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A.A.UBanos, P.P.Xaiipyraunos, C.10.Measeaes, 10.10.Ilomexonos

BBIUMCJUTEJbHBINA KOJI SPIDER —
PEIIEHUE MTPSIMOM 1 OBPéTHOfI 3AJAY PABHOBECHSI IIJTA3MBbI
CO CBOBOJJHOU I'PAHUILIEN B TOKAMAKE

AHHOTAIUA

Kon SPIDER sBisieTcsi MHOTOMOJYJIbHBIM BBIYMCIUTEIBHBIM KOAOM IS pacdyéra LEeJIoro
pslda 3amad, CBA3aHHBIX C aKCHAJIBHO-CUMMETpU4HBIM MI'J[ paBHOBecHEM ILIa3Mbl B TOKAMAakKe.
JIaHHBIN TPENPUHT TOCBSAIICH OINMWCAHUIO MOJIYJICH IS pelieHUs MpsSMON M OOpaTHOW 3amadyu
paBHOBECHS IJIa3MBbl CO CBOOOTHON TpaHULICH.

B nepBoii yacTu npenpuHTa JaeTcs MOCTAHOBKA MPSIMOM 3a/ladyd O HAXOXKJICHUU PABHOBECHS
I1a3Mbl CO CBOOOJIHOW TpaHUICH B 3aJaHHBIX BHEIIHUX YACPKUBAIOIIUX TOKAX, KOTOpPAs
OTIMCBIBACTCS JBYMEPHBIM ypaBHeHHEeM paBHoBecus ['psama-llladpanoBa B HeorpaHUYCHHOU
00JacT OTHOCHTENTHHO HEHW3BECTHOW (YHKIMH TOJOWIATHHOIO MarHuTHoro moroka Y B
HEHM3BECTHOW 3aHUMAEMOii 1U1a3Moil obnactu € . IIpUBOISATCS 1Ba BAPUAHTA aIrOPUTMA PEIICHHUS

3ama4yl  Ha (PUKCHUPOBAHHOW TPSMOYTONBHOM U  ampHOpPH HEU3BECTHON KPUBOJIMHEHHOM
aJaNTHPOBAHHON K MarHUTHBIM MMOBEPXHOCTSM (JIMHUSM ypoBHs pemieHust V') cerkax.

Bropas yacth npenpuHTa nocseHa GopMyIUpOBKE U METOy pellieHHs 0OpaTHOH 3a1a4u
paBHOBECHS IUIa3MBl CO CBOOONHOW TpaHHMIIEH B TOKaMake, KakK 3a/Ja4dl BOCCTAHOBIICHHS
YAEPKUBAIOIIMX TOKOB B KaTylIKax IOJIOMAAJIBHOIO NOJA MO 33JaHHOMY B OIPEACICHHOM
¢dopmare paBHOBecuto. OmNHCHIBa€TCS  COOTBETCTBYIOIIMN  BBIYUCIUTEIBHBIA  AITOPHTM.
IIpuBosATCSA IPUMEPBI PACUETOB.

B npunoxenunm mnpuBoauTcs oOmas cxema BbIBOJA YypaBHEHHs paBHoBecus ['paaa-
[adpanosa.

A.A.lIvanov, R.R.Khayrutdinov, S.Yu.Medvedev, Yu.Yu.Poshekhonov

THE SPIDER CODE -

SOLUTION OF DIRECT AND INVERSE PROBLEMS
FOR FREE BOUNDARY TOKAMAK PLASMA EQUILIBRIUM

Abstract

The SPIDER code is an axisymmetric multipurpose plasma equilibrium solver for different
formulations of the tokamak plasma equilibrium problems. This paper deals with solution of direct
and inverse problems for free boundary plasma equilibrium.

The first part of the paper concerns the direct axisymmetric free boundary plasma equilibrium
problem, which is formulated for the poloidal magnetic flux function ¥ and the unknown plasma
domain €, in terms of the Grad-Shafranov equation over an infinite domain. Computational

algorithms for the cases of fixed rectangular grid and unknown magnetic surface adaptive grid are
described.

