 Constructor . 13
5.2.3 λ-abstraction . 14
5.2.4 Application . 14
5.2.5 Case-expression . 14

5.3 Common sub-expression rule 14
5.4 Let-expression . 14
5.5 Examples . 15

6 Metacomputation 15
6.1 Driving step . 15

4

7 Partial process tree 15

8 Partial process tree construction 17

9 Residual program construction 18

10 Related work 20

11 Conclusions 21

12 Acknowledgements 22

A Examples 24
A.1 Iterate . 24
A.2 Church numerals . 26

1 Introduction

Supercompilation is a program transformation technique, suggested by V.F.
Turchin in the early 1970-s [21, 22].

This paper describes the specializer HOSC, an experimental supercompiler
dealing with programs written in a simple higher-order functional language.

A number of supercompilers for higher-order functional languages have
already being described in the literature [8, 10, 11, 12, 15, 14]. However,
the published descriptions of concepts and algorithms related to higher-order
supercompilation suffer from being incomplete: a number of essential details
are either omitted or presented in sketchy and informal style.

The goal of the present work is to provide a detailed and formal description
of the concepts and algorithms the supercompiler HOSC is based upon. The
source code of HOSC is publicly available and can be found at http://hosc.
googlecode.com.

2 Notation

For the sake of conciseness and readability we use overlining to denote con-
structs that may be repeated, so that Ai means A0A1 . . . An, if A0 is defined,
or A1 . . . An otherwise, where n is determined by the context. Thus, an over-
lined construct should contain parts with subscripts and, in a sense, is similar
to a list comprehension. The doubly overlined text is unfolded “inside out”
with respect to overlines and “from left to right” with respect to indices. If
the overlined text is found inside the parentheses denoting a set or a list ({}

http://hosc.googlecode.com
http://hosc.googlecode.com

5

tDef ::= data tCon = dConi; type definition
tCon ::= tn tvi type constructor
dCon ::= c typei data constructor
type ::= tv | tCon | type → type | (type) type expression

prog ::= tDefi e where fi = ei; program

e ::= v variable
| c ei constructor
| f function
| λ vi → e λ-abstraction
| e1 e2 application
| case e0 of {pi → ei;} case-expression
| letrec f = λ vi → e0 in e1 local function
| (e) parenthesized expression

p :: = c vi pattern

Figure 1: HLL grammar

or [], respectively), we assume that delimiters (commas) are inserted correctly
during unfolding. For example:

let vi = ei; in e⇒ let v1 = e1; v2 = e2; . . . ; vn = en; in e
[γ, γi]⇒ [γ, γ1, γ2, . . . , γn]
case e0 of {ci vik → ei;} ⇒
case e0 of {c1 v1k → e1; . . . ; cn vnk → en; } ⇒
case e0 of {c1 v11 . . . v1m1

→ e1; . . . ; cn vn1 . . . vnmn
→ en; }

3 Input language

HOSC transforms programs written in HLL, a simple higher-order lazy lan-
guage. HLL is statically typed using the Hindley-Milner polymorphic typing
system [4].

A program in HLL consists of a number of data type definitions, an ex-
pression to be evaluated and a set of function definitions.

A left-hand side of a data type definition is a type name (more precisely,
a type constructor name) followed by a list of type variables. The right-hand
side consists of one or more constructor declarations (delimited by a vertical
bar, dConi ⇒ dCon1 | . . . | dConn).

The grammar of HLL is shown in Fig. 1. An expression is either a variable,
a constructor, a λ-abstraction, an application, a case-expression, a local func-

6

data List a = Nil | Cons a (List a);

(compose (map f)(map g)) xs where

compose = λf g x → f (g x);

map = λf xs →
case xs of {
Nil → Nil;
Cons x1 xs1 → Cons (f x1) (map f xs1);

};

Figure 2: A simple HLL program

tion definition or an expression in parenthesis. A function definition binds a
global variable to a λ-abstraction.

The target expression e in a program prog may contain free variables. All
local variables in global function definitions should be bound.

An expression e0 within a case expression is called a selector, and expres-
sions ei are called branches. We require all constructors of a corresponding
data type to be enumerated within a case expression, so that patterns in the
case expression are non-overlapping and exhaustive.

We will use two different notations for applications: e1 e2 and e0 ei. In the
first case, an expression e1 may be any well-typed expression. In the second
case, we require the list of arguments to be non-empty and the expression e0
not to be an application.

An example of a simple HLL program is shown in Fig. 2.

3.1 Basic definitions

The following definitions will be used throughout the whole paper.

3.1.1 Free and bound variables

A variable is bound if it is either (1) the argument of an enclosing λ-abstraction
or (2) is defined in the pattern of an enclosing branch of a case-expression.
Variables that are not bound are considered to be free. To avoid problems
caused by possible name clashes, we require all variable names to be unique
in the following sense: for any variable v and expression e all occurrences of
the variable v in the expression e must be either free or bound.

7

3.1.2 Equal expressions

Expressions e1 and e2 are considered to be equal, if they differ only in the
names of bound variables and there is a one-to-one correspondence between
the bound variables of e1 and e2. The equality of expressions e1 and e2 is
denoted as e1 ≡ e2.

