ISSN 0361-7688, Programming and Computer Software, 2009, Vol. 35, No. 5, pp. 266—281. © Pleiades Publishing, Ltd., 2009.
Original Russian Text © M.K. Valiev, M.1. Dekhtyar, A.Ya. Dikovsky, 2009, published in Programmirovanie, 2009, Vol. 35, No. 5.

Systems of Agents Controlled by Logical Programs:
Complexity of Verification

M. K. Valiev*, M. 1. Dekhtyar**, and A. Ya. Dikovsky***
* Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 1, Moscow, 125047 Russia
e-mail: valiev@spp.keldysh.ru
**Tver State University, ul. Zhelyabova 3, Tver, 170013 Russia
e-mail: Michael. Dekhtyar@tversu.ru
*** University of Nantes, 2 rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3, France
e-mail: Alexandre. Dikovsky @irin.univ-nantes.fr
Received October 17, 2008

Abstract—The complexity of the verification problem for the behavior (dynamical properties) of systems of
interacting intelligent agents is considered. This paper is a continuation of our publications [1—3], in which
this problem was mainly considered as applied to deterministic and nondeterministic systems, and largely

focuses on asynchronous systems.
DOI: 10.1134/S036176880905003X

1. INTRODUCTION

The concepts of an intelligent agent and of a system
of interacting agents (in short, a multiagent system,
MA system, or MAS) were introduced more than
twenty years ago. The study and application of these
systems represent one of the most intensively develop-
ing areas in artificial intelligence and application pro-
gramming (see, for example, [4—10]). One of impor-
tant factors that have stimulated interest in agents is
the development of network technologies (in particu-
lar, technologies related to the Internet).

The concept of an agent substantially generalizes
the concept of an object in object-oriented program-
ming due to the introduction of intelligent compo-
nents that determine the operation policy of an agent
depending on its state and messages received from
other agents of the system and from the environment.
The state of an agent may have a rather complicated
structure; for example, it may include a database.
Therefore, the behavior of these systems is rather
complicated and requires the verification of whether
their behavior satisfies certain conditions (verification
of the dynamical properties of these systems). Natu-
rally, this problem is unsolvable in the general case;
therefore, we consider this problem (we call it the MA-
BEHAVIOR problem) under various constraints
imposed on the type of agents and on the class of prop-
erties to be verified. Note that, although the concepts
of agents and MASs have been intensively studied over
many years, the analysis of the verification of their
behavior has started relatively recently [1, 11—15].

Multiagent systems have a wide scope of applica-
tion, including diverse fields such as management of

266

business processes, electronic trade, Internet naviga-
tion, social and military applications, etc. Such a vari-
ety of applications have given rise to a variety of
approaches to the definition of the concepts of an
agent and of an MAS (with various levels of abstrac-
tion from specific systems). In these cases, the archi-
tectures of agents mainly differ by the structure of their
intelligent components, which may use solution trees,
logical programs, inferences in various kinds of modal
logic (epistemic, deontic, etc.), etc. Surveys of many
of these approaches are given in the references cited
above.

The definition of agent used in the present paper is
largely based on the IMPACT architecture, which was

introduced and described in detail in [9] .1 The full def-
inition of this architecture is rather cumbersome.
It includes different rather complicated mechanisms
and means for specifying agents, which make them
well adapted to practical applications. However, such
an abundance of various means strongly complicates
the formal analysis of the properties of these agents.
In particular, as is shown in [9], the semantics of
agents of the IMPACT architecture described in terms
of transitions between states is unfeasible in the gen-
eral case. To make the semantics of transitions com-
putable in polynomial time, the authors of [17] (see
also [9]) imposed some very complicated constraints
on the type of agents. Unfortunately, the definition of
such agents becomes hardly conceivable.

! Note that the agents considered here significantly differ from
agents in the sense of [16].

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

Table 1. Complexity of verification for deterministic MA systems

267

Ground Expand Parameters Logic Complexity N
positive LTL P dl

m? * r= O(log N) LTL P d2

Yes Yes fixedm >2 LTL PSPACE d3
fixed r>1 LTL PSPACE d4

No FO-LTL PSPACE ds

Yos positive and fixed k LTL P dé6

positive LTL EXPTIME d7

Mo fixed k FO-LTL PSPACE d8
No FO-LTL EXPSPACE d9

We propose some other rather easily formulable
constraints on IMPACT agents, which also lead to the
semantics of polynomial complexity. We focus on the
means related to the definition of actions, decision-
making policy, and communication of agents. Thus,
we abstract from the details of the IMPACT architec-
ture that are related to the agentization of an ordinary
program code, security, meta-knowledge structures,
and temporal and probabilistic reasoning. Moreover,
in contrast to [9], where the authors admit more gen-
eral structures of states, we consider sets of facts (an
analog of relational databases) as the states of agents.
Note that the architecture of an MAS remains rather
representative even under these constraints, and a
large part of examples in [9] fall under this kind of
restricted architecture.

Agents can be either deterministic or nondeter-
ministic, and the interaction between agents in an
MAS can be either synchronous or asynchronous. For
any initial state, synchronous systems of deterministic
agents define a certain computational trajectory. In the
other three cases, for a given initial state, a system
defines a certain tree of possible computational trajec-
tories.

In the first case, it is natural to apply linear time
logic to describe the dynamical properties of the sys-
tem; in the other cases, it is natural to apply some ver-
sions of branching time logic.

The MA-BEHAVIOR problem considered in the
present paper consists in verifying if a certain formula
of temporal logic is satisfied on the trajectories of a
given MAS. Actually, this problem corresponds to the
problem, known as model checking, which has been
studied for many years as applied to abstract systems
(diagrams) of transitions (see [18—24]). However,
there is an essential difference between the classical
statement of this problem and the version considered
in the present study. Traditionally, complexity results
are established for diagrams with unstructured states
and explicitly defined transitions (or for other similar

systems of finite-automata or OBDD types). In
MASs, the states may have a complicated structure
(sets of facts in our case), and transitions between the
states are defined by some programs. This fact allows
one to estimate the complexity of the verification
problem on the basis of different structural and
semantic properties of the systems.

MASSs define a compact representation of a system
of transitions. In particular, even in the case of a
ground MAS (i.e., an MAS without variables), the sys-
tem of transitions defined by it may have exponential
size with respect to that of the initial MAS. Therefore,
sometimes our lower bounds look more pessimistic
than those in the classical case with the same logics.
As regards the upper bounds, sometimes they are more
informative and exact (when deterministic or nonde-
terministic polynomial upper bounds are obtained), or
they are obtained by a simple translation of classical
bounds with regard to the change in size when passing
from an MAS to a system of transitions defined by this
MAS.

The further part of the paper is organized as fol-
lows. Section 2 contains the basic definitions. In Sec-
tion 3, we give an example that illustrates the possibil-
ities of the MASs considered. Section 4 contains the
description of a verification algorithm for determinis-
tic MASs from [2]. In Section 6, this algorithm is used
for constructing a nondeterministic algorithm that
solves a verification problem for a class of asynchro-
nous MASSs in polynomial time. In Section 5, we give
a survey of results from [2, 3] related to the complexity
of verification of various classes of deterministic and
nondeterministic MASs (in the form of Tables 1 and 2).
Section 6 contains, in addition to the above-men-
tioned result, issues on the mutual reduction between
MA-BEHAVIOR problems for nondeterministic and
asynchronous MASs. The Conclusions contain a brief
summary of the results and some discussion of the
problem.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No.5 2009

268

VALIEV et al.

Table 2. Complexity of verification for nondeterministic MA systems

Ground | Expand Parameters Logic Complexity N
3ILTL NP nl
m? * r= 0(log N)
Vv LTL co-NP n2
Yes
fixedm >2 FO-Ly, EXPTIME n3
Yes
fixedr>1 FO-Ly, EXPTIME n4
N FO-Ly,, fixed / EXPTIME n5
o
FO-Lp in NEXPTIME n co-NEXPTIME n6
3LTL NEXPTIME n7
fixed r> 1
Yes vV LTL co-NEXPTIME n8
N positive JLTL EXPSPACE-hard n9
o
fixed k FO-Lp EXPTIME nl0
No FO-Ly,, fixed / EXPEXPTIME nll
FO-Lp in NEXPEXPTIME n co-NEXPEXPTIME nl2

2. AGENTS AND MULTTAGENT SYSTEMS

An MA system A = {a,, ..., a,, P} consists of a finite
set {a,, ..., a,} of intelligent agents with common pred-
icate signature and a special mail agent P that simu-
lates a communication channel between the agents a;.
An intelligent agent A has an internal database (DB) I,
that contains a finite set of ground atoms (i.e., expres-
sions of the form p(c, ..., ¢;), where p is a predicate
symbol and ¢y, ..., ¢, are constants; the set of constants
used by a given system is bounded) and a message box
MsgBox .

Agents communicate via messages of the form
msg(Sender, Receiver, Msg)), where Sender and
Receiver are the names of agents (the source and the
destination) and Msg is a (transferred) ground atom.
An agent A sends messages to other agents of the sys-
tem by transmitting these messages to the agent P and
receives messages from agent P into its message box.
Here one can consider two methods of operation: (i) a
synchronous method, when it is assumed that messages
are transferred from the source to the destination
immediately (in this case the agent P can actually be
excluded from the system) and (ii) an asynchronous
method, when the transmission of a message from Pto
other agents can take arbitrary time. Synchronous MA
systems are more suitable for describing practical sys-
tems that operate within a local network (or in a stan-
dalone computer), whereas asynchronous MA sys-
tems better reflect the properties of strongly distrib-
uted (for example, in the Internet) systems.