The second part of the paper concerns the inverse free boundary plasma equilibrium problem
of reconstruction of PFC currents as a module in the frame of the SPIDER code. Corresponding
computational algorithm is described too. The results of simulations are presented.

Derivation of the Grad-Shafranov equilibrium equation is given in the appendix.
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1. Introduction

By now the most promising results for solving a problem of controlled
thermonuclear fusion were obtained by use of tokamak type devices for magnetic
confinement of plasma. Much work is in progress on the project of International
Thermonuclear Experimental tokamak-Reactor (ITER) for demonstration of scientific
and technological possibility of D-T fusion reaction (France, Cadarache).

Magnetically confined toroidal high-temperature plasma is the main subject of
the controlled thermonuclear fusion research, which includes a broad spectrum of
interdependent plasma-physical and engineering problems.

One of the necessary conditions to reach the goals of controlled magnetic fusion
projects is the development of mathematical models and computational codes to
simulate tokamak plasma behavior. Modern mathematical models of plasma and
extensive experimental database give a possibility to successfully design tokamaks
and predict plasma performance.

Formation and confinement of a toroidal plasma with an optimal shape and its
position in a tokamak vessel, and obtaining of desired plasma pressure and current
density profiles is one of the basic problems of the tokamak plasma modeling.
Because of this, an accurate computation of toroidal plasma equilibrium with
arbitrary plasma shape and with radial distribution of plasma pressure and current
density varying in a wide range of realistic plasma parameters is an important
problem, which provides data for optimization of the magnetic system parameters in
tokamaks.

The set of toroidal plasma equilibrium problem formulations may be subdivided
into two main groups — equilibrium problem over finite domain with prescribed fixed
boundary of plasma and equilibrium problem over an infinite domain with unknown
free boundary of plasma and prescribed external toroidal currents in the poloidal field
coils (PFC). Essentially more complicated and realistic problems of plasma
equilibrium with free boundary are of primary practical interest. A distinction is made

between direct (plasma equilibrium computation with prescribed PFC currents) and
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inverse (PFC currents computation with prescribed plasma equilibrium) problems of
axisymmetric free boundary plasma equilibrium in external PFC currents.

By now there are several well known computational codes over the world,
which can solve direct free boundary plasma equilibrium problem on fixed
rectangular grid with prescribed plasma pressure and poloidal current profiles. As
an example we can mention here DINA [1], TSC [2], CORSICA [3], JETTO [4],
SCED [5] and MAXFEA [6] codes. The SPIDER code [7], presented in this paper, is
designed for free boundary equilibrium problem computation for both: on
conventional fixed rectangular grid and on a priori unknown magnetic surface
adaptive grid — so-called flux grid. In some instances the use of the adaptive grid
technique provides a possibility to solve equilibrium problems, which cannot be
practically solved on fixed rectangular grids.

As examples of inverse free boundary tokamak plasma equilibrium problem
solvers we can mention here such well-known computational codes as EFIT [8],
LIUQE [9], CLISTE [10].

The SPIDER code is an axisymmetric multipurpose plasma equilibrium solver
for different formulations of the tokamak plasma equilibrium problems. This paper
deals with solution of direct and inverse problems for free boundary plasma
equilibrium.

The first part of the paper concerns the direct axisymmetric free boundary
plasma equilibrium problem, which is formulated for the poloidal magnetic flux

function ¥ and the unknown plasma domain Q  in terms of the Grad-Shafranov

equation over an infinite domain. Computational algorithms for the cases of fixed
rectangular grid and unknown magnetic surface adaptive grid are described.

The second part of the paper concerns the inverse free boundary plasma
equilibrium problem of reconstruction of PFC currents as a module in the frame of
the SPIDER code. Corresponding computational algorithm is described too. The
results of simulations are presented.

Derivation of the Grad-Shafranov equilibrium equation is given in the

Appendix.
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Originally developed techniques for solution of direct and inverse free boundary
equilibrium problems provide a possibility to obtain extensive information which is
necessary for optimization of tokamak magnetic system parameters. They are also an
integral part of the complex of computational codes used for design of thermonuclear

reactors on the basis of tokamak, in particular ITER.

