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А.А.Иванов, Р.Р.Хайрутдинов, С.Ю.Медведев, Ю.Ю.Пошехонов 
 

ВЫЧИСЛИТЕЛЬНЫЙ КОД  SPIDER – 
РЕШЕНИЕ ПРЯМОЙ И ОБРАТНОЙ ЗАДАЧ РАВНОВЕСИЯ ПЛАЗМЫ 

СО СВОБОДНОЙ ГРАНИЦЕЙ В ТОКАМАКЕ 
 

Аннотация 
 
 Код SPIDER является многомодульным вычислительным кодом для расчёта целого 
ряда задач, связанных с аксиально-симметричным МГД равновесием плазмы в токамаке. 
Данный препринт посвящен описанию модулей для решения прямой и обратной задачи 
равновесия плазмы со свободной границей. 
 В первой части препринта дается постановка прямой задачи о нахождении равновесия 
плазмы со свободной границей в заданных внешних удерживающих токах, которая 
описывается двумерным уравнением равновесия Грэда-Шафранова в неограниченной 
области относительно неизвестной функции полоидального магнитного потока   в 
неизвестной занимаемой плазмой области p . Приводятся два варианта алгоритма решения 

задачи на фиксированной прямоугольной и априори неизвестной криволинейной 
адаптированной к магнитным поверхностям (линиям уровня решения  ) сетках. 
 Вторая часть препринта посвящена формулировке и методу решения обратной задачи 
равновесия плазмы со свободной границей в токамаке, как задачи восстановления 
удерживающих токов в катушках полоидального поля по заданному в определенном 
формате равновесию. Описывается соответствующий вычислительный алгоритм. 
Приводятся примеры расчетов. 
 В приложении приводится общая схема вывода уравнения равновесия Грэда-
Шафранова. 
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THE  SPIDER  CODE – 

SOLUTION OF DIRECT AND INVERSE PROBLEMS 
FOR FREE BOUNDARY TOKAMAK PLASMA  EQUILIBRIUM 

 
Abstract 

  
 The SPIDER code is an axisymmetric multipurpose plasma equilibrium solver for different 
formulations of the tokamak plasma equilibrium problems. This paper deals with solution of direct 
and inverse problems for free boundary plasma equilibrium. 
 The first part of the paper concerns the direct axisymmetric free boundary plasma equilibrium 
problem, which is formulated for the poloidal magnetic flux function   and the unknown plasma 
domain p  in terms of the Grad-Shafranov equation over an infinite domain. Computational 

algorithms for the cases of fixed rectangular grid and unknown magnetic surface adaptive grid are 
described. 
 The second part of the paper concerns the inverse free boundary plasma equilibrium problem 
of reconstruction of PFC currents as a module in the frame of the SPIDER code. Corresponding 
computational algorithm is described too. The results of simulations are presented. 
 Derivation of the Grad-Shafranov equilibrium equation is given in the appendix. 
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1.  Introduction 
 
 By now the most promising results for solving a problem of controlled  

thermonuclear fusion were obtained by use of tokamak type devices for magnetic 

confinement of plasma. Much work is in progress on the project of International 

Thermonuclear Experimental tokamak-Reactor (ITER) for demonstration of scientific 

and technological possibility of D-T fusion reaction (France, Cadarache). 

 Magnetically confined toroidal high-temperature plasma is the main subject of 

the controlled  thermonuclear fusion research, which includes a broad spectrum of 

interdependent plasma-physical and engineering problems. 

 One of the necessary conditions to reach the goals of controlled magnetic fusion 

projects is the development of mathematical models and computational codes to 

simulate tokamak plasma behavior.  Modern mathematical models of plasma and 

extensive experimental database give a possibility to successfully design tokamaks 

and predict plasma performance. 

 Formation and confinement of a toroidal plasma with an optimal shape and its 

position in a tokamak vessel, and obtaining of desired plasma pressure and current 

density profiles is one of the basic problems of the tokamak plasma modeling. 