The state of the agent P contains all the messages
that it has received but has not sent up to a current
instant. The current contents of the internal DB and of

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35

the message box of agent A4 constitute its current local
state IM = (1, Msg, Box,). The global state of the MA
system & consists of the local states of agents a; and
the state of the message box.

Each agent a is assigned its base AB, of parameter-
ized actions of the form (ou(X|, ..., X,,), ADD (X, ...,
X,), DEL (X, ..., X,), SEND (X,, ..., X)), where
a(X,, ..., X,) defines a parameterized name of an action.
ADD (X, ..., X,) and DEL (X,, ..., X,,) are lists of
atoms of the form p(#,, ..., t,), where p is a k-ary pred-
icate from the signature of the internal DB and 7,, ... #,
are either constants or the parameters X|, ..., X,,. These
sets define the changes in the internal DB (additions
and removals of facts) during appropriate actions.
Similarly, SEND, (X, ..., X,,) defines a list of messages
of the form msg(a, b, p(¢,, ... t,)) that are sent by agent
a to other agents. To shorten expressions, we will
sometimes write (b, p(¢, ... t;)) instead of msg(a, b,
p(t, ... 1)) in the definition of SEND,, where o is an
action of agent a.

Letcy, ..., ¢, be constants. Denote by ADD,(cy, ...,
¢,,) a set of facts obtained by substituting ¢, ..., ¢, for
X, ..., X, into the atoms from ADD, (X, ..., X,,). The
sets DEL (cy, ..., ¢,,) and SEND,(c,, ..., c¢,,) are defined
similarly. Ground atoms of the form a(c, ..., ¢,) are
called ground names of actions.

A specific choice of these actions to be executed
depending on the local state of an agent are deter-
mined by the pair {Pr,, Sel,). Here Pr,is an intelligent
component that determines, together with the facts
from the local state of the agent at a current instant 7, a
set of ground action names permitted for execution at
current instant. As such components, one can take

No.5 2009

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

ordinary logical programs [25] whose signature con-
tains action atoms. The rules of these programs have
the form
H~—L,..,L,

where H is an action atom and L, are either action lit-
erals, (extensional) literals with predicates from the
signature of the internal DB, literals of messages of the
form msg(Sender, A, Msg) or —msg(Sender, A, Msg), or
some built-in predicates that can be calculated in
polynomial time. An agent is said to be positive if its
program does not contain negations.

We assume that the programs of agents are safe in
the sense that (i) any variable on the left-hand side of
a certain rule occurs positively in the right-hand side

state

of the appropriate rule and (ii) a program Pr,

obtained by adding facts from the local state (the inter-
nal DB and the message box) of agent 4 to Pr, is strat-
ified [25].

Under these conditions, any logical program
uniquely defines a set Perm consisting of ground
names of actions that are derived by the rules of this
program from the facts of a local state of an agent and
are permitted to be executed at the current instant. An
operator Sel, chooses, from the set Perm, a (determin-
istic or nondeterministic) subset Oblig of actions that
are actually executed at this step. The simplest opera-
tor of this type is the operator of unit choice: Se/“"(S) =
{{p}lp € S}

Let Oblig(=0blig,) be a set, chosen according to
Sel,, of actions that are actually executed at this step .
Then all actions from Oblig are executed in parallel in
the following way. Let ADD,,;, be a union of all sets
ADD/(cy, ..., ¢, such that the ground name a(cy, ...,
¢,,) from Oblig is unified with the parameterized name
a(Xy, ..., X,). The sets DELyy;, and SENDy;, are
defined analogously. Then, the next state of the inter-
nal DB of the agent A4 is obtained from the current
state by removing elements of DEL,,;,, and adding ele-
ments of ADDy,;,,. Moreover, all elements of SEN Dy
are added to the base of the mail agent, and the mes-
sage box of the agent is emptied. Of course, one can
also consider other addition and removal strategies
from the internal DB and from the message box.

An action is said to be expanding if the set removed
by it is empty. An agent is said to be expanding if all of
its actions are expanding.

The one-step semantics of individual agents
defined above is naturally extended to the semantics
Sem, of the entire MA system &, that defines the
transformations of its global states. Namely, at the
beginning of each operation step of the system, mes-
sages of the form msg(sender, receiver, msg) are
removed from the message box of the agent (all—for
synchronous systems, and some—for asynchronous
systems) and are immediately placed into the message
boxes of appropriate agents—destinations. Then all

PROGRAMMING AND COMPUTER SOFTWARE VWl. 35 No. 5

269

agents change their internal states according to their
one-step semantics and send their messages to the
mail agent. After that the message boxes of these
agents are emptied. This definition shows that even if
each agent has deterministic semantics, the semantics
of the entire system is nondeterministic in the asyn-
chronous case.

Synchronous systems are classified under two
classes: if all agents of a system are deterministic, the
system is called deterministic, while otherwise a sys-
tem is called nondeterministic.

2.1. Behavior of MA Systems

According to the above definitions, any MA system
A ={a,, ..., a,, P} defines a one-step transition rela-
tion = on the set of its global states.

We will consider the behavior of & that starts to
operate in a certain global state with empty message

boxes, S° = ((12I , MsgBoxg1) ([gn , MsgBoxgn),

Ip), in which MsgBox, = 0,1<i<n, I, = §. This

behavior is determined by the tree I (S°) of possible
infinite trajectories (i.e., sequences of global states) of
the form

=", 8>, .5=>,5" =, ..

For a deterministic MA system 4, the tree I con-
sists of a single trajectory that starts in S°. If & is non-
deterministic or asynchronous, then J is an infinite
tree of trajectories with root .S°. The vertices of I are
global states S € ¥, that are accessible from S° by the
reflexive—transitive closure of the relation = 4. If S'is
a vertex of 7, then the states from Next,,(S) are direct
successors of this vertex in J. A finite or infinite
branch of the tree I that starts at some of its vertices is
called a trajectory from J .

The problem of verifying the dynamical properties
of multiagent systems (which we call the MA-
BEHAVIOR problem) is formulated as follows. Sup-
pose given an MA system &, its initial global state S°,
and a formula Fthat expresses a certain property of the
trees of trajectories. It is necessary to verify if formula
Fholds on the tree T 4(S?).

Due to the presence of the relational structure in
the states of agents and the definition of transitions by
logical programs, it is natural to consider the predicate
extensions of temporal logics as languages for describ-
ing the dynamical properties of MA systems.

We use some versions of predicate extensions of the
following propositional logics (see [22, 24, 26, 27]):
linear time logic LTL, simple subsets ALTL and ELTL
of the classical branching time logic, and the much
richer p-calculus Ly (which uses, in addition to the
usual temporal operators, the operators of construct-
ing minimal and maximal fixpoints) and its subsets Ly,

2009

270

(r=1, 2, ...) with constraints imposed on the alterna-

tion depth [22, 23] .2 For a predicate extension of logic
L, we will use the notation FO-L (FO stands for first-
order). A simple introduction to the theory of program
and temporal logics can be found in [28].

2.2. Classes of MA Systems

In all the three classes of MA systems, determinis-
tic, nondeterministic, and asynchronous ones, we dis-
tinguish the following subclasses obtained with differ-
ent natural constraints imposed on the system and its
agents. An MA system A = {a,, ..., a,} is

ground if the programs P, of all its agents are

3

ground;

k-parameter if the number of arguments (arity) of
all the predicates of actions of system’s agents and all
the predicates in their messages are bounded by the
number k. It is obvious that this property specifies the
maximal number of possible parameters in the actions
and messages of the system A;

expanding if all agents of the system are expanding;

positive if all agents of the system are positive;

m-agent if the number of agents n < m; and

r-signal if the number of different ground (proposi-
tional) predicates of the agents of the system (its sig-
nals) is no greater than .

The following simple proposition characterizes the

4
complexity of executing one step by deterministic,
nondeterministic, and asynchronous MA systems.

Proposition 1.

(1) For any deterministic MA system A, the transi-
tion function S = S" is computable in polynomial time
with respect to the size |S| + || + |S'| of the input for
subclasses of ground systems or systems with a fixed
number of parameters; in the general case, the transition

function is computable in (deterministic) exponential

5
time.

(2) For any nondeterministic or asynchronous MA
system A, the transition relation (multivalued function)
S =4 8" is recognized in nondeterministic polynomial
time with respect fo the size |S| + |A| + |S'| of the input
Jfor subclasses of ground systems or systems with a fixed
number of parameters; in the general case, this function
is computable in nondeterministic exponential time.

2In particular, the definition of the alternation depth in the m-
calculus can be found on pp. 145, 146 of the Russian translation
of [24].

3 Recall that this means that there are no variables in the pro-
grams.

4 The complexity concepts used in the paper can be found, for
example, in [20, 30].

5In fact, in time polynomial with respect to the size of a ground
system equivalent to the original one.

PROGRAMMING AND COMPUTER SOFTWARE V. 35 No. 5

VALIEV et al.