2. Free boundary plasma equilibrium problem

2.1. Formulation of the problem

Axisymmetric free boundary plasma equilibrium in cylindrical coordinate

system (R,p,Z) is described by the Grad-Shafranov equation [11]:

—RV-[%V‘PJ E—%A*‘P = 1y, (@R + 4, 3 6(R-R..Z-Z,) (2.1)
k

over an infinite domain. The plasma domain Q, is taken to be unknown. Below we

use the following notations: ¥ - the poloidal magnetic flux, ® - the toroidal magnetic

flux, J,, - the poloidal plasma current, J, - the toroidal plasma current, g, -

tor

magnetic permeability of free space. The normalized poloidal flux

V- \Paxis

a(R,Z)=¥(R,2)= e[0,]] may be chosen as a flux coordinate - label of

boun — T axis

magnetic surfaces, where ¥, is the ¥ value at the magnetic axis, ¥,,, 1S the

axis boun

¥ value at the plasma boundary. Magnetic axis coordinates are determined from the

condition [V¥|=0. The boundary of the plasma domain is denoted by Q.

In right hand side of (2.1)

- R F
i,@R)=(1.vpR={"d¥ nR d¥ ; (2.2)
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— toroidal component of the plasma current density; P(a) - plasma pressure; g—g(a)

'J pol

profile is taken to be prescribed as a function of flux coordinate a; F(a)= g, 5
T

normalized poloidal current; Fj—;(a) profile is also taken to be prescribed. The

cross-sections of poloidal field coils and passive conductive structures, surrounding
toroidal plasma, are approximated by means of a finite set of filaments — point-wise

circular conductors. R,,Z, are the k -th filament coordinates. J, is prescribed value of

the k -th filament current.

The value of full toroidal plasma current

Ly = [ ,(a,R)S (2.3a)

Q,

1s also input parameter of problem.

Equilibrium equation (2.1) is complemented by the next boundary conditions:

\P|Ra0207 k4

w2 =05 W = Who, =cONSE. (2.30)

Here ¥,,,, (¥ value at 2Q ) is determined from relation
Yoo — Vo
o =—bon & _const, g e(0,l], (2.4)
\Psepar — Taxis
where ¥, and V¥, — poloidal flux values at magnetic axis and unknown plasma

separatrix; ¢ — an input parameter of the problem, defining proximity of the plasma
boundary to the separatrix (the case of a =1 corresponds to coincidence of the

boundary and the separatrix). ¥,,, can be also determined as ¥ value in some

boun

prescribed point of the plasma domain — so called limiter point.
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It is assumed that plasma equilibrium configuration has the nested magnetic

surfaces with a single magnetic axis.

2.2. Reduction to finite domain (Lackner’s method)

The non-linear free boundary elliptic equilibrium problem, described above,
poses additional difficulties from a numerical point of view because of the infinite
original domain. To solve this problem we use Lackner’s method [12] to reduce it to
a finite domain. The technique using combination of a special auxiliary elliptic
problem and the adaptive grid technique was described and applied to free boundary
elliptic problems in [13-15]. We describe here the general scheme of Lackner’s
method:

1) The fundamental solution (Green’s function) G(r,,) of the A" operator is the
solution of the following equation:

A'G =-Ru,s(F -T,) (2.5)
over an infinite domain, where &(R,Z) is the Dirac’s delta-function.

2)  Free boundary plasma equilibrium equation (2.1) can be split into two following
equations:

Ny, =-Ruyj, , (2.6a)
A*l//ext = _RIUOZ J ké‘(F - f:k) (26b)
k

In doing so, we can write

va (@)= [i,(F)G(F.7)ds , (2.72)

W ext (Fo): ZG(Fkaro )‘]k (27b)

on the base of definition and properties of the Green’s function.
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3) For two arbitrary functions u,v, which have smooth second partial derivatives in

a bounded region S, the following integral Green’s theorem is valid:
L " v ou u ov
—\UAV-VAUNS = || =——dl -—=——dI 2.8
!R( Y Vu)d I(Ran R én j ’ (2.8)

where 0-/on is the derivative with respect to an external normal to oS.