3.1.3 Free variables

fv[[e]] denotes the set of the free variables of the expression e and is defined
inductively as follows:

fv[[v]] = {v}
fv[[c ei]] =

⋃
fv[[ei]]

fv[[λv → e]] = fv[[e]] \ {v}
fv[[e1 e2]] = fv[[e1]] ∪ fv[[e2]]
fv[[case e0 of {ci vik → ei;}]] = fv[[e0]] ∪ (

⋃
fv[[ei]]\{vik})

fv[[letrec f = e1 in e2]] = fv[[e1]] ∪ fv[[e2]] \ {f}

3.1.4 Bound variables

bv[[e]] denotes the set of the bound variables of the expression e and is defined
inductively as follows:

bv[[v]] = {}
bv[[c ei]] =

⋃
bv[[ei]]

bv[[λv → e]] = bv[[e]] ∪ {v}
bv[[e1 e2]] = bv[[e1]] ∪ bv[[e2]]
bv[[case e0 of {ci vik → ei;}]] = bv[[e0]] ∪

⋃
bv[[ei]] ∪

⋃
vik

bv[[letrec f = e1 in e2]] = bv[[e1]] ∪ bv[[e2]] ∪ {f}

3.1.5 Substitution

A substitution is a finite list of pairs of the form

θ = {v1 := e1, v2 := e2, . . . , vn := en}

each pair binding a variable vi to its value ei.
The domain of a substitution θ is denoted by domain(θ) and is defined as

follows:

domain({v1 := e1, v2 := e2, . . . , vn := en}) = {v1, v2, . . . , vn}

8

3.1.6 Application of a substitution

e θ denotes the result of applying a substitution θ to an expression e, which,
informally speaking, is obtained in the following way.

• All free variables of expression e, which are in domain(θ), are replaced
by their values from θ.

• All other parts of the expression e remain unchanged.

To avoid problems with variable name clashes, we require the domain of
θ not to contain bound variables of e, i.e.

domain(θ) ∩ bv[[e]] = ∅

More formally, e θ is defined as follows:

vθ = e if v := e ∈ θ
= v otherwise

(c ei)θ = c (eiθ)
(λv → e)θ = λv → (eθ)
(e1 e2)θ = (e1θ) (e2θ)

(case e0 of {pi → ei;})θ = case (e0θ) of {pi → (eiθ);}
(letrec f = e1 in e2)θ = letrec f = (e1θ) in (e2θ)

3.1.7 Instance of an expression

An expression e2 is said to be an instance of an expression e1, or e1 l e2, if
there is a substitution θ, such that e1θ ≡ e2. As far as the language HLL is
concerned, the substitution θ is unique and is denoted by e1 4 e2.

3.1.8 Renaming

An expression e2 is a renaming of an expression e1, e1 ' e2, if e1 l e2 and
e2 l e1. That is, e1 and e2 differ in names of free variables only.

3.1.9 Generalization

A generalization of expressions e1 and e2 is a triple (eg, θ1, θ2), where eg is an
expression and θ1 and θ2 are substitutions, such that egθ1 ≡ e1 and egθ2 ≡ e2.
The set of generalizations of expressions e1 and e2 is denoted by e1 a e2.

9

obs ::= v ei | c ei | (λv → e)
con ::= 〈〉 | con e | case con of {pi → ei;}
red ::= f | (λv → e0) e1 | case v e′j of {pi → ei;}

| case c e′j of {pi → ei;}

Figure 3: Observables, contexts, redexes

3.1.10 Most specific generalization

A generalization (eg, θ1, θ2) ∈ e1 a e2 is a most specific one, if for any gener-
alization (e′g, θ

′
1, θ
′
2) ∈ e1 a e2 holds that e′g l eg, that is eg is an instance of

e′g. We suppose that there is defined an operation u, such that e1 u e2 is a
most specific generalization of e1 and e2.

3.2 λ-lifting

Note that the construction where is no more than syntactic sugar, since
the global function definitions may always be transformed into letrec-s and
moved to the target expression. Thus, any program written in HLL may al-
ways be replaced by an equivalent program consisting of type definitions and
a self-sufficient target expression. In some cases it is more convenient to deal
with such programs. For example, the problem of checking the equivalence of
two programs is reduced to checking the equivalence of two expressions.

However, in the process of supercompilation, global function definitions
are easier to deal with than letrec-expressions. For this reason, at the first
stage of supercompilation, HOSC removes all letrec-expressions using the
well-known method of λ-lifting [9].

Thus, in the following, we assume that source HLL programs do not con-
tain letrec-expressions. (Ironically, residual programs constructed by HOSC
never contain global function definitions.)

3.3 Observables, contexts, redexes

The syntax of observables, redexes and contexts is shown in Fig. 3.
An observable is either:

• a local variable,

• a local variable application,

• a constructor,

• a λ-abstraction.

10

E [[c ei]] ⇒ c ei
E [[λv0 → e0]] ⇒ λv0 → e0
E [[con〈f0〉]] ⇒ E [[con〈unfold(f0)〉]]
E [[con〈(λv → e0) e1〉]] ⇒ E [[con〈e0{v := e1}〉]]
E [[con〈case cj e′k of {ci vik → ei;}〉]] ⇒ E [[con〈ej{vjk := e′k}〉]]

Figure 4: Operational semantics of HLL (call by name)

A redex is either:

• a global variable,

• a λ-abstraction application,

• a case-expression with an observable as a selector.

A context is an “expression with a hole”. It is either:

• a hole (empty context) 〈〉,

• a context application,

• a case-expression with a context as a selector.

If con is a context, then con〈e〉 denotes the result of replacing the hole in
con with e. Essentially, the hole 〈〉 is used as a meta-variable.