3. EXAMPLE OF AN MA SYSTEM:
ALLOCATION OF RESOURCES

Consider a small resource allocation system R
that includes a manager-agent m, which possesses
some (unbounded) resource to be distributed among
four agents—users u,, u,, u;, and u, and from which it
gets orders for this resource. Each agent—user has its
own resourse-request strategy:

(i) u, requests a resource at the initial instant and
then repeats the request immediately after receiving a
resource from m;

(ii) u, requests a resource immediately after u; has
made a request;

(iii) u; requests a resource immediately after u; has
received a resource from m;

(iv) u; requests a resource at every step;

Manager m keeps a record of orders, and if the
record list is nonempty, executes the first order; i.e.,
the manager delivers a resource to the agent whose
order is the first in the list of orders and deletes the
order from the list. At every instant of time, the list of
orders can contain at most one request from each
agent—user. Therefore, if m gets an order from an
agent u; before its previous request has been executed,
then the new request is ignored.

One can see that all five agents in this example work
by exchanging information on orders and on their exe-
cution. All of them work deterministically according
to quite simple rules. However, the manager m must
have a more complicated program that allows it to
control the list of orders. The agents of the system RA
are defined as follows.

The states /, of agent u; may contain the facts

put_order and receipt,. The states I, (i=2,3, 4) may

contain the fact receipt;, which means that u; has
received a resource at the previous step. When m exe-
cutes an order of agent u;, the latter sends a message ok
to the former (i.e., sends the message msg(m, u;, ok) to
the mail agent); here and below, to simplify the nota-
tion when determining SEND,, where a is the action
of an agent, we use the notation introduced in Section
2 in the definition of actions. Moreover, we omit some
assumed indices a in the definition of the sets ADD,,
DEL,, and SEND,.

Agent u; sends a message order to agent u, (when
sending an order) and a message ok to agent u; (when
receiving an order).

Each agent u; (i = 1, 2, 3, 4) has two possible ways
of action:

use_resource;, consumption of a resource received,
which is defined, for all i, by the sets DEL = {receipt;}

and ADD = SEND = §, and

2009

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

receive;, reception of a resource from m, which is
defined, fori =2, 3, 4, by the sets ADD, = {receipt;} and
DEL;= SEND;= () , while, for i = 1, the action receive,
is defined by the sets ADD, = {receipt;}, DEL, =
{put_order}, and SEND, = {(u;, ok)}.

These actions are initiated by the following rules:

use_resource; <— receipt; and

receive; < msg(m, u;, ok).

In addition, the agents have an action puf that sends
an order (the message order), with specific effects and
rules, to the manager.

For agent u,, the action put is defined by the sets
ADD = {put order} and SEND = {(m, order), (u,,
order)} and is initiated by the rule

put <—— —put_order.
For agent u,, the action put is defined by the set
SEND = {(m, order)} and is initiated by the rule
put <— msg(u,, u,, order).
For agent u;, the action put is defined by the set
SEND = {(m, order)} and is initiated by the rule
put <— msg(u,, us, ok).

For agent u,, the action put is defined by the set
SEND = {(m, order)} and is initiated by the rule (fact)
put <— .

The agent m controls the list of orders given by the fol-

lowing predicates of the internal DB:
first(A), the order of agent A (stands first in the list;
next(A, B), the order of agent B stands next after the
order of agent A in the list;

last(A), the order of agent A4 stands last in the list.

The manager m also uses auxiliary predicates (they
can be considered as actions with empty sets ADD,
DEL, and SEND): empty queue, which checks if the
list is empty, and in_queue(A), which checks if the
order of A is in the list. These predicates are defined by
the following propositions:

empty _queue <— —first(u,),
—first(u,), —first(us), —first(uy), and
in_queue(A) <— first(A),
in_queue(A) <— in_queue(B), next(B, A).
When m gets new orders, it places them at the end of
the list; if it should place several orders simultaneously,
it places them in the following predetermined order:
u; < u, < u; < uy,. For any subsequence X, < ... < X; of
the sequence (u,, u,, us, u,), m has the action insert(F,
S, L, Xy, ..., X):
ADD = {first(S), next(L, X,), next(X;, X,),
.y next(X;_ |, X)), last(X))},
DEL = {first(F), next(F, S), last(L)}, and
SEND = {(F, ok)}.
Each of these actions is initiated by the rule
insert(F, S, L, X, ..., X))
~— new_order(X)), ..., new_order(X;),

PROGRAMMING AND COMPUTER SOFTWARE

Vol. 35 No. 5

271
—new_order(Y)), ..., —new_order(Y)),
first(F), next(F, S), last(L)
(here {)]1, eeey }j} = {ul, Ll2, U3, U4}\{Xl, ceey A]l}’

new_order(X) <— msg(X, m, order), —in_queue(X).
When the list is empty, m starts one of actions of the
form inserty (X, ..., X)):
ADD = {first(X,), next(X,, X5), ...,
next(X;_,, X;), last(X;)} and
DEL = SEND =
that are initiated by propositions of the form
inserty(Xy, ..., X))
~— empty_queue, new_order(X,), ...,
new_order(X;), —new_order(Y)), ...,
—new_order(Y))
(here again {Y,, ..., Y}} = {uy, u,, us, ug\{Xy, ..., Xj}).
For the system R defined here, the formula G, F,

4 L. . .
/\,_ | receipt; is true on a trajectory starting from the

emptyState S0={<Q)a ¢>5 <¢5 ¢>,<®, ®>’<®, (b),(@,

0)}. Meaningfully, this formula implies that each
agent receives the necessary resource infinitely fre-

quently.6

At the same time, the following two formulas are
not valid on this trajectory: F (receipt,) A X (receipt,)
(there are two consecutive instants at which agent u,
receives resources) and G (first(S) A next(S, u;) —
XX —receipt;) (the agent that is second in the list will
not receive a resource after two steps).

If we place these agents in an asynchronous system
RA,,, then simple formulas like VG VF receipt,, or

even VF receipt,, will not hold for %sﬂas.7 This is asso-
ciated with the fact that, although u, requests a
resource immediately at the first step, there exist tra-
jectories on which this request will never be transferred
to the agent m.

However, the formula VG VF receipt, holds for
RA . Indeed, let s be a vertex of the tree of trajecto-
ries. If the message msg(m, u,, ok) is in the message box
of an agent in this state, then it can be transferred to u,
at the next step and will cause the action receive,.
If this message is not in the message box of the agent,
we consider the last message Msg = msg(u,, m, order)
produced by the agent u, before the system reaches the
state s. It is easy to understand that, at the instant when
the system reaches the state s, the message Msg is
either at the mail agent or in the list of the agent m

® The operators G, F, and X of linear time logic mean “always in
future,” “sometimes in future,” and “at the next instant,”
respectively.

7 The operators VG, VF, and 3F of the branching time logic
imply “in all possible future states,” “on all trajectories, there is
an instant,” and “there is a possible future state,” respectively.

2009

272

(when this message disappears, the mail agent neces-
sarily receives the message msg(m, u,, ok)). When Msg
is in the list, the agent m, while processing its list,
reaches this message and sends the message msg(m, u,,
ok) to the mail agent (we obtain the previous case).
If Msg is at the mail agent, then the operation can be
continued from the state s, and this message is sent to
the agent m and appears in the list.

By similar arguments one can show that even the

stronger formula VG VF /\lereceipt, holds for

RA,. Some more complicated properties can be
expressed by formulas of the modal p-calculus L.

4. BEHAVIOR OF DETERMINISTIC
MA SYSTEMS

This section, where we discuss deterministic MA
systems, is in fact a concise account of the contents of
Section 4.1 from [2]. The results of this section will be
used below in Subsection 6.1.

The set of global states of any MA system & con-
sidered here is finite. Therefore, the trajectory (s,
S$% of this set in the deterministic case is periodic.
Thus, in spite of the fact that t(&4, S°) is infinite, it can
be folded into a certain finite structure. A direct algo-
rithm for verifying an FO-LTL formula on this struc-
ture would require an explicit representation of this
formula and, hence, memory no less than the total
number of various global states. However, one can sug-
gest a more careful method for verifying this formula
on a model that will deal with small subsets of this for-
mula point by point. This allows one to obtain much
better complexity bounds for the MA-BEHAVIOR
problem.

For a periodic trajectory T = S°, S, ..., S, ...,
denote by k£ and N minimal numbers such that S* =
S+ Nforany > k. In the algorithm given below, we will
use three auxiliary functions. The first function,
move(t, i), calculates, by a time instant 7 and a shift i, a
time instant j < k + N such that S/ = §'*1:

move(t,i)=ift+i<k+ NTHEN 7+ i,
ELSE (r+ i — k)mod N + k.

The second function, F*, plays the role of an oracle,
which yields a state F*(f) = S’ of the trajectory at any
instant z. The third function verifies if a first-order for-
mula @ is true on state .S: FO_Check(S, @) returns the
logical value TRUE if S = ® and FALSE otherwise.

Let T = ©(A, S° be a periodic trajectory with
parameters k£ and N, @ be an arbitrary FO-LTL for-
mula, and ¢ be a time instant. Set s,,,,,(t) = max{|St’ |
0<t<k + N} and denote by s(F*) and #(F"), respec-
tively, the maximal memory and time needed for cal-
culating F*(f) for 0 <7<k + N. Denote by sg (7, n) and
tro(T, 1), respectively, the maximal memory and time

PROGRAMMING AND COMPUTER SOFTWARE V. 35 No. 5

VALIEV et al.

needed for verifying the condition §* = ¥ for 0 <7<
k + N and any first-order formula ¥ of length at most #.