4) Let S to be a bounded domain with sufficiently smooth boundary 6S which

contains plasma domain Q. Consider the following boundary-value problem

N'g =R ] (2.9)
in S. Let us assume that v=G(r,F,), u=g in (2.8). Then
1/ .- . G og g oG
—|\gAG-GAgUS = || =—dl —=—dI
[lose-evaks— ([ -3
and
s I, T,eS
29(7,)- [ 1,G(F.F, Jds = j ) Jdl, mie a={l). feos (2.10)
s 0, TS
~ . e o G ag
Let us assume that r,e0S in (2.10). Then —I j,G(F. T, )ds = I , Where
n

S

according to (2.7a) Jj ,G(r.%,)dS =y, (r,), and we derive boundary-value condition
S

for v =y, +v,, atthe boundary 6S:

vl )=-[ 2t val®)=2e60p, @.11)

Here g is the solution of the boundary-value problem (2.9).
Applying this technique the solution of original problem over an infinite
domain is reduced to the solutions of two boundary-value problems (2.6), (2.9) over

the finite domains.
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2.3. Computational algorithm

To solve the nonlinear problem (2.1)-(2.4) the following iteration procedure is
proposed. The key point of this procedure is the use of so-called “limiter points™ or
“limiters”, which provide convergence of the iteration loop. The use of the limiters
leads to two nested iteration loops. First the problem is solved with fixed limiters
(inner iterations), and then the locations of the limiters are adjusted to satisfy the
original problem (outer iterations), and the next step of the iteration procedure is

performed.

Inner iterations

Picard iterations are performed for equation

s+1

Ay, :—Ryoj(p(wS,R), s — iteration number,
Veu(F)= 2 G(R.FN,
k

with a fixed location of the limiter point (R,,Z,) — the magnetic axis of the

m? m

equilibrium configuration in our case. To fix the magnetic axis in the prescribed point

m>©=m

(R Z ) we add an artificial poloidal flux as follows

o (F)=C"R* +C"'Z (2.12)
so that

v s W W (2.13)

Constants C*' and C:* in (2.12) are fitted from the condition that a magnetic axis is

coincides with the prescribed limiter point (R,,Z,). Here s is the iteration number.

New plasma boundary approximation is determined according to the prescribed input

parameter « (2.4) and the obtained approximate solution y*"'.
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Outer iterations

Let us consider coefficients C,, C, as functions of unknown magnetic axis
coordinates (R,,Z, ). The next step of the iteration procedure consist of finding such

values of (R,,Z,), which provide the solution of the original problem (2.1)-(2.4).

Required values are obtained from solution of the following nonlinear system of the

equations:

0
’ 2.14
0 (2.14)

This two-level iteration procedure is repeated until we obtain sufficiently small

values of C,,C, corresponding to vanishing artificial poloidal flux (2.12).

2.4. Finite-difference scheme

The computational domain is covered by a quadrangular computational grid.

The difference analog of the Grad-Shafranov operator A'(-) (2.1) is constructed on the
basis of the conservative finite-difference approximation of the operator V x(V x(-)) by

means of the operational finite-difference method [16]. The procedure of the

construction of the difference scheme for the equilibrium equation (2.1) is described

in [17].

2.5. Equilibrium on rectangular grid

In case of the free boundary plasma equilibrium computation on the rectangular
grid the difference problem is solved in the rectangular domain, which covers the
plasma domain.

In Fig.1 we demonstrate an example of a computation of the tokamak plasma

equilibrium configuration with the following input parameters:
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- the current density profile is prescribed by the functions dP/d¥ and F dF/d¥

shown in Fig.2 versus normalized poloidal flux;

- full toroidal plasma current value 1, =15MA;

p
- proximity of the plasma boundary and the separatrix is set by the parameter
o =0.995;

- locations of the filaments, which approximate PFC cross-sections, are shown

in Fig.1; the prescribed currents for each PFC are distributed over these

filaments.