Because of this, an accurate computation of toroidal plasma equilibrium with 

arbitrary plasma shape and with radial distribution of plasma pressure and current 

density varying in a wide range of realistic plasma parameters is an important 

problem, which provides data for optimization of the magnetic system parameters in 

tokamaks. 

The set of toroidal plasma equilibrium problem formulations may be subdivided 

into two main groups – equilibrium problem over finite domain with prescribed fixed 

boundary of plasma and equilibrium problem over an infinite domain with unknown 

free boundary of plasma and prescribed external toroidal currents in the poloidal field 

coils (PFC). Essentially more complicated and realistic problems of plasma 

equilibrium with free boundary are of primary practical interest. A distinction is made 

between direct (plasma equilibrium computation with prescribed PFC currents) and 
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inverse (PFC currents computation with prescribed plasma equilibrium) problems of 

axisymmetric free boundary plasma equilibrium in external PFC currents. 

 By now there are several well known computational codes over the world, 

which can solve direct free boundary plasma equilibrium problem on fixed 

rectangular grid with prescribed plasma pressure and poloidal current profiles.  As 

an example we can mention here DINA [1], TSC [2], CORSICA [3], JETTO [4], 

SCED [5] and MAXFEA [6] codes. The SPIDER code [7], presented in this paper, is 

designed for free boundary equilibrium problem computation for both: on 

conventional fixed rectangular grid and on a priori unknown magnetic surface 

adaptive grid – so-called flux grid. In some instances the use of the adaptive grid 

technique provides a possibility to solve equilibrium problems, which cannot be 

practically solved on fixed rectangular grids. 

 As examples of inverse free boundary tokamak plasma equilibrium problem 

solvers we can mention here such well-known computational codes as EFIT [8], 

LIUQE [9], CLISTE [10]. 

 The SPIDER code is an axisymmetric multipurpose plasma equilibrium solver 

for different formulations of the tokamak plasma equilibrium problems. This paper 

deals with solution of direct and inverse problems for free boundary plasma 

equilibrium. 

 The first part of the paper concerns the direct axisymmetric free boundary 

plasma equilibrium problem, which is formulated for the poloidal magnetic flux 

function   and the unknown plasma domain p  in terms of the Grad-Shafranov 

equation over an infinite domain. Computational algorithms for the cases of fixed 

rectangular grid and unknown magnetic surface adaptive grid are described. 

 The second part of the paper concerns the inverse free boundary plasma 

equilibrium problem of reconstruction of PFC currents as a module in the frame of 

the SPIDER code. Corresponding computational algorithm is described too. The 

results of simulations are presented. 

 Derivation of the Grad-Shafranov equilibrium equation is given in the 

Appendix.  
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 Originally developed techniques for solution of direct and inverse free boundary 

equilibrium problems provide a possibility to obtain extensive information which is 

necessary for optimization of  tokamak magnetic system parameters. They are also an 

integral part of the complex of computational codes used for design of thermonuclear 

reactors on the basis of tokamak, in particular ITER. 

  

2. Free boundary plasma equilibrium problem 
 
 
 

2.1. Formulation of the problem 
 
 

 Axisymmetric free boundary plasma equilibrium in cylindrical coordinate 

system  ZR ,,  is described by the Grad-Shafranov equation [11]: 

 

    





 

k
kkk ZZRRJRaj

RR
R ,),(

11
00

*
2

          (2.1) 

 

over an infinite domain. The plasma domain p  is taken to be unknown. Below we 

use the following notations:  - the poloidal magnetic flux,   - the toroidal magnetic 

flux, polJ  - the poloidal plasma current, torJ - the toroidal plasma current, 0  - 

magnetic permeability of free space. The normalized poloidal flux 

     1,0,, 





axisboun

axisZRZRa  may be chosen as a flux coordinate - label of 

magnetic surfaces, where axis  is the   value at the magnetic axis, boun  is the 

 value at the plasma boundary. Magnetic axis coordinates are determined from the 

condition 0 . The boundary of the plasma domain is denoted by p . 