The following recursive algorithm verifies the prop-
erty T, S* = .

Algorithm DetCheck(r, k£, N, @, f)

(1) t:= move(t, 0); p :=0;

2)r:=0;r:=0; R:=0;

(3) SELECT CASE of @;

(4) CASE @ is a basic state formula;

(5) 8" := FY1);

(6) return FO_Check(5?, ®);

(7YCASED =0, ® O, (® € {A, V});

(8) b, := DetCheck(r, k, N, ®,, 1);

(9) b, := DetCheck(r, k, N, ©,, 1);

(10) return b, @ b,;

(11) CASE ® = —d;

(12) return — DetCheck(t, k, N, @, ?);

(13) CASE © = X(®D,);

(14) ¢, := move(t, 1);

(15) return DetCheck(r, k, N, @, t,);

(16) CASE & = o, Ud,;

(17)IFt<kTHENR:=k+ N—1t,

(18) ELSE R:= NEND _IF,

(19) FORi=0TO R—1DO;

(20) r:=move(t, i); p =1,

(21) IF DetChek(t, k£, N, @, r);

(22) THEN EXIT_FOR END _IF,

(23) END_DO;

24)IFp=R—-1;

(25) THEN return TRUE;

(26) ELSE;

(27) b := TRUE;

(28) FOR j=0TO p —1DO;

(29) ¥ := move(t, j);

(30) IF —DetChek(t, k£, N, @, ¥');

(31) THEN b := FALSE; EXIT FOR;

(32) END_IF END_DO;

(33) return » END_IF

(34) END_SELECT

Lemma 1. For given numbers k, N, and t and an FO-
LTL formula ©, the algorithm DetCheck verifies the
condition ' |= ® on a periodic trajectory t with parame-
ters k and N using the functions F* and FO_Check as
oracles. The memory used by the algorithm is O(|t| + |D| +
dH(@)log(k + N) + Spar(7) + S(FY) + sp0(1, | D)), and
the time is limited by pol(|t| + |®|(k + N)(H(F®) + teo(t,
| D)) for a polynomial pol.

The oracle F*, which provides information on the
trajectory 7 in the algorithm, can be efficiently calcu-
lated for trajectories T generated by MA systems.

Lemma 2. There exists an algorithm that calculates
the state S* of the trajectory 1(A, S°) at instant t by the
MA system A, its initial state S°, and the time instant t > 0.

2009

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

For a polynomial pol, the upper bound for the memory
used for this calculation is pol(|A| + max{|S"||0<r<1}).

The following lemma establishes the boundaries of
the periodicity parameters for the trajectories of MA
systems.

Lemma 3. For any MA system 3 and its initial state
SO, the trajectory t(d, S°) is periodic with parameters
k(A, 8% and N(A, S°. If A is a ground system, then

k(A, SO + N(A, S°) < 2P01(\&4|+\s“|)

. In the general case,

poi(|ct] + \5"\)
the inequality k(s 8% + N(d, 89 < 2° holds.

From Lemmas 1, 2, and 3 we can obtain upper
bounds for the complexity of verification of the prop-
erties of MA systems that can be expressed in terms of
FO-LTL formulas.

Proposition 2. Suppose given an MA system S and
its initial state S°, and let k = k(A, S°) and N = N(A,
S9). Then, for a polynomial pol, the validity of the FO-
LTL formula ® on the trajectory 1(4, S°) can be veri-

fied with the use of memory of size 2" oK+l in the gen-
eral case and with memory of size pol(|®| + |A|) in the
case of ground systems.

5. COMPLEXITY OF VERIFICATION
OF DETERMINISTIC
AND NONDETERMINISCTIC MA SYSTEMS

In our previous studies [1—3], we solved the prob-
lem of the complexity of the MA-BEHAVIOR prob-
lem for classes of deterministic and nondeterministic
MA systems and a number of their subclasses. The
main results obtained in those papers are summarized
in Tables 1 and 2.

The first three columns in these tables determine
the classes of MA systems considered. The columns
“Ground” and “Expand” allow one to distinguish
between ground and nonground systems and between
expanding (without removals) systems and systems
with removals. The column “Parameters” indicates
some constraints imposed on the parameters of the
architecture of MA systems that lead to lower com-
plexity of verification. In particular, N denotes the size
of the total description of a system, m is the number of
its agents, k is the maximal size of the action atoms and
messages (in the propositional case, k = 0), and ris the
number of different signals (i.e., messages). The col-
umn “Logic” indicates the logical language in which
the properties of the behavior of appropriate MA sys-
tems are formulated. The column “Complexity”
shows the complexity bound of the appropriate MA-
BEHAVIOR problem.

In all the rows except for n6, n9 and nl2, the
appropriate MA-BEHAVIOR problem is complete in
a given complexity class. The rows n6 and n12 show

PROGRAMMING AND COMPUTER SOFTWARE VWl. 35 No. 5

273

only upper complexity bounds, and the row n9, only a
lower bound.

It is no wonder that the MA-BEHAVIOR problem
is very complex in the general case; it is EXPSPACE-
complete for deterministic systems (d9) and EXPEX-
TIME-complete for nondeterministic systems (nll).
However, we could distinguish some subclasses of sys-
tems in which this problem is solved efficiently. These
systems either have strong monotonicity properties
(d1 and d6) or do not remove any facts from their data-
bases and have constraints on their structure: m? * r =
O(logN) (d2). The rows d3, d4, and d7 show that the
removal of any of the constraints leads to an immedi-
ate increase in the complexity.

As regards nondeterministic systems, one can
hardly expect efficient solution of the verification
problem even for very limited subclasses of these sys-
tems. Propositions nl and n2 describe the cases when
this problem is solvable in (co)nondeterministic poly-
nomial time. The bounds n3—n5 show that relaxing
the conditions leads to the complication of the prob-
lem. Note that, in all these cases one can obtain a
sharper lower bound of the form o(c"/'°2"). Note also
that upper bounds for the languages FO-Lp, FO-Ly,,
and FO-Ly, are obtained by generalizing the known
general results of [23] on the complexity of verification
on models for the p-calculus.

6. BEHAVIOR OF ASYNCHRONOUS SYSTEMS

To verify asynchronous MASs, it is important to
take into consideration the internal state of a mail
agent, which consists of atoms of the form msg(a;, a;, p).
However, these atoms are also encountered in the
message boxes of agents. Therefore, to correctly refer
to these atoms in formulas, we adopt the following
notation: msg’(a;, a;, p) in the formulas denotes an
atom the truth value of which is evaluated with respect
to the message box of the agent a;, and msg(a;, a;, p)

denotes an atom evaluated over the state of the mail.

Nondeterministic and asynchronous systems are
rather similar to each other. This fact is formally con-
firmed by the results of Subsection 6.2 on the mutual
reducibility of MA-BEHAVIOR problems for nonde-
terministic and asynchronous MASs. This allows one
to directly translate the results on the complexity of
verification for nondeterministic MASs to asynchro-
nous MASs, but only for general systems. This is asso-
ciated with the fact that the modeling of expanding
nondeterministic systems involves nonmonotonic
asynchronous systems and vice versa. Nevertheless, in
Subsection 6.1 we show that the result on the NP-
completeness of the MA-BEHAVIOR problem for a
subclass of nondeterministic expanding MASs is car-
ried over to a similar class of asynchronous MASs.

2009

274

6.1. A Subclass of Asynchronous MASs with
an NP-Complete MA-BEHAVIOR Problem

Theorem 1. The MA-BEHAVIOR problem with the
behavior properties expressed by formulas ® € ILEL
(VLTL) that do not contain atoms—messages for a class
of ground, expanding, r-signal, m-agent asynchronous
systems A such that m* * r = O(log||) is NP-complete
(respectively, coN P-complete).

Proof. We give a proof for 3LTL formulas. The case
of VLTL formulas is obtained by the equivalence
T (%) E E(F) & T 4(5°) £ A-W).

Upper bound. Let A be a ground, expanding, r-sig-
nal, m-agent asynchronous system such that m? = r =
O(log|H|). A nondeterministic algorithm that solves
the MA-BEHAVIOR problem in polynomial time is
based on the following stabilization property of some
trajectories from J ;(S?).

Lemma 4. There exists a polynomial p(n) such that
T (8% E E Y ifand only if there exist a trajectory p =
SO .8 e T (8% and a step T< p(|A| + |\P|) such

thatp, S =W, and I. = I foranyt> Tandanya e 9.

Proof. First, we prove a few auxiliary propositions
related to the truth of FO-LTL formulas on the trajec-
tories with long sequences of repeated states. Recall
that the formulas depend only on the states of the DB
of a trajectory but not on the states of the correspond-
ing message boxes.

Letu=M’, ..., M, ..,andv=N" ..., N/, ... be two
trajectories and d > 0 be an integer. We say that a pair
(u, M) is d-equivalent to a pair (v, N’) (the notation is
(u, M) ~, (v, N’)) if the equivalence u, M' = ¢ < v,
N’/ = ¢ holds for any FO-LTL formula ¢ of depth
d(p) <d.

