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I'.B.M. TI'aiiac, M.P.JlaBanba, A.P.I'o;imkoB, M.}QO.OBunHHNKOB. CIIyTHUKOBasA
rPYNNUPOBKA: YNpPaBJeHUE OTHOCUTEJbHOW OpPOMTON, OCHOBBLIBAKILEECH Ha
JiljiepoBbIX OpPOUTAJBHBIX 3JieMeHTax. lIpenpunt WMHCTUTYyTa mNpUKIaAHON
marematuku um. M.B. Kennpsiiia PAH, 2008, 25 crpanu.

Jlannas pabGoTa wuccienyeT HeEIMHEWHOe ympasienue (mo JlamyHOBY) c
00paTHOM CBA3BIO JUJISl CO3JaHUS U MOAEPKAHUA 3aJaHHON OpOUTHI OTHOCUTEIBHOIO
NBIDKEHUS. TpaaulMOHHBIA TOAXOJ ¢ OOpaTHOW CBSI3bI0 1O JEKApTOBBIM
KOOpJIMHATaM BEKTOPOB OLIMOOK (TIOJIOKEHHSI U CKOPOCTH) TPAEKTOPUHU MPUBOJUT K
TOYHOM, HO AOpOroi padoTte yrpaiieHus. Pabota ke ¢ opOUTATILHBIMU dJIEMEHTaMU
MO3BOJISIET CHU3UTh MOJI00HBIE 3aTPaThl, BBINOJIHASI KOPPEKTUPYIOIIME MAHEBPHI IIPU
OUYEHb MOJXOJAIIMX YCIOBUSIX. boliee TOro, 3TO MO3BOJIAET ONPENCHITh yAOOHBIM
IJIaH OTHOCUTEJIBHOIO ABWKEHHMS ammaparoB. I[IpemMyniecTBa Takoro mnoaxona c
0o0paTHOM CBS3bIO, /i€ OMIMOKHU 33a/1al0TCsl B AJIIEMEHTaX OpOUTHI, MOKHO COEIUHHUTD
CO 3HAYUTENHHO O0Jiee MOJHBIM (ISl JUHAMUKH) HAOOPOM DUJIEPOBBIX AJIEMEHTOB.
OTU D3JEMEHTHl SBISIIOTCS pe3ynbTraroM pemieHus OO00IEHHON 3amauu  JIBYX
HEIOJBWKHBIX LIEHTPOB, II03TOMY YK€ IPUHUMAIOT B pacy€T BKJIAABI OT BTOPOH Jy,
TpeTbed J; U, yacTuuHO, 4eTBEPTOM J; 30HANBHBIX TapMOHHMK. B pabore mpoBencn
HEO0OXOMMBbIN aHAIU3 Pa3pabOTKH COOTBETCTBYIOLIEH METOIUKHU YIIPABICHUS.

KiroueBble ciaoBa: DiiepoBbl  OpOUTaNbHBIE DJIEMEHTHI, IPOMEKYTOUYHOE
JBUKEHUE, YIIPABIEHUE OTHOCUTEIBbHON OpOUTON, yCTOWYMBOCTD 1O JIAMyHOBY.

G.V.M. Gaias, M.R.Lavagna, A.R.Golikov, M.Y.Ovchinnikov. Spacecraft
Formation Flying: Relative Orbit Control based on Euler Orbital Elements.
Preprint, Inst. Appl. Mathem., Russian Academy of Sciences, 2008, 25 Pages.

This work addresses a nonlinear Lyapunov-like feedback control to establish
and maintain a given relative orbit. Traditional feed-back of cartesian position and
velocity tracking error vectors results in an accurate, but expensive, control action.
Working with orbit elements eventually allows to reduce such cost by accomplishing
corrective maneuvers on particularly convenient conditions. Moreover it allows to
define convenient target relative motions. Hence, by pursuing this approach, here
errors in Euler orbit elements are fed-back, thus joining to the previously mentioned
benefits the intrinsic more exhaustive exploitation of the dynamics that the Euler set
carries with him. These elements, in fact, arise from the solution of the Generalized
Problem of Two Fixed Centres, hence already take into account the contributions of
J>, J; and partially J, zonal harmonics. A critical analysis of the design process of the
controller is carried out.

Key words: Eulerian orbital elements, intermediary motion, relative orbit control,

Lyapunov-based control.
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1. Introduction

Formation Flying FF arises when a satellite, orbiting with respect to a massive
body, depicts a close relative trajectory around a point which moves under the effect
of the same attracting centre. The first satellite is referred as deputy whereas the one
that plays the role of the reference point is called chief. Depending on each space
application, the chief could be a real satellite or just a virtual point. In cluster
missions there are more than one deputies.