Free boundary plasma equlibrium. ITER cofiguration.

l HE |
. plasma boundary
| i

2r f h;, N *‘“ N > first wall ]
N OF I ) T 3 vacuum vessel ||
2L % ]
4 | / ,

R PF coils
6] = / / ]

PF coils
| | 1 |

-2

Fig.1 Free boundary plasma equilibrium on rectangular grid.
ITER configuration.
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Prescribed nonmonotone profiles dP/dpsi, FdF/dpsi

4 345
3 34
o 2 — 335
1 33
0 325
0 0.5 1 0 0.5 1
10 0.25
0.2
5
£ 5015
LL ~
D 5 01
L o
0.05
5 0
0 0.5 1 0 0.5 1
v v

Fig.2 The plasma profiles versus normalized poloidal flux for the equilibrium from
Fig.1: safety factor q; poloidal current f ; input profiles dP/d¥ and FdF/dV¥ .

2.6. Equilibrium on magnetic surface adaptive grid

In case of free boundary plasma equilibrium computation on adaptive grid,
difference problem is solved in the domain, which is geometrically similar to the
plasma domain and necessarily covers plasma domain. This prescribed computational
domain is covered by a computational grid, which is topologically equivalent to a
radial-annular grid and it is used as initial guess for construction of a final magnetic
surface adaptive grid.

During the process of iterations in the plasma domain computational grid is
adapted to desired magnetic surfaces — solution level lines — on each iterative step.

Fig.3a demonstrates an example of computation of the ITER plasma equilibrium

configuration with the same input parameters as for the case of Fig.1
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Free boundary plasma equilibrium. ITER configuration.

it

comput. domain

Fig.3a Free boundary plasma equilibrium on magnetic surface adaptive grid.
ITER configuration.

A close-up view of the same equilibrium without PFC filaments is shown in
Fig.3b. In this variant plasma boundary is determined by parameter « =0.995 and
does not coincide with the separatrix. It is seen that the x-point of the separatrix is
outside the plasma boundary.

5 L
4 L
3 L
2 L
1 L
N O
_1 L
_2 L
_3 L
4L
5r | | *ii*ittﬁj*i:%** | separatrix |
0 2 4 6 8 10 12
R

Fig.3b Free boundary plasma equilibrium on magnetic surface adaptive grid.
ITER configuration.
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3. Inverse problem. Reconstruction of PFC currents.

3.1. Formulation of inverse problem

The inverse free boundary plasma equilibrium problem of the PFC currents
reconstruction, which form a desired free boundary plasma equilibrium, is stated as

follows:

1. Plasma boundary location and shape are approximated by a finite set of so-

called “fitting” points with prescribed coordinate values (r,,z,) in (R,Z) plane.

During the iterations equilibrium plasma boundary will be fitted to these points by

means of minimization of the functional which is given below.

2. The coordinates of a finite number of so-called “control” points, which
must belong to plasma boundary, are prescribed.

3. The supporting values (approximations) of the PFC currents are prescribed.

Desired currents (solution of the inverse problem) must be close to them.

4. The coordinates of the x-point where [V¥|=0 are prescribed. The x-point

coordinates of the desired free boundary plasma equilibrium must be the same as

prescribed values.

5. The following normalizing constants and plasma equilibrium profiles
versus normalized poloidal flux a=¥ are prescribed:

a) toroidal plasma current density profiles — P, (a), FF,(a); full toroidal
plasma current —1 ; = const ; toroidal vacuum magnetic field value B, = const at the
prescribed coordinate R =R,

or

b) plasma pressure gradient profile P, (a); safety factor profile Q(a)=—3%;

and either full toroidal plasma current — |, =const or poloidal flux value at the

magnetic axis y,, = const.
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6. The value of the proximity parameter « (2.4) for desired free boundary
plasma equilibrium is prescribed.

For given PF coils it is required to find the currents, which forms the desired

free boundary plasma equilibrium, satisfying the above conditions (1)-(6).