Proposition 1. If the equivalences (u, M) ~,; (v, N7)
and (u, M'*YY ~, ., (v, N/* 1) hold for certain d > 0,
then the equivalence (1, M") ~, . | (v, NY) is also valid.

Proof. Indeed, let (u, M) ~, (v, N/) and (p,
M+ ~, (v, NN*1), and let ¢ be an arbitrary FO-
LTL formula of depthd + 1. If p = @; @ ¢, (® € {A,
Vv}) or ¢ = =@, then d(¢,) < d and d(p,) < d. By the
assumption, u, M' = ¢, < v, N E ¢, (k =1, 2).
Hence, 4, M' = ¢ < v, N/ = . If o = X(0,), then, by
the assumption, we have u, M ™! = @, < v, NNt E o,
and u, M' = ¢ & v, N/ = ¢. Now, suppose that p, M’
E ¢ for @ = @,Ug@,. Then, by the definition of the
operator U, (i) u, M’ |= @, or, otherwise (ii) u, M' |= ¢,
and u, M+ k= . In case (i), taking into account that
d(p,) = d, from the first assumption we obtain v, N/ = ¢,
and, hence, v, N/ |= ¢. Similarly, in case (ii) we can
show that v, N/ |= ¢,. Moreover, from the second
assumption we obtain v, N/*! = @. Thus, in this case

PROGRAMMING AND COMPUTER SOFTWARE V. 35 No. 5

VALIEV et al.

we also obtain v, N/ |= ¢. Hence, in all cases we obtain
v, N/ }: ¢ and (y, M) ~a+1 (Vs Nj) O

Proposition 1 immediately implies the following.

Proposition 2. If (1, M") ~, (v, N’) and (u, M+ 1) ~,
(v, N7™Y for some d > 0, then (u, M) ~, (v, N).

Proposition 3. Let u = M, ... be a certain trajectory
and i be a step number such that (n, M") ~, (n, M+ 1) ~,
(us M+2)- Then (H, M) Td+1 (H, M l)-

Proof. Let ¢ be an FO-LTL formula of depth
d(p) =d + 1. If ¢ is a Boolean combination of formu-
las of depth <d, then u, M £ ¢ < u, M*!' E ¢
because (u, M) ~, (u, M™Y. If ¢ = X(¢,), then
dlo)<dand uy, M = ¢ < p, M+ = ¢ because
(1, M) ~4 (u, M'2). 1f @ = ¢,Ug,, then d(¢,) < d
and d(¢,) < d. Suppose that u, M’ = ¢. Then, by the
definition of the operator U, we have u, M’ = ¢,, or p,
M = @, and p, M+ ! = @. In both cases, it is clear that
W, M+ = @ (in the first case we used the assumption
M ~, M'*'. On the other hand, suppose that p,
M. Then, () p, M+ = @ or (i) p, M1 = @,
In case (i), from the assumption (u, M’) ~, (n, M+ 1)
we obtain u, M’ = @,; combined with p, M’ = ¢, this
yields p, M' |= ¢. Case (ii) is analogous. []

Proposition 3 immediately implies

Proposition 4. Let u = M, ... be a certain trajectory
and i be a step number such that M = M'*' = M'+2 =
wo =M 25K Then (u, M) ~ (n, M+ 1),

Proposition 5. Let u = M, ... be a certain trajectory
and i be a step number such that M = M+ = M +2 =
. = M'*2+ K Suppose that the trajectory p' = M°, ...,
M-, M M2 K s obtained from u by
removing M'. Then (n, M°) ~ (u', M°).

Proof. It follows from Proposition 4 that (u, M’) ~x
(Ha M 1)~ Then (ua M- l) ~0 (Hls Mﬁl) and (“’ M) K
(w', M+ 1), It follows from Proposition 2 that (u, M~ 1) ~
(u, M=), Since (u, M'=2) ~, (u', M'~2), we obtain
(1, M'=2) ~¢ (u, M'=2) and so on, until we reach the
equivalence (1, M%) ~¢ (n', M°). O

Now, let us return to the proof of Lemma 4. Sup-
pose that I (S°) | E V. This means that A, S° ¥
for a certain trajectory L =S89, ..., 57, ..., € T 4(59). Let
t, b, ..., 1, ..., 1, be the steps of the trajectory A at which

. . A f;+1
the states of the agents increase; i.e., [, < [, for

some a € A. Since A is an expanding system, k is
bounded by the total number of actions of agents from
A. Hence, k < |d|. Due to the choice of steps of the
form £, the states of DBs of all agents from 5{ are not
changed atsteps#;,+ 1,%+2,...,t,, foranyi Letk,=
t,,1 — t; be the length of such a stable subsequence of
states of the DB. Denote by N,, the number of all pos-

2009

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

sible states of message boxes and of the mail agent P.
The number of various messages in the message box of
any agent and in the state P does not exceed rm. Then

Nm < (2rm)m+l —
constant c.

Letd=d(¥)and k;>d + 2 + N,,. Then, there exist
steps/andr, t,+d+2<[<r<t,suchthat S'= 5"
Then I 4(S°) has a trajectory p = S°, ..., S/, "1, ..
that is obtained from A by the removal of the states
S'+1, ..., 8" It follows from Proposition 5 that (A, S°) ~,
(1, 8%, and, hence, p, S° = . Then, there exits a tra-
jectory u € I (S8 such that p, S° = ¥, and the max-
imal length of the sequence of identical states of the
DBs in p for some constants ¢ and ¢, is bounded by the
numberd + 2 + N,, < ¢,|A|¢ + |¥]). For this trajectory,
the step 7" at which the above sequence is stabilized
does not exceed t, + 1 <k + k(d+ 2 + N,,) <pol(|A]| +
. O

The upper bound in Theorem 1 follows from Lem-
mas 1 and 4. Namely, let & be an asynchronous,
ground, expanding system with at most »signals and m
agents, and let m? * r = O(log|sd|). Denote by S its
arbitrary initial state. Let 7 = J (S°) be a tree of tra-
jectories of o that start in S° and P be an arbitrary LTL
formula. Set 7= pol(|| + |¥|), where the polynomial
polis defined in Lemma 4. To find out if 7 4(S°) E E¥
holds, we apply the following nondeterministic algo-
rithm NDetCh:

(1) guess a finite trajectory A = S°, 8", ..., ST, ..., $?T

inthe tree T ,(S°), inwhich I, =1 "' =" = .. =

2
rm +rm
2

< 200eell) < || for some

IjT foranya € A,;

(2) using the algorithm DetCheck, verify if ', S° = W
holds and give answer “Yes” if A, S* = \P.

It is clear that NdetCheck is run in nondeterminis-
tic polynomial time. To prove its correctness, note that
if T (8% E EW, then, by Lemma 4, there exists a tra-
jectory L € T (89, A, S = ¥, that has a finite prefix
A=38°...,STsuchthat), S° = ¥ and If] = [aT for any
a € S and anyj> T. Thus, at step (1) of the algorithm,
one can guess this short prefix and, at step (2), verifi-
cation by DetCheck gives answer “Yes.”

Conversely, if the algorithm NdetCheck gives

answer “Yes,” then there is a finite trajectory A = S,
S, ..., 8T, ..., S?Tin the tree T 4(SP), such that A, S° = ¥

and I =1/ =1'"? =...=I'" foranya e 5. Since
T> N,, there exist i and j (T < i <j < 2T) such that
S’ = S7. Then this prefix A of length 7 can be extended

to a certain infinite trajectory A' € J 4(S°) such that
A=58%..8T §7T+1 ... and 1: = laT forany a € & and

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35

275

j > T. For this trajectory, we have ', A", S° ¥ and
T 4(SY E EVY.

Lower bound. Let us show that the satisiability of
the Boolean formulas SAT is reduced in polynomial
time to the MA-BEHAVIOR problem for ground,
expanding, 1-signal, 2-agent asynchronous systems.
Let a be a propositional formula and V= {x,, ..., x,} be
a set of variables in this formula. Consider an MA sys-
tem S that has two agents a and b. At every step, the
agent b sends message “1” to the agent a. The mail
agent asynchronously forwards these messages to the
agent a. If the agent a receives message "1" at the ith
step, then it places the facts OK; and x; in its database,
whereas, if @ does nor receive a message, it places only
the fact OK; in its database. The extensional signature
of a consists of Vand {OK;|1 <i < n}. Its ground action
AB, includes 2n actions acy, ac; (i =1, ..., n). Each
action ac;; adds facts OK; and x; to I, while the action
acy, adds fact OK,. The program P, for each i € [1, n]
contains two propositions:

.., 0K, ,,—0K, msg(b, 1) and
., 0OK;_,, 0K, —msg(b, 1).

These definitions imply that, after # steps, all facts
of the form OK; (1 <i < n) and a subset of facts from V'
appear to be in I,; moreover, for any such subset, there
is an appropriate trajectory of . Then, one can easily
check that ¢ € SAT < J (8% & E(¢) holds for the
empty initial state S°= ¢ . O

The following theorem shows that the complexity
of the MA-BEHAVIOR problem rapidly increases if
one relaxes the constraints on the class of MA systems.
In particular, if we restrict only the number of agents or
only the number of signals in the class of expanding
systems, then the problem becomes EXPTIME-com-
plete, just as it is in the general case of ground systems.

Theorem 2. (1) The MA-BEHAVIOR problem is
EXPTIME-complete for asynchronous, ground, expand-
ing, m-agent systems and the behavior properties ® from
FO-Ly, (for any fixed m > 2).