From a space system design point of view, FF represents an extremely rich and
exploitable working environment. It allows to deal with either space-borne
distributed instruments or cooperating systems. Moreover, the further degree of
freedom embodied by the relative dynamics allows to perform system
reconfigurations to meet -either scientific objectives or safety recovering.
Nevertheless, this increase of versatility and reliability at the system level involves a
set of extremely demanding practical issues from an engineering point of view. Such
topics spread over different research fields such as the aim of developing hardware
and algorithms for measuring the relative state (position and velocity); the problem
of efficiently controlling the relative motion and the search of natural bounded
relative orbits. Both the two last features are connected to the dynamical aspect of the
formation and affect fuel consumption, mission lifetime and collision avoidance.

By referring only to the dynamics of the centre of mass, the first studies
regarding the relative motion are related to the docking problem described through
the Clohessy-Wilthshire equations in the Hill frame HCW [1]. They were derived for
the Keplerian motion, circular reference orbit and small relative radius and they
posses an analytical solution. When dealing with proper FF missions, however, such
some severe hypothesis set up a model which is far from the real phenomenon. As
explained in [2], denying non linear and eccentricity effects turns out into a really
expensive control action. Another source of modelling error is committed when
considering the Earth’s gravity potential as the one produced by a point mass. In [3]
are defined families of bounded relative orbits that already take into account the
effect of the 2™ order zonal harmonic of the gravity potential. They are described in
terms of differences in mean orbital elements. In [4] it is performed a comparison
between that mean orbital element approach and the traditional cartesian description
in the Hill frame. For both of them a control scheme is provided. In [5] and [6] it is
highlighted how the physical insight gained by the orbital element description can be
exploited to set up cheap control policies for some given applications. Therefore it
can be stated that, the more accurate the model, the less the manoeuvres required for
orbit maintenance. Nevertheless, as equations can become more complex, designing
an efficient controller can become more challenging.

An alternative approach for achieving a light control amount is to track orbits
that do not suffer from harsh disturbances: the idea is to establish some natural
bounded motion as it would provide a longer lifetime. In [7] and [8] are performed
numerical investigations in order to identify convenient initial conditions for the
relative motion.



In the work here presented the idea of exploiting the physical insight that orbital
elements provide is kept; though using Euler orbital elements instead of the mean
Keplerian ones. According to their definition, Euler elements carry with them
information till the 3" and partially 4™ order of zonal harmonics of the gravity
potential as they arise from the analytical solution of the Intermediary Motion [9]. As
a result the equations that describe the Euler elements time variations already include
all the main disturbances that effect FF of small and similar satellites in Low Energy
Orbits LEO. As a drawback, however, the controller design becomes more complex,
due to the structure of such those equations. Here a Lyapunov-like control were
errors in Eulerian elements are fed-back is developed. Some devices for handling the
coupling effects embedded in the Intermediary description are needed.

In this report first the main issues concerning the Generalized Problem of Two
Fixed Centres GP2FC [10] and the consequent Intermediary Motion IM [9] are
recalled. Then a comparison between the equations in the orbital elements for the
Keplerian and Eulerian cases is carried out. Finally the control problem is formulated
together with the gains’ tuning process supported by the results obtained by the
simulations run.

2. Euler Orbital Elements

The GP2FC problem was first formulated in [11]. It consists in studying the
motion of a point mass P under the gravity attraction of 2 fixed points P; and P,
placed on the z axis of a rectangular reference frame at a complex distance a;. The
origin is set in the system’s centre of mass and to each centre is assigned a complex
mass M; according to:

M,a

a,—a,=a a, =+ ; M. =p.e’; a =R.e"” 1
1 2 1 M1+M2 J p] J ()

Pin (x, y, z) experiences the following potential:
-8 gM,
n ) (2)

= \/xz +y? +(Z—Clj)2

By writing W in terms of spherical harmonic series it can be possible to represent the
gravitational potential field of an arbitrary rigid body by imposing the conditions (3).
The first requirement is satisfied by letting the origin of the frame to coincide with
the Planet’s centre of mass. The following two constraints reintroduce the physics of
the problem as they state that all the final quantities shall be real.



7, =0

Imy, =0 n=23,.