3.2. Computational algorithm

The problem of reconstruction of the PFC currents, needed for confinement of the

plasma with a boundary close to the fitting points (r,z ), is formulated as

minimization problem of the following functional

2 K
‘]kG(rI’ZI;rkaZk)_Wboun} +O_zdk(“]k _‘]kref )2 ) (31)

=
Il
S
1
<
°—
-
~
N—
+
M-

min W,
‘]k.‘//boun

under variations of the current values J, and to the boundary poloidal flux v =y,
value. Parameter o >0 provides regularization of the problem. Coefficients o;, d,

are prescribed. They intend for corrections of the flux values in every fitting point
and of the PFC equilibrium currents deviations from the prescribed supporting

values. y,(r,,z,) are the poloidal flux values in the fitting points (r,,z,).
Condition (2) of the plasma boundary passing through the control points (r,,z, )
is realized by means of the Lagrange multipliers 4, and extension of the functional

(3.1) to the following representation:

M K

W'=z/’i’m|:l//p(rm’Zm)+Z‘JkG(rm’Zm;rk’Zk)_l//bounj| ° (32)
m=1 k=1

sy, O W)

Conditions (3), (6) are realized by adding other Lagrange multipliers A.,,4,,,4,

to the functional (3.2):
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" __ al/lp aG(in'f:k) al/lp 8G(Fx’ﬁ<)
W —/IRX|:(8—RJX+ZJKGT +2’Zx 8—2 X+ZJKT +

k X

+ 2V o = Vion )~ W e = W apar )| (3.3)

min (W +W'+W") .

JiW boun »Am s ARx s Azx s Ax

Adding to the functional (3.3) the following part with the Lagrange multipliers

ﬂ’RZ’/’LZZ
o’y K 9°G(F,,T,) o’y K . 9°G(F.1)
Wm :l 2 34
[[GRGZ] kz aRaz ]+ [( j kz 822 > G4

min (W +W'+W" +W") .

Ik Whoun >Am »Arx s Azx s Ax s ARz s A2z

makes possible solving of the inverse problem for the case of so-called «snowflake»
[18] equilibrium with the second order x-point, which is defined by the usual x-point

condition [V¥|=0 and the following conditions for the second order derivatives of the

equilibrium problem solution V¥ :

R S SR
oR* 9Z* ORoOZ

(3.5)

3.3 Examples

Fig.4 demonstrates an example of the ITER equilibrium configuration defined
by the reconstructed PFC currents. Corresponding inverse problem input parameters
(besides fitting point coordinates) were the following:

- the non-monotone current density profile is prescribed by the functions dP/d¥

and FdF/d¥ shown in Fig.5 versus normalized poloidal flux;

- full toroidal plasma current value 1, =15MA;

- proximity of the plasma boundary and the separatrix is set by the parameter

o =0.995;
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- vacuum magnetic field value B, =5.3T at the prescribed coordinate R, =6.2m;

- locations of the filaments, which approximate PFC cross-sections, are shown
in Fig.4; the reconstructed currents for each PFC are distributed over these
filaments;

- coordinates of the five control points are shown by the circles markers — three

at the plasma boundary and two at the separatrix legs.

Free boundary plasma equilibrium in reconstructed currents. ITER cofiguration.

6 T % 4
g -
E Nt
] & L R
1 T o h
4 ] £ R b
1 N ﬁq»
] ] it %
2+ E ] plasma boundary 4
o} i ~
2] X-poin H |
legs of separatrix
'4 ’ R 7
6 i
| | | | | |
-2 0 10 12 14 16

Fig.4 Free boundary plasma equilibrium on rectangular grid in reconstructed
currents. ITER configuration.
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3
33.5
o 2 —
33
1
0 : : 32.5
0 0.5 1 0 0.5 1
10 0.4
0.3
5
g Z 02
5 g
w0
0.1
5 : : 0 :
0 0.5 1 0 0.5 1
v v

Fig.5 The plasma profiles versus normalized poloidal flux for the equilibrium from
Fig.4: safety factor q; poloidal current f ; input profiles dP/d¥ and FdF/d¥ .