(2) The MA-BEHAVIOR problem is EXPTIME-
complete for asynchronous, ground, expanding, r-signal
systems and the behavior properties ®© from FO-Ly, (for
any fixedr).

(3) In both cases, there exists a constant ¢ > 1 such
that appropriate versions of the MA- BEHAVIOR prob-
lem cannot be solved with deterministic time complexity
less than c¢"/'°%¢".

(4) The MA-BEHAVIOR problem for asynchronous
ground MA systems

(i) is EXPTIME-complete for the behavior properties
@ from FO-L, (for any fixed r).

(ii) belongs to the class NEXPTIME " coNEXP-
TIME for the behavior properties @ from FO-Lp.

ac;, — 0K, .

aC,-O -~ OKI, .o

No.5 2009

276

The proof of this theorem is obtained by a slight
modification of the proof of Theorem 7 in [3].

6.2. Mutual Reducibility of MA- BEHAVIOR Problems
Jfor Nondeterministic and Asynchronous MASs

The following theorem shows how nondeterminis-
tic MASs with unit choice operator can be modeled by
asynchronous systems.

Theorem 3. Suppose that the FO-Ly, language is
used to formulate the dynamical properties of MASS.
Then the MA- BEHAVIOR problem for nondeterministic
MASSs with the unit choice operator Sel"" is reduced in
polynomial time to the MA-BEHAVIOR problem for
asynchronous ground MASSs with deterministic agents.

Proof. For simplicity, we give a proof only for
ground MASs. The proof for nonground MASs is
analogous.

Suppose that A = {a,, a, ..., a,} is a nondetermin-
istic MAS each of whose agents a € S uses the opera-
tor Se/“" for a nondeterministic choice of its actions.
Let S° be the initial state of 4. Let us construct, by &,
SY, and the FO-Lp formula @, an asynchronous MAS
9B, its initial state R’, and an FO-Lp formula ¥ so that
A, SEOSRB, R E VY.

Let Act; = {a;, ...
atoms of agent a;.

, Oy + be a set of ground action

The asynchronous MAS 9B consists of agents a; ,

..., 4, , two additional agents b and ¢, and a mail agent
PA. At every step, the agent ¢ sends three messages
“1,” “2,” and “3" to each agent a; (we will focus on

the trajectories on which a; receives these messages in
the cyclic order 1—-2-3).

For every action o € Act,, agent a; has a new mes-
sage oo and a new duplicate of this action o' with the
lists ADD,. = DEL, = § and SEND, = {(a;}, b, a)}.
The program Pa; includes

(i) all propositions Pa,_ in which every occurrence of

any atom of action a is replaced by o' and an atom
msg(c, a; , 1) is added to the body of each proposition;

(ii) the proposition
(e mSg(b, a; s (X.'), msg(c’ a; 5 3)
for every a € Act,.

For every a; and a € Act;, the agent b includes the
action o with the lists ADD , = DEL , = § and
o o

SEND , ={(b,a;,0)}. Forany a; and a € Act;, the pro-

gram P, contains the proposition o — msg(a;, b, o).

PROGRAMMING AND COMPUTER SOFTWARE V. 35 No. 5

VALIEV et al.

Some trajectories of 93 model the trajectories of ;
in this case, one step S = S" of the system 4 corre-
sponds to three steps of the system 9B.

At the first of these three steps, a; defines a set
Perm, = Perm, (S) of actions admissible in the state
S and sends a set of messages {msg(a;, b, a)|o €
Permai } to the agent b. At the second step, the agent b
sends the set of messages

{msg(b, a;, a)|o € Perm, }
to the agent a; , and one of these messages necessarily
reaches a; .

At the third step, a; executes an action received

from b (i.e., a; changes its internal DB and sends all
the messages that should be sent according to this
action to all the agents a;), while the PA sends the

remaining part of Perm, to the agent a;, and these
messages are lost at the next step.
The initial state R© of the system % is defined as fol-

lows: If,o) = I,(l?) . Msgboxf,?) = Msgbox((l?) U {msg(c, a;,
Dy 17 = 1) = Iyl = Msgbox;,” = Msgbox.” = 0.

The formula ¥ = W(®,) is obtained from @ by
inductive replacement of all subformulas of the form
JXO by the formulas IX(f; A IX(f; A AX(f5 A ©))),

where £}, /5, and f; are given by

/\,‘n= 1(/\’":’ lﬁmsg(a;, ba 0('ij) N msgi(c, a;', 2)

J

N —msgi(c, a,) —msgi(c, a, 3)) ,

A (/\f"; \msg (b, al, o)

i=1 j

m,

AN 121 ke (—msg(b, aj, o) v —msg (b, a}, o)
A msg(c, a, 3) A —msg(c, a, 1)

A —msg(c.a},2)).

AN

J=1

(/\qm cp' VL, .,

Z,(—msg(a;, a; q(r)(Zl,

is %j» b Zr))
A msgi(c, a,) —|msgi(c, a;,?2)

A —msg (¢, a;, 3)),

respectively.

2009

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

The formula f; implies that “each agent a; received

message 2 from ¢ and PA does not contain any mes-
sages on actions, sent to the agent »” (i.e., all messages

onactions from Perm, sent to the agents a;are imme-
diately forwarded to b).

The formula £, implies that “each agent a; received

message 3 from ¢ and exactly one message on a certain
action o, from b” (this message belongs to the set

Perm, , which was sent by the agent g, to the agent b at
the previous step).

The formula f; implies that “each agent a; received
message 1 from ¢ and, for any / and j, PA does not con-
tain any information messages sent by the agent a; to
the agent @;” (i.e., all information messages sent by the
agents ag; are immediately forwarded to their destina-
tions).

These definitions imply that the system 9B, the state
R©® and the formula ¥ are constructed in time poly-
nomial with respect to the size of A, S©, and ®.

Let us define the correspondence between the glo-
bal states of & and 9%3. The global state

R = ({1, MsgBoxa,l, ..y (I, MsgBox,),
(]ba MSgBoxb)7 (ICMSgBOXC), [PA>

of the system B is said to correspond to a global state
S = ((,, MsgBox, , ..., (1, , MsgBox,))

of the system s if and only if, for any i, Ia;_ =1, and
MsgBox, isobtained from MsgBox, after the removal
of all messages received from the agents b and c.

This definition immediately implies that R©® corre-
sponds to S©.

Define a mapping G of the set of vertices of
T 4(SO) to the set of vertices of T g(R©). Set G(S©V) =
RO, Suppose that, for a certain vertex S from T 4(S©),
G(S) = Ris already defined so that the message msg(c,
a;, 1) is contained in MsgBox,,. Let " be the next ver-
tex after S. Then G(S') = R, where R’ is obtained by
the three steps of 9B that model one step of S =, S", as
described above.

Hence we find that, for every .S from J (S©?), the
state of G(S) corresponds to the state of .S.

Henceforth we will denote by G(s) the set {G(S)|S
€ T (S}, Let set (@) = {S|T ,(SD), § | ®} and
sety(¥) = {RIT5(R®), R |= P}

Then, the assertion of the theorem follows imme-
diately from the following lemma.

Lemma 5. The equality sety(V (D, A)) N G(A) =
{G(S)|S € set (D)} holds for any formula ® of the FO-
Ly language.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35 No. 5

277

The lemma is proved by induction on the structure
of the formula ®.

First, we prove the following proposition.

(#) If the lemma is valid for formulas ® and ®', then
it is also valid for the formulas —©, ® A @', O v @',
3X0, and ¥V XO.

For Boolean connectives, this proposition is obvi-
ous.

For formulas of the form 3X®, this proposition fol-
lows from the assertion

(*) For any vertex S of the tree T (S,

T 48O, Sk IX6
ifand only if T 3(R©®), G(S) & Y(3XO, A).

Suppose that ® = 3XO and T ,(S?), S | ®. Then, it
follows from the definition of 3X that I (S©), S' = ©
for a vertex .S" such that § = §'. Then, by the induc-
tion hypothesis, we obtain T 4(R®), G(S") E ¥(O,
). By the definition of ¥, we have W(®,) = 3X(f; A
AX(f, A IX(f5 A O(D, HA)))). Note that the definition
of G implies that there is a path G(S) = R =4 R, =g
R, =4 Ry = G(S") in T 4(RD).

It is clear that T 3(R©), R, E f,, i =1, 2, 3. Hence
we find that 7 5,(R©), G(S) E ¥(®, A).

Conversely, suppose that J4(R©?), G(S) E V(O,
A). Then, there exists a path G(S) = R =g R, =
R, =g Rysuch that (i) T4(R©), R, Ef,i=1,2,3and
(ii) T5(RV), Ry | ¥(©, oA).

It follows from (i) that each agent a; in R, executes
a certain action o € Permai (8S). Then, a; € A can also

execute the same action in the state .S, because its
selection operator Sel:" can choose in Perm, (S) any

action to execute. After that, the system & goes to a
state .§' such that G(S') = R;. Then, by the induction
hypothesis, T 4(S©), S' E © and, hence, T (S©),
E3XO. Thus, we have proved assertion (*).

For the formulas ® = VXO, the proof follows from
the equivalence of the formulas VX® and —3X—0.
Hence, proposition (#) is proved.