ImM =0 (3)
My, g, MM

In order to meet (3) the quantities a; and M; must be pairs of complex conjugate
numbers obeying to the following structure:

M. M,
Ml=7(1+m), M, = > (1-o0), (4)

a, =c(o+1i), a, =c(o—1i), a = 2ic

By substituting them back into W and equating the resulting expression with the
spherical harmonic expansion of the Earth’s potential, k-constraints are derived:

Vi :%[(l+oi)(0'+i)k+(1—oi)(0'—i)k] k=2.0 (5)

Though, due to (4), there are only three degrees of freedom available. Hence after
having fixed the one concerning the mass, (5) can only be met for k equal to 2 and 3.

JAJE—J2
M=M, c=Y""2 8 p s g (6)

O =

27, " Jarg-gz e

As a result, the potential function W, together with the numerical values computed in
(6), perfectly reproduces the effect of the Earth gravity potential till the 3 zonal
harmonics. The level of agreement of the next terms depends on the actual planet’s
mass distribution. For the Earth the 4™ term is met up to the 70% of its real value.
With respect to the whole Earth’s potential W denies terms of magnitude less than
1e-6; furthermore it does not take into account sectorial and tesseral contributions.
The asymmetrical behaviour with respect to the equatorial plane is described by o.
By setting this parameter to zero only the J, effect would be accounted for.

Being the XYZ frame the Geocentric Inertial Equatorial frame, then the dynamics of
a point-mass in the most general case is described by (7): W is the potential of the
GP2FC, R collects all the other disturbances written as potentials whereas F
represents all the remnant types of accelerations acting on the system, i.e. non
conservative contributions and control action. In the pure Keplerian motion none of
these three inputs appear. It is defined as Intermediary Motion the dynamics gained
when only R and F are zero.

d’x
o2 -VW =VR+F
. . (7)
W - M {1+01 +1—01}
2 r 7,

The IM turns out to be a Hamiltonian Autonomous system, hence it possesses 6
constants of motion, among which the first integral of the energy «; and the



conservation of the projection of the angular momentum on the Equatorial plane «;.
In order to integrate the IM by quadrature, it is necessary to introduce a set of
spheroidal-type coordinates related to XYZ according to:

E=c-Shv n = CoSu ¢ = cost
0<&é<+o, —1<py<+l, 0<w<2r (8)
X = \/(52 +c?)1-#5%) cosw

y=y(E2 +cA)-n?)sinw
z=co+¢n

The motion of P remains near the attracting planet if its energy «; is negative, that
implies, as stated by (8), that the orbit never exceeds the region delimitated by the
two ellipsoids of &, and &,,;,. The asymmetrical behaviour inducted by o affects the
maximum excursions in z; whereas w has the meaning of a longitude.

Starting from the set of constants of motion Euler Orbital Elements EE can be
defined in such a way to take into account the qualitative considerations mentioned
before; to be the closets of possible to their correspondents in the Kepler’s set and to
possess the cleanest dependence with respect to time. In Table 1 the complete EE set
Is reported together with their main characteristics.

Tab.1. Euler Orbital Elements

Element Definition Correlations Dep-ghnglgnce
a>0 a(l+e)=¢; - —
0<ex<l a(l—e)=¢, - -
OOSZS 1800 5=17max S:_f.(a.ae,é‘) —
s =sini
_ 0-1(23_04) :~ ) O=VV +w
0° < w, < 360° o ki 9 ., “1 f(a'e’ ) - V@
I+—+_—k k, = f(a,e,d) v=f(a,ed)
4 64
~ ~ Q=puy+Q,
0°<Q, <360° Qy = ¢5 + P, L= f(a,e0) -
u=f(a,e0)
M =ny(t—t,)+M,
0° < M, <360° My =M, - 7,0, Vo = f(a.e,) no = (-2a,)" (1) ™

The first element «a carries an indication of the distance of the spacecraft from
the origin; e is related to the separation between the two ellipsoids bounding the
region of motion. The third element i is associated to the maximum height that the



spacecraft can reach with respect to the equatorial plane and to the conservation of
the projection of the angular motion on the same plane. As a result, for i greater than
90° the orbit is retrograde.

The shape of the region of motion is fully determined by these three elements. It
shall be emphasized that, due to their definition, a, e and ¢ involve the computation
of &, & and n from the 1% integrals of motion. To achieve such an outcome
expansion till the 4™ order in & (9) and o can be used for defining a set of mapping
relations. The final error gained is of magnitude of 1e-9.

fr— <% <% 20033
a(l-e°) a(l-e) R, (9)

c~ea(l-e’)

The remnant elements w,, £2 and M, map the initial position of the satellite on
the intermediary orbit. They are worked out from the canonical equations, which
involve some elliptic integrals of the 1% type in the amplitude variables #and , that
respectively play the role of the true latitude and true anomaly of the satellite on the
intermediary orbit. Once known the initial value of the angular EE, the osculating
terms are computed by first solving for the true anomaly y through equation (10) and
subsequently by using the relations reported in the last column of Table 1.