 In right hand side of (2.1) 
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– toroidal component of the plasma current density;  aP  -  plasma pressure;  a
d

dP


 

profile is taken to be prescribed as a function of flux coordinate a ;  



20

polJ
aF   –  

normalized poloidal current;  a
d

dF
F


 profile is also taken to be prescribed. The 

cross-sections of poloidal field coils and passive conductive structures, surrounding 

toroidal plasma, are approximated by means of a finite set of filaments – point-wise 

circular conductors. kk ZR ,  are the k -th filament coordinates. kJ  is prescribed value of 

the k -th  filament current.  

 The value of full toroidal plasma current  

 

   dSRajI
p

pl 


 ,           (2.3а) 

is also input parameter of problem. 

 Equilibrium equation (2.1) is complemented by the next boundary conditions: 

 

00  R ,     022 
ZR

,    constboun
p




.    (2.3б) 

 

Here boun  ( value at p  ) is determined from relation 

 

 1,0, 



  const
axissepar

axisboun  ,        (2.4) 

 

where axis  and separ  – poloidal flux values at magnetic axis and unknown plasma 

separatrix;   – an input parameter of the problem, defining proximity of the plasma 

boundary to the separatrix (the case of 1  corresponds to coincidence of the 

boundary and the separatrix). boun  can be also determined as  value in some 

prescribed point of the plasma domain – so called limiter point. 
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 It is assumed that plasma equilibrium configuration has the nested magnetic 

surfaces with a single magnetic axis. 

  

2.2.  Reduction to finite domain (Lackner’s method) 

 

 The non-linear free boundary elliptic equilibrium problem, described above, 

poses additional difficulties from a numerical point of view because of the infinite 

original domain. To solve this problem we use Lackner’s method [12] to reduce it to 

a finite domain. The technique using combination of a special auxiliary elliptic 

problem and the adaptive grid technique was described and applied to free boundary 

elliptic problems in [13-15]. We describe here the general scheme of Lackner’s 

method: 

 

1) The fundamental solution (Green’s function)  0, rrG
  of the *  operator is the 

solution of the following equation: 
  

   00
* rrRG


             (2.5) 

 
over an infinite domain, where  ZR,  is the Dirac’s delta-function. 
 
2) Free boundary plasma equilibrium equation (2.1) can be split into two following 
equations: 
 

   jRpl 0
*   ,          (2.6a) 

    
k

kkext rrJR
 0

*          (2.6b) 

 
In doing so, we can write 
 
       




p

dSrrGrjrpl 00 ,


  ,         (2.7a) 

     
k

kkext JrrGr 00 ,
          (2.7b) 

 
on the base of definition and properties of the Green’s function. 
 
 



 

 

9

3) For two arbitrary functions vu, , which have smooth second partial derivatives in 

a bounded region S , the following integral Green’s theorem is valid: 

 

    


















S S

dl
n

v

R

u
dl

n

u

R

v
dSuvvu

R
**1  ,     (2.8) 

 
where n  is the derivative with respect to an external normal to S .  
  
4) Let S  to be a bounded domain with sufficiently smooth boundary S  which 

contains plasma domain p . Consider the following boundary-value problem 

 
   jRg 0

*   ,  0Sg          (2.9) 

 
in S . Let us assume that  0, rrGv


 ,  gu    in (2.8). Then 

 

    


















S S

dl
n

G

R

g
dl

n

g

R

G
dSgGGg

R
**1   

 
and 
 

    
 




SS

dl
n

g

R

G
dSrrGjrg 00 ,


  , где 















Sr

Sr

Sr

0

0

0

,0

,2
1

,1







  .  (2.10) 

 

Let us assume that Sr 0

  in (2.10).  Then     
 




SS

dl
n

g

R

G
dSrrGj 0,


 , where 

according to (2.7а)      00, rdSrrGj pl

S

   ,  and we derive boundary-value condition 

for  extpl    at the boundary S : 

 

    
 




S

pl dl
n

g

R

G
r0

 ,      
k

kkext JrrGr 00 ,
  .    (2.11) 

 
Here g  is the solution of the boundary-value problem (2.9). 