If @ is a basic state formula, then the assertion of
the lemma follows from the correspondence between
S and G(S). Thus, it follows from proposition (#) that
the lemma holds for an arbitrary formula ® from FO-
Ly, (i.e., for a formula that does not contain operators
uand v).

If @ has the form of nZ.0(2) or vZ.0(Z), then the
lemma is proved by a direct, but rather tedious, induc-
tion on calculation of the fixpoints of these formulas.
Consider, as an example, the following simple case.

Suppose that @ has the form of uZ.0(2), where
©(Z) does not contain p and v. Then, ¥(®, A) =
uZ\¥(©(2),). By the definition of p, we have

2009

278

set (D) = Ui” setﬂ((@i(false)) and set;(\W(D, A)) =

=0
Uj"z 0sel‘gg‘((‘l’((a, .Sﬁ))i(false)) . Hence, ¥(®'(false),

A) = (¥(O,) (false) and set;((¥(O, A))(false))) N
G(A) = {G(S)|S € set(O(false))}. Then sety(V (D,
A)) N G(A) ={G(S)|S € set (D)}

For formulas @ of the form vZ.0(Z), where ®(2)
does not contain p and v, the proof is analogous. [J

The following theorem shows how asynchronous
MASSs can be modeled by nondeterministic MASs.

Theorem 4. Suppose that the FO-Lu, language is
used to formulate the dynamical properties of MASS.
Then the MA-BEHAVIOR problem for asynchronous
nondeterministic MASs is reduced in polynomial time to
the MA-BEHAVIOR problem for (synchronous) nonde-
terministic MASs.

Proof. Suppose that { = {a,, ..., a,; PA} is a nonde-
terministic asynchronous MAS and ® is a formula to
be verified. By &, we construct a nondeterministic

MAS B = {ay, ..., a, , pa} that models the operation

of &. A nondeterministic agent pa will model the
operation of the mail agent PA by keeping messages in
its database and then nondeterministically sending
them to destinations.

For any predicate from the signature of messages

qe PZ and any j # i, we place a predicate g; into the

signature P;” . The heads a of the propositions of the

logical components of agents a; are the same as those
in the programs of agents a;, but each message of the
form msg(a;, a;, q) in the list SEND, is replaced by

msg(a; , pa, q;). In the bodies of propositions in the
program Pa,7 each atom of the form msg(a;, a;, q) is
replaced by msg(pa, a;, q;). Moreover, a new atom

msg(pa, a;, 1) is added to the body of each proposi-
tion.

k . .
For every qu) , the action basis 4B,, of a nondeter-

ministic “mail” agent pa includes three actions
save(q;), resent(q;), and send(q;) with the following
lists:

ADDsave(qU) = {qij(Xla X,
DEL;sye(qy) = SENDgeq,) = 0,
ADD., seniq) = DEL osena,) = 0,
SENDresend(q,,) = {msg(pa, a, q,j(Xl, X,
ADD;, 44, = 0,
DELsend(qU) = {ql‘j(Xh s X},
SENDsend(qU) = {msg(pa, a; q;(X,, ..., X;) }.

PROGRAMMING AND COMPUTER SOFTWARE V. 35 No. 5

VALIEV et al.

AB,, also includes two actions add_1 and del_1 for
counting even and odd steps:

ADDade = {1}, DELade = Q)’
SEND,;; , = {msg(pa,a;, 1)|1<i<n}.
ADDdelil = Q)’ DELdeLl = {1}’

SENDdel_l = @ .

To start these actions, the following two proposi-
tions are included in the program P,, of the agent pa:
add 1 — —1.
del 1 <— 1.

Foreach quk) , the program P,, contains three prop-
ositions:

save(q) (X, ..., Xi)
~— msg(a,, pa, g (X,, ..., X).
resend(q,)(X,, ..., X;)

~— msg(a;, pa, q(X,, ..., X,).
send(qy)(Xy, ..., Xp) =— q(Xy, ..., Xp).

The selection operator Sel,, chooses an arbitrary
subset of actions of the form send(q;)(,, ..., ;) in Per-
m,, and chooses one atom in each pair of action atoms
of the form {save(q)(t,, ..., t), resend(q;)(¢,, ..., t,)} <
Perm,,,.

One can see from the construction of 9B that one
step of system & is modeled by two steps of system %B.

The validity of the formula @ in t(s4, S°) can be
reduced to the validity of a certain formula V¥ of lan-
guage FO-Ly, in ©(%, S°). The formula ¥ = ¥(®, RB)
is constructed inductively, just as in the previous theo-
rem, but a bit simpler.

According to the construction, this reduction can
be performed in polynomial time.

These modeling theorems imply, in particular, the
following propositions on the complexity of verifica-
tion of asynchronous MASs.

Corollary 5. The MA-BEHAVIOR problem for
ground asynchronous MASs with deterministic agents

(i) is EXPTIME-hard for verifying formulas from
FO-Ly, forevery fixed r> 1 and

(ii) belongs to the class EXPTIME coNEXPTIME
Jor verifying formulas from FO-L|.

Corollary 6. The MA- BEHAVIOR problem for non-
ground asynchronous MASs with deterministic agents

(i) is EXPTIME-hard for verifying formulas from
FO-Ly, for every fixed r > 1 and

(ii) belongs to the class EXPTIME coNEXPTIME
Jor verifying formulas from FO-Lp.

7. CONCLUSIONS

The MASs considered in this paper represent a
class of general parallel and/or distributed software

2009

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

systems. Therefore, many well-known approaches to
the verification of parallel programs can be applied to
the analysis of the behavior of these systems. However,
the architecture of MASs has a certain specific feature,
which requires that these approaches should be signif-
icantly modified.

For MASs with their rich architecture, the ade-
quacy of the analysis of behavior is closely related to
the accurate choice of the specification level of the
essential properties of this architecture and its param-
eters, as well as to the choice of natural constraints on
these properties and parameters. We have chosen a
special fragment of the IMPACT architecture [9] in
which intelligent components of agents are described
by logical programs. Depending on the operation con-
ditions of the mail subsystem and on the one-step
semantics implemented by agents, the MASs consid-
ered may be either synchronous or asynchronous, or
deterministic or nondeterministic. Following known
approaches to the verification of program models (see
[22, 24]), we used different classes of temporal logics
(linear and branching time) for representing the
behavior properties of various versions of MASs.

For each of the above-mentioned classes of MASsS,
we have distinguished some natural subclasses, using
structural constraints on the number of agents, the
number of messages, and on the dimension (arity) of
actions and messages. We have also considered some
important semantic conditions that restrict the
expressiveness of the programs and the results of
agents’ actions: the use of variables and negations in
logical programs and the possibility of removing facts
from the states of agents.

Our goal has been to determine the complexity of
an appropriate MA-BEHAVIOR problem for various
combinations of these constraints. For synchronous
deterministic and nondeterministic MASs, the main
results obtained in [1—3] are given here in Tables 1 and 2.
In this paper, we have mainly focused on the behavior
of asynchronous MASs. For this class, we could trans-
late part of the results from the nondeterministic case
using Theorems 3 and 4 on the mutual reducibility of
nondeterministic and asynchronous MASs. However,
the constructions of these theorems do not preserve
the properties of MASs such as expansibility and pos-
itiveness. Therefore, to obtain “low” complexity
bounds for appropriate subclasses of MASs, we needed
separate constructions (Theorems 1 and 2).

The results obtained show that the complexity of
the MA-BEHAVIOR problem for “unbounded”
classes of MASs is very high; in particular, it takes
exponential memory or time bounded by a double
exponential function. At the same time, for some nat-
urally bounded subclasses of MASs, the MA-BEHAV-
IOR problem has relatively low complexity: it is solved
in deterministic or nondeterministic polynomial time
or with polynomial memory.

Although the architecture of MASs considered in
this paper is much simpler than the original IMPACT

PROGRAMMING AND COMPUTER SOFTWARE VWl. 35 No. 5

279

architecture defined in [9], our results extend to a
more general case. In particular, the intelligent com-
ponents of agents can be extended by using deontic
modalities of types P (permitted), F (forbidden),
O (obliged), and so on in the logical programs [9].
Similar assertions can be made for a number of other
means from [9] that have not been considered here.
However, as pointed out in the Introduction, even the
description of these means is rather cumbersome.
Some of our results on probabilistic MASs are con-
tained in [31].

Naturally, the problem of the complexity of behav-
ior is also of interest for other architectures of MASs.
One of the methods for studying this problem is mod-
eling MASs of different architectures by the systems of
the IMPACT architecture. In particular, in [32] the
authors discuss the possibility of modeling in this
architecture the MASs defined in the AgentSpeak sys-
tem [33], which is based on the so-called BDI (belief—
desire—intention) agents. These agents work out plans
of their actions on the basis of some formally defined
sets of beliefs (facts of internal DB) and intentions.
The verification problem for AgentSpeak systems was
considered in the literature (see [13]); however, the
complexity of appropriate algorithms was not esti-
mated. The possibility of modeling these systems on
systems of the type considered allows us to obtain
upper bounds for the complexity of verification of
AgentSpeak systems.

An essentially different type of agents is repre-
sented by the agents defined by epistemic logics [16]
without using program components (in particular, log-
ical components, as in the present case). These agents
allow one to express knowledge based on incomplete
information. By varying the accessibility of informa-
tion, one can check how the views of an agent about
the world and other agents are changed. Some results
of verification of systems with such agents, in which
the logic of knowledge is additionally combined with
temporal logics, were obtained in [34, 35]. These log-
ics allow one to describe the time evolution of agents'
knowledge.