It can be shown that any HLL-expression e is either an observable or can
be represented as a context con whose hole is replaced with a redex r, so that
e = con〈r〉. This fact is known as the unique decomposition property.

3.4 Operational semantics

HLL operational semantics is defined as normal-order reduction to a weak-
head normal form [3] (Fig. 4). Note that operational semantics is only defined
for expressions without free variables.

4 Homeomorphic embedding

In the definition of the “classical” homeomorphic embedding [13, 6, 17, 18]
all variables are supposed to be free and considered to be embedded into each
other. However, bound variables may appear in HLL expressions, for which
reason HOSC takes a more subtle approach to the embedding of variables:

11

• a free variable is embedded into a free variable,

• a bound variable is embedded into a corresponding bound variable,

• a global variable v is embedded into itself only.

The correspondence between bound variables is recorded in a table ρ:

ρ = {(v′1, v′′1), . . . , (v′n, v
′′
n)}

When two λ-abstractions are coupled, the correspondence between their
arguments is recorded in ρ. When two case-expressions are coupled, the cor-
respondence between their pattern variables is also recorded in ρ.

When checking whether an expression e can dive into the body of a λ-
abstraction λv → e1, the bound variable v does not correspond to any vari-
ables in e. So the pair (•, v) is put into ρ, where • is a special pseudo-variable
(placeholder) for a missing variable.

Checking for an expression e diving into a branch of a case-expression is
performed in the same manner - we remember that pattern variables do not
correspond to any variables in e.

4.1 Extended homeomorphic embedding

Let ρ be a table recording the correspondence of bound variables. Then ex-
tended homeomorphic embedding relation E|ρ for expressions e′ and e′′ (con-
strained by ρ) is defined inductively as follows:

e′ E e′′ |ρ if e′ Ev e′′ |ρ or e′ Ed e′′ |ρ or e′ Ec e′′ |ρ

Thus we distinguish the following kinds of embedding:

• e′ Ev e′′ |ρ – embedding of variables

• e′ Ed e′′ |ρ – diving

• e′ Ec e′′ |ρ – coupling

We will also use the following abbreviations:

e′ E e′′
def
= e′ E e′′ |{}

e′ Eve′′
def
= e′ Eve′′ |{}

e′ Ede′′
def
= e′ Ede′′ |{}

e′ Ece′′
def
= e′ Ece′′ |{}

12

4.2 Embedding of variables

f Ev f |ρ
v1 Ev v2 |ρ if (v1, v2) ∈ ρ
v1 Ev v2 |ρ if v1 /∈ domain(ρ) and v2 /∈ range(ρ)

4.3 Diving

For an expression e to be able to dive into another expression e′ under con-
straints ρ, we require that

∀v ∈ fv(e) : v /∈ domain(ρ)

The rationale behind this requirement will be given in the next section. The
diving relation is defined as follows:

e Ed c ei |ρ if e E ei |ρ for some i
e Ed λv0 → e0 |ρ if e E e0 |ρ∪{(•,v0)}

e Ed ei |ρ if e E ei |ρ for some i
e Ed case e0 of {ci vik → ei;} |ρ if e E e0 |ρ
e Ed case e0 of {ci vik → ei;} |ρ if e E ei |ρ∪{(•,vik)} for some i

4.4 Coupling

c e′i Ec c e
′′
i |ρ if ∀i : e′i E e

′′
i |ρ

λv1 → e1 Ec λv2 → e2 |ρ if e1 E e1 |ρ∪{(v1,v2)}
e′ e′i Ec e

′′ e′′i |ρ if e′ E e′′|ρ and ∀i : e′i E e
′′
i |ρ

case e′ of {ci v′ik → e′i;} Ec case e′′ of {ci v′′ik → e′′i ;}|ρ
if e′ E e′′|ρ and ∀i : e′i E e

′′
i |ρ∪{(v′ik,v′′ik)}

Note that in the third rule (diving of applications) e′ and e′′ themselves
are not applications! This ensures that a global variable can be embedded
into itself only.

4.5 Examples

Here are some examples of embedding and non-embedding (data types and
global functions are taken from the programs presented in Fig. 2 and Fig. 9):

• x E y

• map 6E compose

13

• map f 6E compose map f

• map f Ec map (compose f g)

• λx→ Nil Ecλx→ Cons a Nil

• λx→ Nil 6E λx→ Cons x Nil

• case x of {Z → x; S b→ f b; } Ec case x of {Z → x; S b→ (f g) b; }

• case x of {Z → x; S b→ f b; } 6E case x of {Z → x; S b→ f (g b); }

5 Generalization

The specializer HOSC described in the paper never tries to find a general-
ization for two expressions e1 and e2, unless one of them is embedded into
another by coupling. For this reason, we describe an algorithm for finding a
most specific generalization (MSG) dealing only with expressions e1 and e2,
such that e1 Ece2.

5.1 Most specific generalization of coupled expressions

A most specific generalization of coupled expressions e1 and e2 (that is e1 Ece2)
is computed by exhaustively applying the following rewrite rules (common
functor rule and common sub-expressions rule) to the initial trivial general-
ization (v, {v := e1}, {v := e2}). The requirement from the subsection 4.3
comes from the fact that θ1 and θ2 should be correct substitutions - that is,
substitutions operating on free variables. This requirement guarantees that
substitutions will be correct, if e1 Ece2.