 Applying this technique  the solution of original problem over an infinite 

domain is reduced to the solutions of two boundary-value problems (2.6), (2.9) over 

the finite domains. 
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2.3. Computational algorithm 

 

To solve the nonlinear problem (2.1)-(2.4) the following iteration procedure is 

proposed. The key point of this procedure is the use of so-called “limiter points” or 

“limiters”, which provide convergence of the iteration loop. The use of the limiters 

leads to two nested iteration loops. First the problem is solved with fixed limiters 

(inner iterations), and then the locations of the limiters are adjusted to satisfy the 

original problem (outer iterations), and the next step of the iteration procedure is 

performed. 

 

Inner iterations 
 
Picard iterations are performed for equation 
 

   RjR ss
pl ,0

1*    ,  s  – iteration number, 

 
      k

k
kext JrrGr  
,   , 

 
with a fixed location of the limiter point  mm ZR ,  – the magnetic axis of the 

equilibrium configuration in our case. To fix the magnetic axis in the prescribed point 

 mm ZR ,  we add an artificial poloidal flux as follows  

 

  ZCRCr s
z

s
r

s
art

1211  
            (2.12) 

so that 
111   s

artext
s
pl

s    .         (2.13) 

 

Constants 1s
rC  and 1s

zC  in (2.12) are fitted from the condition that a magnetic axis is 

coincides with the prescribed limiter point  mm ZR , . Here s  is the iteration number. 

New plasma boundary approximation is determined according to the prescribed input 

parameter   (2.4) and the obtained approximate solution 1s . 
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Outer iterations 

 

 Let us consider coefficients rC , zC  as functions of unknown magnetic axis 

coordinates  mm ZR , . The next step of the iteration procedure consist of finding such 

values of  mm ZR , , which provide the solution of the original problem (2.1)-(2.4). 

Required values are obtained from solution of the following nonlinear system of the 

equations: 

 

  
 
  .0,

,0,




mmz

mmr

ZRC

ZRC
            (2.14) 

 
This two-level iteration procedure is repeated until we obtain sufficiently small 

values of zr CC ,  corresponding to vanishing artificial poloidal flux (2.12). 

 
 
2.4. Finite-difference scheme 
 
 The computational domain is covered by a quadrangular computational grid. 

The difference analog of the Grad-Shafranov operator  *  (2.1) is constructed on the 

basis of the conservative finite-difference approximation of the operator     by 

means of the operational finite-difference method [16]. The procedure of the 

construction of the difference scheme for the equilibrium equation (2.1) is described 

in [17]. 

 
 
2.5. Equilibrium on rectangular grid 
 
 In case of the free boundary plasma equilibrium computation on the rectangular 

grid the difference problem is solved in the rectangular domain, which covers the  

plasma domain. 

 In Fig.1 we demonstrate an example of a computation of the tokamak plasma 

equilibrium configuration with the following input parameters: 
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- the current density profile is prescribed by the functions ddP  and ddFF   

shown in Fig.2 versus normalized poloidal flux; 

-  full toroidal plasma current value  MAI pl 15 ; 

-  proximity of the plasma boundary and the separatrix is set by the parameter  

 995.0 ; 

-  locations of the filaments, which approximate PFC cross-sections, are shown 

in Fig.1;  the prescribed currents for each PFC are distributed over these 

filaments. 