In conclusion, note that we have considered here
“naive” versions of verification algorithms on models,
leaving out various optimization methods such as
symbolic verification, abstraction, the use of symme-
try properties of MASs, etc. (see [24]) for further
application.

As regards the practical development of verification
systems for MASs, the results obtained here show that
it is impossible to fully automatize the verification of
general systems; therefore, such a system should allow
one to trace the operation of MASs and apply special
techniques to the verification of systems from sub-
classes of these MASs.

2009

280

10.

11.

12.

13.

14.

15.

VALIEV et al.

REFERENCES

. Valiev, M.K., Dekhtyar, M.I., and Dikovsky, A.Ya., On

the Complexity of Behavior of Systems of Interacting
Agents, Trudy konferentsii, posvyashchennoi 90-letiyu so
dnya rozhdeniya A.A. Lyapunova (Proc. of the Conf.
Dedicated to the 90th Birthday of A.A. Lyapunov),
Novosibirsk: Nauka, 2001, pp. 18—28.

. Dekhtyar, M., Dikovsky, A., and Valiev, M., On Feasi-

ble Cases of Checking Multi-Agent Systems Behavior,
Theor. Comput. Sci., 2003, vol. 303, no. 1, pp. 63—81.

. Dekhtyar, M.K., Dikovsky, A.Ja, and Valiev, M.K., On

Complexity of Verification of Interacting Agents’
Behavior, Ann. Pure Appl. Logic, 2006, vol. 141, no. 3,
pp. 336—362.

. Barringer, H., Fisher, M., Gabbay, D., Gough, G., and

Owens, R., METATEM: An Introduction, in Formal
Aspects of Computing, 1995, vol. 7, pp. 533—549.

. Georgeff, M. and Lansky, A., Reactive Reasoning and

Planning, Proc. of the Conf. of the American Association
of Artificial Intelligence, Seattle, 1987, pp. 677—682.

. van der Hoek, W. and Wooldridge, M., Multi-Agent

Systems, in Handbook of Knowledge Representation, van
Harmelen, E, Lifschitz, V., and Porter, B., Eds.,
Amsterdam: Elsevier, 2008, pp. 887—928.

. Reiter, R., Knowledge in Action: Logical Foundations for

Specifying and Implementing Dynamical Systems, Cam-
bridge: MIT, 2001.

. Shoham, Y., Agent Oriented Programming, Artif.

Intell., 1993, no. 60, pp. 51—92.

. Subrahmanian, V.S., Bonatti, P, Dix, J., et. al., Heter-

ogeneous Agent Systems, Cambridge: MIT, 2000.

Tarasov, V.B., Ot mnogoagentnykh system k intellek-
tual’nym organizatsivam (From Multiagent Systems to
Intellectual Organizations), Moscow: Editorial URSS,
2002.

Araragi, T., Attie, P, Keidar, I., Kogure, K.,
Luchangco, V., Lynch, N., and Mano, K., On Formal
Modeling of Agent Computations, NASA Workshop on
Formal Approaches to Agent-Based Systems, 2000.

Benerecetti, M., Guinchiglia, F, and Serafini, L.,
Model Checking Multiagent Systems, Technical Report
no. 9708-07, Instituto Trentino di Cultura, 1998.

Bordini, R.H., Fisher, M., Pardavila, C., and Woold-
ridge, M., Model Checking AgentSpeak, Proc. of the
Second Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS-03), Melbourne, 2003.

Wooldridge, M. and Dunne, P.E., The Computational
Complexity of Agent Verification, in Intelligent Agents
VIII, Meyer, J.J. and Tambe, M., Eds., Lecture Notes
in Al, vol. 2333, Berlin: Springer, 2002.

Wooldridge, M., Huget, M.P, Fisher, M., and
Parsons, S., Model Checking Multi-Agent Systems:
The MABLE Language and Its Applications, Int.
J. Artif. Intell. Tools, 2006, vol. 5, no. 2, pp. 195—225.
(Preliminary version: Wooldridge, M., Huget, M.P,
Fisher, M., and Parsons, S., Model Checking Multi-
agent Systems with MABLE, Proc. of the First Int. Conf.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

on Autonomous Agents and Multiagent Systems (AAMAS-
02), Bologna, 2002.

Fagin, R., Halpern, J.Y., Moses, Y., and Vardy, M.Y.,
Reasoning about Knowledge, Cambridge: MIT, 1995.

Eiter, T. and Subrahmanian, V.S., Heterogeneous
Active Agents. III: Polynomially Implementable
Agents, Tech. Rep. INFSYS RR-1843-99-07, Inst. fiir
Informationssysteme, Technische Universitiat Wien, A-
10-40,Vienna, 1999.

Clarke, E.M. and Emerson, E.A., Design and Synthesis
of Synchronization Skeletons Using Branching Time
Temporal Logic, Proc. of Workshop on Logics of Pro-
grams, Lecture Notes in Computer Science, 1981,
no. 181, pp. 52—71.

Vardi, M. and Wolper, P., An Automata-Theoretic
Approach to Automatic Program Verification, Proc. of
the IEEE Symposium on Logic in Computer Science,
1986, pp. 332—344.

Queille, J.P. and Sifakis, J., Specification and Verifica-
tion of Concurrent Programs in CESAR, Proc. of the
Sth Int. Symposium on Programming, Lecture Notes in
Computer Science, 1982, no. 137, pp. 195—220.

Sistla, A.P. and Clarke, E.M., The Complexity of Prop-
ositional Linear Temporal Logic, J. Assoc. Comput.
Mach., 1985, vol. 32, no. 3, pp. 733—749.

Emerson, E.A., Temporal and Modal Logic, in Hand-
book of Theoretical Computer Science, Leeuwen, J., Ed.,
Amsterdam: Elsevier, 1990.

Emerson, E.A., Model Checking and the Mu-Calculus,
in Descriptive Complexity and Finite Models, Proc. of the
DIMACS Workshop, Immerman, N. and Kolaitis, PH.,
Eds., Amsterdam: Elseiver, 1996, pp. 185—214.

Clarke, E.M., Grumberg, O., and Peled, D., Model
Checking, Cambridge: MIT, 2000. Translated under the
title Verifikatsiva modelei programm: Model Checking,
Moscow: MTSNMO, 2002.

Apt, K.R., Logic Programming, in Handbook of Theo-
retical Computer Science, Vol. B: Formal Models and
Semantics, Chapter 10, Leeuwen, J., Ed., Amsterdam:
Elsevier, 1990, pp. 493—574.

Kozen, D., Results on the Propositional p-Calculus,
Theor. Comput. Sci., 1983, vol. 27, pp. 333—354.

Manna, Z. and Pnueli, A., The Temporal Logic of Reac-
tive and Concurrent Systems: Specification, Berlin:
Springer, 1991.

Yi, K., Shilov, N.V.,, and Bodin E.V., Program Logics
Made Simple, in Sistemnaya informatika (System
Informatics), Novosibirsk, 2002, issue 8, pp. 206—249.
Garey, M. and Johnson, D.S., Computers and Intracta-
bility—A Guide to the Theory of NP-Completeness, New
York: Freeman, 1979.

Papadimitriou, C.H., Computational Complexity, Read-
ing: Addison-Wesley, 1994.

Dekhtyar, M.I., Dikovsky, A.Ja., and Valiey, M.K.,
Temporal Verification of Probabilistic Multi-Agent
Systems, in Pillars of Computer Science: Essays Dedi-
cated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, Avron, A., Dershowitz, N., and

No.5 2009

32.

33.

SYSTEMS OF AGENTS CONTROLLED BY LOGICAL PROGRAMS

Rabinovich, A., Eds., Lecture Notes in Computer Sci-
ence, Berlin: Springer, 2008, vol. 4800.

Burmistrov, M.Yu., Valiev, M.K., Dekhtyar, M.1., and
Dikovsky, A.Ya., On the Verification of Dynamical
Properties of Systems of Interacting Agents, Trudy X
natsional’noi konferentsii po iskusstvennomu intellektu s
mezdunarodnym uchastiem (Proc. of the X National
Conf. on Atrtificial Intelligence with International Par-
ticipation), Obninsk: Fizmatlit, 2006, pp. 908—915.

Rao, A.S., AgentSpeak (L): BDI Agents Speak out in a
Logical Computable Language, in Lecture Notes in Al,
Berlin: Springer, 1996, vol. 1038.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 35

34.

35.

36.

281

Garanina, N.O. and Shilov, N.V., Verification of Com-
binatorial Logics of Knowledge, Actions, and Time in
Models, in Sistemnaya informatika (System Informat-
ics), Novosibirsk: Sib. Otd. RAN, 2006, issue 10,
pp. 114—173.

Shilov, N.V., Garanina, N.O., and Choe, K.-M.,
Update and Abstraction in Model Checking of Knowl-
edge and Branching Time, Fund. Inform., 2006, vol. 72,
no. 1-3, pp. 347—-361.

Emerson, E.A. and Lei, C.L., Efficient Model Check-
ing in Fragments of the pu-Calculus, Proc. of the IEEE
Symposium on Logic in Computer Science, 1986.

No.5 2009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