5.2 Common functor rule

5.2.1 Variable e
{v1 := v2} ∪ θ1
{v1 := v2} ∪ θ2

⇒
 e{v1 := v2}

θ1
θ2


5.2.2 Constructor

 e

{v := c e′1} ∪ θ1
{v := c e′′1} ∪ θ2

⇒
 e{v := c v1 . . . vn}

{vi := e′1} ∪ θ1
{vi := e′′1} ∪ θ2



14

5.2.3 λ-abstraction e
{v := λv′ → e′} ∪ θ1
{v := λv′′ → e′′} ∪ θ2

⇒
 e{v := λv0 → v1}
{v1 := e′{v′ := v0}} ∪ θ1
{v1 := e′′{v′′ := v0}} ∪ θ2


5.2.4 Application

 e

{v := e′0 e
′
i} ∪ θ1

{v := e′′0 e
′′
i } ∪ θ2

⇒
 e{v := v0 vi}
{v0 := e′0, vi := e′i} ∪ θ1
{v0 := e′′0 , vi := e′′i } ∪ θ2


5.2.5 Case-expression

 e

{v := case e′0 of {ci v′ik → e′i;}} ∪ θ1
{v := case e′′0 of {ci v′′ik → e′′i ;}} ∪ θ2


⇓ e{v := case v0 of {ci vik → vi;}}

{v0 := e′0, vi := e′i{v′ik := vik}} ∪ θ1
{v0 := e′′0 , vi := e′′i {v′′ik := vik}} ∪ θ2


5.3 Common sub-expression rule

 e
{v1 := e′, v2 := e′} ∪ θ1
{v1 := e′′, v2 := e′′} ∪ θ2

⇒
 e{v1 := v2}
{v2 := e′} ∪ θ1
{v2 := e′′} ∪ θ2


5.4 Let-expression

Let-expressions are used for representing results of generalizing expressions.
The syntax of a let-expression has the form:

let vi = ei; in eg

where variables vi may appear in eg, the value of vi being obtained by eval-
uating ei. Since HLL is a lazy language, a let-expression is semantically
equivalent to eg{vi := ei}.

Let-expressions are not allowed in input programs, but may be generated
by HOSC when constructing a partial process tree.

15

5.5 Examples

Here are examples of generalization of expressions embedded by coupling (see
examples in 4.5):

• map f u map (compose f g) =
(map h, {h := f}, {h := (compose f g)})

• λx→ Nil u λx→ Cons a Nil =
(λx→ y, {y := Nil}, {y := Cons a Nil})

• case x of {Z → x; S b→ f b; } u case x of {Z → x; S b→ (f g) b; } =
(case x of {Z → x; S b→ h b; }, {h := f}, {h := f g})

6 Metacomputation

A process tree is a directed (possibly infinite) tree whose nodes are labeled
with HLL expressions. A process tree is built by HOSC in the process of
metacomputation ([5, 6, 1, 2]), which is performed by symbolically evaluating
expressions that, unlike the case of ordinary evaluation, may contain free
variables.

The expression a node n is labeled with will be denoted by n.expr.
Given a source program, the construction of its process tree starts with

creating a single-node tree whose root is labeled with the program’s target
expression. Then the process tree is incrementally built by adding children to
its leaves according to the driving rules presented below.

6.1 Driving step

The operator D (Fig. 5) takes as argument an expression in a leaf node and
returns zero or more expressions e1, . . . , ek. Then the supercompiler adds k
child nodes to the leaf labeling them with the expressions e1, . . . , ek.

The last rule applies to let-expressions which are not present in source
programs but may appear as a result of generalization.

7 Partial process tree

In the general case, metacomputation may result in constructing an infinite
process tree. The task of supercompilation is to turn this tree into a finite
(possibly cyclic) graph, which is referred to as a partial process tree. A partial
process tree differs from a process tree in the following points:

• Nodes of a partial process tree may contain let-expressions.

16

D[[v ei]] ⇒ [v, ei]

D[[c ei]] ⇒ [ei]

D[[λv0 → e0]] ⇒ [e0]

D[[con〈f0〉]] ⇒ [con〈unfold(f0)〉]

D[[con〈(λv0 → e0) e1〉]] ⇒ [con〈e0{v0 := e1}〉]

D[[con〈case cj e′k of {ci vik → ei;}〉]] ⇒
[
con〈ej{vjk := e′k}〉

]
D[[con〈case v e′j of {pi → ei;}〉]] ⇒

[
e, con〈ei{v e′j := pi}〉

]
D[[let vi = ei; in e]] ⇒ [e, ei]

Figure 5: Driving step

• A partial process tree may have cycles. Let a node α be an ancestor of a
node β and β.expr a renaming of α.expr (β.expr ' α.expr). Then it is
possible to create a “return” edge β ⇒ α from the repeat (or recursive)
node β to the function (or base) node α.

Thus, a partial process tree is a directed tree (whose edges are denoted
by →) supplemented with “return” edges (denoted by ⇒) turning it into a
directed graph.

The goal of supercompilation is to construct a partial process tree of a
reasonable size.

Fig. 6 shows a number of operations used by HOSC for constructing partial
process trees and generating residual programs.

A node β is referred to as processed, if one of the following conditions
holds:

• β is the source of a “return” edge β ⇒ α,

• β.expr is a nullary constructor,

• β.expr is a local variable.