 
 

 

-2 0 2 4 6 8 10 12 14 16

-6

-4

-2

0

2

4

6

Free boundary plasma equlibrium. ITER cofiguration. 

R

Z

first wall

vacuum vessel

plasma boundary

PF coils

PF coils

 
Fig.1 Free boundary plasma equilibrium on rectangular grid. 

    ITER configuration. 
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Fig.2  The plasma profiles versus normalized poloidal flux for the equilibrium from 
Fig.1: safety factor q ; poloidal current f ; input profiles ddP  and ddFF . 

 
 
 
2.6. Equilibrium on magnetic surface adaptive grid 
 
 In case of free boundary plasma equilibrium computation on adaptive grid, 

difference problem is solved in the domain, which is geometrically similar to the 

plasma domain and necessarily covers plasma domain. This prescribed computational 

domain is covered by a computational grid, which is topologically equivalent to a 

radial-annular grid and it is used as initial guess for construction of a final magnetic 

surface adaptive grid. 

 During the process of iterations in the plasma domain computational grid is 

adapted to desired magnetic surfaces – solution level lines – on each iterative step. 

 Fig.3a demonstrates an example of computation of the ITER plasma equilibrium 

configuration with the same input parameters as for the case of Fig.1 
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Free boundary plasma equilibrium. ITER configuration.

comput. domain

 
Fig.3а  Free boundary plasma equilibrium on magnetic surface adaptive grid. 

    ITER configuration. 
 

 A close-up view of the same equilibrium without PFC filaments is shown in 
Fig.3b. In this variant plasma boundary is determined by parameter 995.0  and 
does not coincide with the separatrix. It is seen that the x-point of the separatrix is 
outside the plasma boundary. 
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Fig.3b  Free boundary plasma equilibrium on magnetic surface adaptive grid. 

    ITER configuration. 
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3.  Inverse problem. Reconstruction of  PFC currents. 
 
3.1. Formulation of inverse problem 
 

The inverse free boundary plasma equilibrium problem of the PFC currents 

reconstruction, which form a desired free boundary plasma equilibrium, is stated as 

follows: 

 
1.  Plasma boundary location and shape are approximated by a finite set of so-

called “fitting” points with prescribed coordinate values  ll zr ,  in  ZR,  plane. 

During the iterations equilibrium plasma boundary will be fitted to these points by 

means of minimization of the functional which is given below. 

 
2.   The coordinates of a finite number of so-called “control” points, which 
must belong to plasma boundary, are prescribed. 
 

3.   The supporting values (approximations) of the PFC currents are prescribed. 

 Desired currents (solution of the inverse problem) must be close to them. 

 
4. The coordinates of the x-point where 0  are prescribed. The x-point 

coordinates of the desired free boundary plasma equilibrium must be the same as 

prescribed values. 

 
5. The following normalizing constants and plasma equilibrium profiles 

versus normalized poloidal flux a  are prescribed: 

a) toroidal plasma current density profiles  – )(aP , )(aFF  ; full toroidal 

plasma current – constI pl  ; toroidal vacuum magnetic field value constB 0  at the 

prescribed coordinate 0RR   

 or 

b) plasma pressure gradient profile )(aP ; safety factor profile 




d

d
aq )( ; 

and either full toroidal plasma current – constI pl   or poloidal flux value at the 

magnetic axis constax  . 
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6. The value of the proximity parameter   (2.4) for desired free boundary 

 plasma equilibrium is prescribed. 
  
 For given PF coils it is required to find the currents, which forms the  desired 

free boundary plasma equilibrium, satisfying the above conditions (1)-(6). 