An example of the «snowflake» equilibrium configuration in TCV tokamak
device in the reconstructed PFC currents is shown in Fig.6. The corresponding
inverse problem input parameters (besides fitting and control points coordinates)
were the following:

- the non-monotone current density profile is prescribed by the functions dP/d¥
and FdF/d¥ shown in Fig.7 versus normalized poloidal flux;

- full toroidal plasma current value 1, =0.378MA;

p
- proximity of the plasma boundary and the separatrix is set by parameter
a=0.995;

- vacuum magnetic field value B, =1.44T at the prescribed coordinate

R, =0.88m;

- locations of the filaments, which approximate PFC cross-sections, are shown
in Fig.6; the reconstructed currents for each PFC are distributed over these

filaments;
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Free boundary plasma snowflake equilibrium. TCV configuration.

| | | % | # | |
1 L N
0.5+ .

second

Or order X-point ]
-0.5+ .
1t i

L L L L

-0.5

Fig.6 Free boundary plasma equilibrium on rectangular grid in reconstructed
currents. TCV “snowflake” divertor configuration.

3 1.35
2
1
0 : ; 1.25
0 0.5 1 0 0.5 1
6 2
4 1.5
g, g
[ =
5 g
0 0.5
2 ‘ 0 :
0 0.5 1 0 0.5 1
vy v

Fig.7 The plasma profiles versus normalized poloidal flux for the equilibrium from
Fig.6: safety factor q; poloidal current f ; input profiles dP/d¥ and FdF/d¥ .
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4. Appendix: Grad-Shafranov equlibrium equation

In MHD approach plasma equilibrium is described by the ideal magnetostatic

equations [11]:
jxB-Vp=0, u,j=VxB, V-B=0, (A1)

where B — magnetic field, j — electric current density, p — plasma pressure.

1) For convenience of the presentation let us introduce the cylindrical

coordinate system (R,,Z)). An arbitrary vector w may be decomposed in the sum of
mutually orthogonal poloidal and toroidal vectors:

W=W, +W,, where W, lies in the(R,Z) plane, W, = (W, , -

Under condition of axial symmetry, i.e. independence from ¢-coordinate, the

following relation will be always true:

vV-w =0,

4
and, in addition, the rotor of any poloidal vector is a toroidal vector, and the rotor of
any toroidal vector is a poloidal vector.

2) Let ¥ be the poloidal flux of the magnetic field B, J , be the plasma

pol
poloidal current (poloidal flux of the plasma current density j) and introduce the

following associated functions:

lP ‘] pol

W:E’ _027r

3) Magnetic field

It follows from V-B, =0 that V-B, =0, and the poloidal component of the
magnetic field B, may be written as B, =VxA . It is easy to see that for the
functions y and A, the following relation holds: A, = yV¢ . Whence it follows that

ép:waVgo . (A2)

The following relation
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B,=FVgp . (A3)

is true for magnetic field toroidal component B, and function F .

4) Current

The following relations for poloidal and toroidal components of the current

density
- 1 =g 1
J,=—VxB,=—VFxVep , (A4)
Hy Ho
L:LVxép:LVx(Vt//xV(p), (A5)
Hy Hy

may be derived from the equation x,] =V xB (Al).

5) Projection of the equation (Al) onto €, direction gives j, xB, =0, from

where and relations (A2),(A4) we can written as

VyxVF =0. (A6)

Relation (A6) implies that vectors Vy and VF are collinear and, respectively,
functions w(R,Z) and F(R,Z) have the same set of the level lines.

Projection of the equation (A1) onto orthogonal €, direction gives

from which and from relations (A2)-(AS5) after not complicated transformations we

can derive

1
(Vx(Vy xVo) VeV = o FVF + u4,Vp. (A7)

From equation (A7), in view of (A6), we can conclude that vectors Vi and Vp
are collinear too. Thus we can conclude that the functions F=F(y) and

p = p(y)depend on the poloidal flux y only so that

vE=IF v, . vp=Py,.

dy _dl//
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From which, in view of (A7), we derive two-dimensional scalar Grad-Shafranov
equilibrium equation

1 _dF  d
(Vx(VyxVe)Ve)=— P

F et ol A8
R dl//+lu0dl// (A8)

for the desired scalar poloidal flux function y(R,Z). Differential operator in the left-

hand side of (AS), using traditional Grad-Shafranov notation A", can be rewritten in

the following form:

I .. 1
(Vx(waVg/)),Vgo):—?A(// :—V-(FVlyj .

From (AS5), (A8) the following expression for the toroidal current density
component can be derived:

ﬂo(T,Vco):LFd—Fw dp

— A9
R2 dl// Odl// ( )
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