A node β is non-trivial, if β.expr can be decomposed as either

con〈f〉 or con〈case v ej of {pi → ei;}〉

Otherwise, the node β is referred to as trivial.

17

processed(node) Returns true or false depending on whether the node is
processed or not.

trivial(node) Returns true or false depending on whether the node is
trivial or not.

children(t, α) Returns an ordered list of child nodes for the node α of
a tree t.

addChildren(t, β, es) Adds child nodes to the node β of the tree t and puts
expressions es into them.

replace(t, α, expr) Replaces a subtree with root α by a single node β such
that β.expr = expr.

ancestor(t, β, ') Returns a node α - the closest ancestor of β, such that
α.expr ' β.expr, or • if β doesn’t have such ancestor.

ancestor(t, β, l) Returns a node α - the closest ancestor of β, such that
α.expr l β.expr, or • if β doesn’t have such ancestor.

ancestor(t, β, Ec) Returns a node α - the closest ancestor of β, such that
α.expr Ecβ.expr, or • if β doesn’t have such ancestor.

fold(t, α, β) Adds a “return” edge β ⇒ α to form a cycle.
abstract(t, α, β) = replace(t, α, let vi = ei; in eg), where (eg, θ1, θ2) =

α.expr u β.expr, egθ1 = eg{vi := ei} = let vi = ei; in eg.

dα ' te Returns all repeat nodes of a node α, dα ' te = [βi] :
βi ⇒ α, or • if α is not a function node.

dα � te Returns a function node for a node α, dα � te = β : α⇒
β, or • if α is not a repeat node.

drive(t, α) = addChildren(t, α, D[[α.expr]]) - executes driving step.
unprocessedLeaves(t) Returns a list of all unprocessed leaves of a tree t or • if

all leaves are processed.

Figure 6: Operations on partial process tree

8 Partial process tree construction

Now we describe the core of the supercompiler HOSC: the algorithm of con-
structing a partial process tree (see Fig. 7).

Given a source program, the algorithm starts with the creation of a single-
node tree whose root is labeled with the program’s target expression. Then,
while there is at least one unprocessed leaf β:

1. If β is trivial, β.expr is “metaevaluated” by performing a driving step.

2. If β has an ancestor α, such that α.expr ' β.expr, then α becomes a
function node for β, i.e. a “return” edge β ⇒ α is added to the tree.

18

while unprocessedLeaves(t) 6= • do
β = unprocessedLeaves(t).head
if trivial(β) then

t = drive(t, β)
else if ancestor(t, β, ') 6= • then

α = ancestor(t, β, ')
fold(t, α, β)

else if ancestor(t, β, l) 6= • then
α = ancestor(t, β, l)
t = abstract(t, β, α)

else if ancestor(t, β, Ec) 6= • then
α = ancestor(t, β, Ec)
t = abstract(t, α, β)

else
t = drive(t, β)

end

Figure 7: Algorithm of partial process tree construction

3. If β has an ancestor α, such that α.expr l β.expr, then β.expr is gen-
eralized.

4. If β has an ancestor α, such that α.expr Ecβ.expr, then α.expr is
generalized.

5. Otherwise, β.expr is “metaevaluated” by performing a driving step.

The fourth case is the central point of the algorithm: removing it would
cause the supercompiler not to terminate for a lot of source programs!

However, the test for the homeomorphic embedding works as a “whistle”
signalling that two expressions have “too much in common”, but a “return”
edge still cannot be added to the tree. So the supercompiler generalizes the
expression labeling the “function” (base) node, thereby preventing the the
infinite growth of the process tree.

9 Residual program construction

Here we describe an algorithm for transforming a partial process tree t into a
program in the language HLL.

The algorithm (presented in Fig. 8) is defined via two mutually recursive
operators (functions): C and C′. A residual program can be extracted from a

19

C [[α]]t,Σ = C′[[α.expr]]t,α,Σ (C0)

C′[[let vi = ei; in e]]t,α,Σ ⇒ C[[γ
′]]{vi = C[[γ′

i]]t,Σ} (C1)

C′[[v ei]]t,α,Σ ⇒ v C[[γi]]t,Σ (C2)

C′[[c ei]]t,α,Σ ⇒ c C[[γi]]t,Σ (C3)

C′[[λv0 → e0]]t,α,Σ ⇒ λv0 → C[[γ′]]t,Σ (C4)

C′[[con〈(λv0 → e0) e1〉]]⇒ C[[γ′]]t,Σ (C5)

C′[[con〈case c e′j of {pi → ei;}〉]]t,α,Σ ⇒ C[[γ
′]]t,Σ (C6)

C′[[con〈f〉]]t,α,Σ
⇒ letrec f ′ = λvi → if dα ' te 6= • (C1

7)
(C[[γ′]]t,Σ′)θ

′

in f ′v′i
where

[βi] = dα ' te, θi = α.expr 4 βi.expr,

v′i = domain(
⋃
θi), θ

′ = {v′i := vi},
Σ′ = Σ ∪ (α, f ′ vi), f

′ and vi are fresh
⇒ f ′

sigθ if dα � te 6= • (C2
7)

where
f ′
sig = Σ(dα � te), θ = dα � te.expr 4 α.expr

⇒ C[[γ′]]t,Σ otherwise (C3
7)

C′[[con〈case v e′j of {pi → ei;}〉]]t,α,Σ
⇒ letrec f ′ = λvi → if dα ' te 6= • (C1

8)

(case C[[γ′]]t,Σ′of{pi → C[[γ′
i]]t,Σ′ ;})θ′

in f ′v′i
where

[βi] = dα ' te, θi = α.expr 4 βi.expr,

v′i = domain(
⋃
θi), θ

′ = {v′i := vi},
Σ′ = Σ ∪ (α, f ′ vi), f

′ and vi are fresh
⇒ f ′

sigθ if dα � te 6= • (C2
8)

where
f ′
sig = Σ(dα � te), θ = dα � te.expr 4 α.expr

⇒ case C[[γ′]]t,Σ′of{pi → C[[γ′
i]]t,Σ′ ;} otherwise (C3

8)

In order to make the rules less cumbersome the following abbreviations are used.