 
 

3.2. Computational algorithm 
 
The problem of reconstruction of the PFC currents, needed for confinement of the 

plasma with a boundary close to the fitting points  ll zr , , is formulated as 

minimization problem of the following functional 

 

     












K

k

ref
kkk

K

k
bounkkllkllp

L

l
l JJdzrzrGJzrW

1

2
2

11

,;,,    ,    (3.1) 

 
W

bounkJ ,
min   , 

 
under variations of  the current values kJ  and to the boundary poloidal flux boun   

value. Parameter 0  provides regularization of the problem. Coefficients l ,  kd   

are prescribed. They intend for corrections of the flux values in every fitting point 

and of the PFC equilibrium currents deviations from the prescribed supporting 

values.  llp zr ,  are the poloidal flux values in the fitting points  ll zr , . 

Condition (2) of the plasma boundary passing through the control points  mm zr ,  

is realized by means of the Lagrange multipliers m   and extension of the functional 

(3.1) to the following representation: 

 

    







 


bounkkmm

K

k
kmmp

M

m
m zrzrGJzrW  ,;,,

11

    ,     (3.2) 

 
)(min

,,
WW

mbounkJ



   . 

 
Conditions (3), (6) are realized by adding other Lagrange multipliers xZxRx  ,,  

to the functional (3.2): 
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   
























































 

k x

kx
k

x

p
Zx

k x

kx
k

x

p
Rx Z

rrG
J

ZR

rrG
J

R
W


,, 




  

 
    separaxbounaxx    ,       (3.3) 

 
 

xZxRxmbounkJ
WWW

 ,,,,,
min   . 

 
Adding to the functional (3.3) the following part with the Lagrange multipliers 

ZZRZ  ,   

   




























































 



K

k

kx
k

x

p
ZZ

K

k

kx
k

x

p
RZ Z

rrG
J

ZZR

rrG
J

ZR
W

1
2

2

2

2

1
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,,
 




  , (3.4) 

 
 

ZZRZxZxRxmbounkJ
WWWW

 ,,,,,,,
min   . 

  
makes possible solving of  the inverse problem for the case of so-called «snowflake» 

[18] equilibrium with the second order x-point, which is defined by the usual x-point 

condition 0  and the following conditions for the second order derivatives of the 

equilibrium problem solution  : 

 

    0
2

2

2

2

2













ZRZR
 .        (3.5) 

 
 

3.3 Examples 
 

Fig.4 demonstrates an example of the ITER equilibrium configuration defined 

by the reconstructed PFC currents. Corresponding inverse problem input parameters 

(besides fitting point coordinates) were the following: 

- the non-monotone current density profile is prescribed by the functions ddP  

and ddFF   shown in Fig.5 versus normalized poloidal flux; 

-  full toroidal plasma current value  MAI pl 15 ; 

-  proximity of the plasma boundary and the separatrix is set by the parameter  

995.0 ; 
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-  vacuum magnetic field value TB 3.50   at the prescribed coordinate mR 2.60  ; 

-  locations of the filaments, which approximate PFC cross-sections, are shown 

in Fig.4; the reconstructed currents for each PFC are distributed over these 

filaments; 

-  coordinates of the five control points are shown by the circles markers – three 

at the plasma boundary and two at the separatrix legs. 

    
 

-2 0 2 4 6 8 10 12 14 16

-6

-4

-2

0

2

4

6

Free boundary plasma equilibrium in reconstructed currents. ITER cofiguration.

X-poin
legs of separatrix

plasma boundary

 
Fig.4  Free boundary plasma equilibrium on rectangular grid in reconstructed 

currents. ITER configuration. 
. 
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Fig.5  The plasma profiles versus normalized poloidal flux for the equilibrium from 
Fig.4: safety factor q ; poloidal current f ; input profiles ddP  and ddFF . 

 
An example of the «snowflake» equilibrium configuration in TCV tokamak 

device in the reconstructed PFC currents is shown in Fig.6. The corresponding 

inverse problem input parameters (besides fitting and control points coordinates) 

were the following: 

- the non-monotone current density profile is prescribed by the functions ddP  

and ddFF   shown in Fig.7 versus normalized poloidal flux; 

-  full toroidal plasma current value  MAI pl 378.0 ; 

-  proximity of the plasma boundary and the separatrix is set by parameter  

995.0 ; 

-  vacuum magnetic field value TB 44.10   at the prescribed coordinate 

mR 88.00  ; 

-  locations of the filaments, which approximate PFC cross-sections, are shown 

in Fig.6; the reconstructed currents for each PFC are distributed over these 

filaments; 
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Fig.6  Free boundary plasma equilibrium on rectangular grid in reconstructed 

currents. TCV  “snowflake” divertor configuration. 
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Fig.7  The plasma profiles versus normalized poloidal flux for the equilibrium from 
Fig.6: safety factor q ; poloidal current f ; input profiles ddP  and ddFF . 
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4.  Appendix: Grad-Shafranov equlibrium equation 
  
 In MHD approach plasma equilibrium is described by the ideal magnetostatic 

equations [11]: 

  0 pBj


 ,    Bj


0  ,    0 B


 ,     (A1) 
 
where B


 – magnetic field, j


 – electric current density, p  – plasma pressure. 

 

 1) For convenience of the presentation let us introduce the cylindrical 

coordinate system  ),, ZR  . An arbitrary vector w
  may be decomposed in the sum of 

mutually orthogonal poloidal and toroidal vectors: 

  www p


 , where  pw

  lies in the  ZR,  plane,    eeww


, . 

 
Under condition of axial symmetry, i.e. independence from  -coordinate, the 

following relation will be always true: 

  0 w
 , 

and, in addition, the rotor of any poloidal vector is a toroidal vector, and the rotor of 

any toroidal vector is a poloidal vector. 

 2) Let   be the poloidal flux of the magnetic field B


, polJ  be the plasma 

poloidal current (poloidal flux of the plasma current density j


) and introduce the 

following associated functions: 

  



2


  ,   




20
polJ

F   . 

   
3) Magnetic field 
 
  It follows from  0 B


 that 0 pB


, and the poloidal component of the 

magnetic field pB


 may be written as ABp


 .  It is easy to see that for the 

functions   and A


 the following relation holds:  A


. Whence it follows that 

    pB


 .          (A2) 

The following relation 
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    FB


 .           (A3) 

is true for magnetic field toroidal component B


 and function F . 

 
4) Current 

 
 The following relations for poloidal and toroidal components of the current 

density  

  
   FBj p

00

11 
  ,        (A4) 

   
 

00

11
pBj


 ,       (A5) 

 

may be derived from the equation Bj


0  (A1). 

 
5) Projection of the equation (A1) onto e

  direction gives 0 pp Bj


, from 

where and relations (A2),(A4) we can written as 

 
  0 F .           (A6) 

 
Relation (A6) implies that vectors   and F  are collinear and, respectively, 

functions  ZR,  and  ZRF ,  have the same set of the level lines. 

 Projection of the equation (A1) onto orthogonal e


 direction gives 

0 pBjBj pp 


 , 

 
from which and from relations (A2)-(A5) after not complicated transformations we 

can derive  

     pFF
R

 02

1
,  .      (A7) 

 
From equation (A7), in view of (A6), we can conclude that vectors   and p  

are collinear too. Thus we can conclude that the functions  FF   and 

 pp  depend on the poloidal flux   only so that 

  



d

dF
F  ,   




d

dp
p . 
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From which, in view of (A7), we derive two-dimensional scalar Grad-Shafranov 

equilibrium equation 

    






d

dp

d

dF
F

R 02

1
,         (A8) 

 
for the desired scalar poloidal flux function  ZR, . Differential operator in the left-

hand side of (A8), using traditional Grad-Shafranov notation * , can be rewritten in 

the following form: 

     





  

2
*

2

11
,

RR
  .  

 
From (A5), (A8) the following expression for the toroidal current density 

component can be derived: 

   






d

dp

d

dF
F

R
j 020

1
, 


  .        (A9) 
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