If γi appears in the right-hand side, we assume that [γi] = children(t, α), and all

child nodes are processed in the same way. If γ′ and γ′
i appear in the right-hand

side, we assume that [γ′, γ′
i] = children(t, α), and either there is exactly one child

node or the first child node requires special treatment.

Figure 8: Rules for constructing residual program

partial process tree by evaluating:

C [[t.root]]t,{}

20

In order to construct a residual program we traverse a partial process tree
top-down starting from the root node. Traversing a function node produces
the definition of a recursive function. The correspondence between a function
node and the signature of a new function in recorded in Σ. Later Σ is used
for constructing a recursive function call.

Let us consider the most important details of the algorithm.

• The rule C0 defines C in terms of C′.

• The rules C1, C2 and C3 define how to combine supercompiled parts of a
let-expression, a call to an unknown function or a constructor expression
in order to produce the corresponding residual expression.

• The rule C4 defines how to construct a residual λ-abstraction from its
supercompiled body.

• The rules C5 and C6 correspond to the cases con〈(λv0 → e0) e1〉 and
con〈case c ej of {pi → ei;}〉, in which a reduction step was completely
performed by driving. Thus no actions need to be inserted into the
residual program.

• The rules C7 and C8 are used when traversing non-trivial nodes:

– A recursive function definition is generated when traversing a func-
tion node (the rules C1

7 and C1
8). Note that only those free variables

which were not preserved in repeat nodes become the arguments
of λ-abstractions. This trick allows the arity of residual functions
to be reduced. The correspondence between a function node and
the signature of a new function is recorded in Σ and passed down
the tree.

– A call to a recursive function defined in a base node is generated
when traversing a repeat node (the rules C2

7 and C2
8).

– The rules C3
7 and C3

8 are used when traversing a node which is
neither a “function” nor “repeat” one.

10 Related work

Originally supercompilation was formulated for the programming language
Refal [20]. Currently, the most advanced Refal supercompiler is SCP4 [16].

In 1990-s supercompilation was reformulated for a number of simpler lan-
guages. The main goal of that work was to understand which parts of super-
compilation were due to Refal and which ones were of a fundamental character.

21

The first complete and formal description of the concepts and algorithms
essential for any supercompiler (driving, generalization, residual program con-
struction) can be found in Sørensen’s Master’s Thesis [17] and in the later
papers by Sørensen and Glück [6, 19], presenting a supercompiler for a simple
first-order functional language (with the call-by-name semantics).

A full description of a supercompiler for the language TSG (a simple first-
order funcional call-by-name language) is given by Abramov [2].

The supercompilers by Abramov, Sørensen and Glück construct a partial
process tree which is then transformed into a residual program.

In recent years there has been a growing interest in supercompilation for
higher-order functional languages [8, 10, 11, 12, 15, 14].

The techniques used by Jonsson [10, 11] and Mitchell [15, 14] are similar
to that of deforestation [23, 7], since they do not generate a partial process
tree at a separate stage, so that the driving (symbolic evaluation) and the
residual program generation are closely interleaved.

On the contrary, Hamilton [8] and Kabir [12] prefer to deal with partial
process trees.

While the papers by Hamilton, Jonsson, Kabir and Mitchell pay much at-
tention to driving and residual program generation, unfortunately, the prob-
lems related to homeomorphic embedding and generalization are not given an
account they deserve.

Homeomorphic embedding relation (used as a whistle for generalization) is
described in detail in [6, 17, 18] for a first-order functional language without
case-expressions. Case-expressions are discussed in [19], however a formal
description of homeomorphic embedding of case-expressions is missing. The
same situation is with the higher-order languages with case-expressions dealt
with in [8, 10, 11, 12, 15, 14].

An algorithm for finding a most specific generalization for a first-order lan-
guage without case-expressions (that is, without bound variables) is described
in already mentioned papers [6, 17, 18]. Bound variables are considered in
[19, 10, 8, 15], and the algorithm for finding an MSG is said to be a modifi-
cation of algorithms from [6, 17, 18], but it is not described in detail.

11 Conclusions

We have described the internal structure of an experimental supercompiler
HOSC dealing with programs written in a higher-order functional language.

A complete and formal account has been given of all essential concepts
and algorithms the supercompiler HOSC is based upon. Of particular interest
are the questions related to homeomorphic embedding and generalization for
expressions containing bound variables.

22

12 Acknowledgements

The author expresses his gratitude to Sergei Romanenko and all participants
of Refal seminar at Keldysh Institute for useful comments and fruitful discus-
sions of this work.

References

[1] S.M. Abramov. Metacomputation and its applications. “Science” Pub-
lish., Moscow, 1995.

[2] S.M. Abramov and L.V. Parmyonova. Metacomputation and its applica-
tions. Supercompilation. Ailamazyan University of Pereslavl, 2006.

[3] S. Abramsky. The lazy lambda calculus. In Research topics in functional
programming, pages 65–116. Addison-Wesley Longman, 1990.

[4] L. Damas and R. Milner. Principal type-schemes for functional programs.
In Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, pages 207–212. ACM New York, NY,
USA, 1982.

[5] R. Glück and A.V. Klimov. Occam’s razor in metacompuation: the
notion of a perfect process tree. In WSA ’93: Proceedings of the Third
International Workshop on Static Analysis, volume 724 of LNCS, pages
112–123. Springer, 1993.

[6] R. Glück and M.H. Sørensen. A roadmap to metacomputation by su-
percompilation. In Selected Papers From the internaltional Seminar on
Partial Evaluation, volume 1110 of LNCS, pages 137–160. Springer, 1996.

[7] G.W. Hamilton. Higher order deforestation. Fundamenta Informaticae,
69(1-2):39–61, 2006.

[8] G.W. Hamilton. Distillation: extracting the essence of programs. In
Proceedings of the 2007 ACM SIGPLAN symposium on Partial evalua-
tion and semantics-based program manipulation, pages 61–70. ACM Press
New York, NY, USA, 2007.

[9] T. Johnsson. Lambda lifting: Transforming programs to recursive equa-
tions. In Proc. of a conference on Functional programming languages and
computer architecture, volume 201 of LNCS, pages 190–203. Springer,
1985.

[10] P.A. Jonsson. Positive supercompilation for a higher-order call-by-value
language. Master’s thesis, Lule̊a University of Technology, 2008.

23

[11] P.A. Jonsson and J. Nordlander. Supercompiling overloaded functions.
Submitted to ICFP 2009, 2009.

[12] M.H. Kabir. Automatic Inductive Theorem Proving and Program Con-
struction Methods Using Program Transformation. PhD thesis, Dublin
City University, Faculty of Engineering and Computing, School of Com-
puting, 2007.

[13] M. Leuschel. Homeomorphic embedding for online termination of sym-
bolic methods. In The essence of computation, volume 2566 of LNCS,
pages 379–403. Springer, 2002.

[14] N. Mitchell. Transformation and Analysis of Functional Programs. PhD
thesis, University of York, 2008.

[15] N. Mitchell and C. Runciman. A supercompiler for core haskell. In
Implementation and Application of Functional Languages, volume 5083
of LNCS, pages 147–164. Springer, 2008.

[16] A.P. Nemytykh. The supercompiler scp4: General structure. In PSI
2003, volume 2890 of LNCS, pages 162–170. Springer, 2003.

[17] M.H. Sørensen. Turchin’s supercompiler revisited: an operational the-
ory of positive information propagation. Master’s thesis, Københavns
Universitet, Datalogisk Institut, 1996.

[18] M.H. Sørensen. Convergence of program transformers in the metric space
of trees. In Proceedings of the Mathematics of Program Construction,
volume 1422 of LNCS, pages 315–337. Springer, 1998.

[19] M.H. Sørensen and R. Glück. An algorithm of generalization in positive
supercompilation. In J. W. Lloyd, editor, Logic Programming: The 1995
International Symposium, pages 465–479, 1995.

[20] V.F. Turchin. A supercompiler system based on the language REFAL.
SIGPLAN Not., 14(2):46–54, 1979.

[21] V.F. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems (TOPLAS), 8(3):292–325, 1986.

[22] V.F. Turchin. Metacomputation: Metasystem transitions plus supercom-
pilation. In Partial Evaluation, volume 1110 of LNCS, pages 481–509.
Springer, 1996.

[23] P. Wadler. Deforestation: Transforming programs to eliminate trees. In
ESOP ’88, volume 300 of LNCS, pages 344–358. Springer, 1988.

24

A Examples

This Appendix contains two examples of supercompilation performed by HOSC
supercompiler. Both examples deal with higher-order functions.

A.1 Iterate

data List a = Nil | Cons a (List a);
data Nat = Z | S Nat;

iterate (λn → S n) Z where

iterate = λf x → Cons x (iterate f (f x));

Figure 9: Iterate: input

The language HLL allows infinite data structures to be processed. Given a
function f and an initial value x, the function iterate produces an infinite
list (stream) of repeated applications of f to x:

iterate f x = Cons x (Cons (f x) (Cons (f (f x)) (Cons . . .)))

The target expression in the program in Fig. 9 defines the infinite list
(stream) of natural numbers by means of the function iterate.

iterate (λn → S n) Z

(λv u → Cons u (iterate v (v u))) (λn → S n) Z

(λu → Cons u (iterate (λn → S n) ((λn → S n) u))) Z

Cons Z (iterate (λn → S n) ((λn → S n) Z)))

Z iterate (λn → S n) ((λn → S n) Z))

Figure 10: Iterate: metacomputation before generalization

Driving this target expression, HOSC produces the process tree shown in
Fig. 10. At this step, it finds out that the expression in the root node is
embedded into the expression in the rightmost leaf:

25

iterate (λn → S n) Z Ec iterate (λn → S n) ((λn → S n) Z)

However, the second expression is not an instance of the first one! For this
reason, HOSC generalizes the expression in the root node, replacing

iterate (λn → S n) Z

with the let-expression

let z = Z in iterate (λn → S n) z

and deleting the whole subtree. Further driving (after this generalization and
till the next whistle) is shown in Fig. 11:

let z = Z in iterate (λn → S n) z

iterate (λn → S n) z

(λv u → Cons u (iterate v (v u))) (λn → S n) z

(λu → Cons u (iterate (λn → S n) ((λn → S n) u))) z

Cons z (iterate (λn → S n) ((λn → S n) z)))

z iterate (λn → S n) ((λn → S n) z))

Z

Figure 11: Iterate: metacomputation after the first generalization

At this step an embedding is detected:

iterate (λn → S n) z Ec iterate (λn → S n) ((λn → S n) z)

This time the second expression is an instance of the first one:

iterate (λn → S n) z l iterate (λn → S n) ((λn → S n) z)

Thus the second expression is generalized by replacing the expression

iterate (λn → S n) ((λn → S n) z)

with the let-expression

let y = (λn → S n) z in iterate (λn → S n) ((λn → S n) z)

Further metacomputation results in a complete partial process tree shown
in Fig. 12. The residual program constructed from this tree is presented in
Fig. 13. It is worth to note that the function

(λn → S n)

was inlined into the body of the recursive function f.

26

let z = Z in iterate (λn → S n) z

iterate (λn → S n) z

(λv u → Cons u (iterate v (v u))) (λn → S n) z

(λu → Cons u (iterate (λn → S n) ((λn → S n) u))) z

Cons z (iterate (λn → S n) ((λn → S n) z)))

z
let y = (λn → S n) z

in iterate (λn → S n) y

iterate (λn → S n) y (λn → S n) z

S z

z

Z

Figure 12: Iterate: metacomputation after the second generalization

data List a = Nil | Cons a (List a);
data Nat = Z | S Nat;

letrec
f = λw → Cons w (f (S w))

in f Z

Figure 13: Iterate: output

A.2 Church numerals

Church numerals are the representations of natural numbers under Church
encoding. The higher-order function that represents a natural number n is
the function that maps any other function f to its n-fold composition. In
simpler terms, the “value” of the numeral is equivalent to the number of
times the function encapsulates its argument.

fn = f ◦ f ◦ f ◦ . . . ◦ f

Church numerals 0, 1, 2, ..., n are defined as follows in the lambda calculus:

27

data Nat = Z | S Nat;
data Boolean = False | True;

eq (add x y) (unchurch(churchAdd (church x) (church y))) where

eq = λm y → case m of {
Z → case n of {Z → True; S n1 → False; } ;
S m1 → case n of {Z → False; S n1 → eq m1 n1;} ;
};

church = λn → case n of {
Z → λf t → t;
S n1 → λf t → f (church n1 f t);
};

unchurch = λn → n (λt → S t) Z;
churchAdd = λm n → (λf t → m f (n f t));
add = λm n → case m of {
Z → n;
S m1 → S (add m1 n);
};

Figure 14: Church addition: input

0 = λf x→ x
1 = λf x→ f x
2 = λf x→ f (f x)
. . .
n = λf x→ fn x

The addition function churchAdd m n = m + n is based on the identity
f (m+n) x = fm (fn x).

The program shown in Fig. 14 contains definitions of Boolean and Nat
datatypes. Nat represents numbers in Peano encoding by means of construc-
tors Z (zero) and S (successor). The function eq tests Peano numbers for
equality. The church and unchurch functions convert between Peano num-
bers and Church numerals. The churchAdd and add functions perform addi-
tion of Church numerals and Peano numbers correspondingly.

The target expression of the program tests whether the sum of two Peano
numbers x and y is equal to the decoded sum of corresponding Church nu-
merals church x and church x. Note that the target expression may return
False, since this constructor appears in the definition of the function eq.

The result of supercompiling this program is shown in Fig. 15. Now it is
evident that the residual program cannot return False since this constructor
never appears in the body of the program.

The structure of the original program has been simplified: it is almost

28

data Nat = Z | S Nat;
data Boolean = False | True ;

case x of {
Z → case y of {
Z → True;
S y1 → letrec f= λz →

case z of { Z → True; S z1 → f z1;}
in f y1;

};

S x1 →
letrec g = λv →
case v of {
Z → case y of {
Z → True;
S y2 → letrec h= λw →

case w of { Z → True; S w1 → h w1; }
in h y2;

};

S v1 → g v1;
}

in g x1;
}

Figure 15: Church addition: output

evident that the residual program just destructs x and y and finally returns
True.

It can also be shown that this program returns True, if x and y are “good”
values (finite Peano numbers), since the result of program execution depends
on successful destruction of x and y only.

	Untitled.pdf
	prep2009_63
	Introduction
	Notation
	Input language
	Basic definitions
	Free and bound variables
	Equal expressions
	Free variables
	Bound variables
	Substitution
	Application of a substitution
	Instance of an expression
	Renaming
	Generalization
	Most specific generalization

	Lambda-lifting
	Observables, contexts, redexes
	Operational semantics

	Homeomorphic embedding
	Extended homeomorphic embedding
	Embedding of variables
	Diving
	Coupling
	Examples

	Generalization
	Most specific generalization of coupled expressions
	Common functor rule
	Variable
	Constructor
	Lambda-abstraction
	Application
	Case-expression

	Common sub-expression rule
	Let-expression
	Examples

	Metacomputation
	Driving step

	Partial process tree
	Partial process tree construction
	Residual program construction
	Related work
	Conclusions
	Acknowledgements
	Examples
	Iterate
	Church numerals