7% l+e E
te = |—" o =
£ V122

E-e*sinE=M - f(y,w,a,e,d) (10)
;,e*:/;(a,eﬁ)

4. Satellite’s Equations for the Perturbed Motion

The closed form solution of the IM already takes into account the secular effects
due to the first zonal harmonics. As described in Table 1, they affect the last three EE
but they do not modify the shape of the region of motion. Nevertheless, when dealing
with the dynamics in the most general case all the disturbing contributions of the
right side of equations (7) are present. As a consequence, all the EE would
experience some variations with time with respect to the osculating nominal values
of the IM solution. In order to evaluate such actions an equivalent set of the Gauss’
Variational Equations GVE for the Keplerian motion can be written by exploiting the
variational methodology and by expressing the disturbances accelerations into a
convenient local frame.

Besides, in order to avoid the numerical issues that arise for circular or polar
chief’s orbits, a transformation of the EE set into a more convenient one, is
performed as shown in (11). To the Eulerian eccentricity value it is summed a
vanishing and always positive quantity. Then the forthcoming semilatus rectum is
employed. For what concerns the Eulerian inclination the same idea is exploited:



from s it is subtracted a vanishing always positive quantity. The rest of the working
set is constituted by the angular osculating EE.

EE={a e i Q w, My & E={a p § Q o M}
2 2
Go=-Ho o1 8% gy % (11)
20, He &,

From now on, this working set of variables £ would be referred as the state of the
system. Though, to have a straightforward comprehension of the orbit shape, chief’s
orbit will be given by a Kepler set. Hence at the initial instant of time a
transformation between that set and the working one is performed.

The equations that express how the state varies due to the action of the disturbances
not already accounted for in the IM problem can be written as follows:

0
1 0 t
. S 0 L8 F,
E=AE)+[BEWRT =1 " t+[BE)N—|t | F, (12)
gl |HY Holp |l F
vy
ny
247 2V -F 0
B 2¢%(z—co)z 2017 N 2[c?(z - co)iz —rQ] ~ 2c%a,?
_GZ(Z—CO')Z' Gcz(z—ca)fz'—rQ _Ga_22 r(z—ca)f—r22'+cz(1—§2)z'
[B]= d -’ % N
0 0 Ho ging—L
p Sin:
- /#—@Ecosw /ﬂ—@H—psinyx - /#—@rsingctgi
p e p e p
| F(pcosy —2er) —F(r+ p)siny 0 |

where A4 represents the nominal IM solution whereas B describes how the rest of the
accelerations acting on the system affect each component of the state. Therefore B is
the control influence matrix for this set of equations and by analyzing its elements it
can be understood when is convenient to correct for each component of the state, i.e.
orbital element. To this extent the set of Keplerian elements listed in Table 2 is
assumed and it is performed a comparison between the behaviour of each element of
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B for GVE and equations (12). Trends are evaluated over 2r radians of the true
anomaly y; the eccentricity is varied in the range written down in the table.

Tab.2. Keplerian elements set employed for the evaluation of each term of B

a [km] e [ad.] | [deg] Q [deqg] o [deg] M [deg]
7550 [0.001,0.3] 48 0 10 [0,360)

Figure 1 and 2 illustrate the plots obtained, dashed lines refer to the minimum
value of eccentricity here considered. In some subplots it is useful to mark, by a
square on the axis of abscises, the moment when the true latitude 6 is £ 90°;
respectively the north and south poles of the positive orbits. Every picture is called
according to the position of the element that represents into the control influence
matrix. Unit dimensions are coherent according to such dimensional equations.

For what concerns the Keplerian motion, i.e. Figure 1, it can be noted that B;;
and B,; vary proportionally to sin(y); B;, oscillates around a mean positive value
depending on I/r(y); in Bs;, Bsi, Bsi, Bs; Small values of eccentricity amplify the
nominal cos(y) trend. Such an eccentricity effect can be appreciated also in B;,, B33,
By, Bsy, Bs; and Bs, where r(y) multiplies the oscillating factor. Finally Bj;; is
proportional to cos(6) whereas B,; and Bs; vary with r(w)sin(6). As each colon of B
introduces the action of an acceleration into one of the local-frame directions, it is
easily derived that in order to correct on semi-axes, eccentricity and mean anomaly
in-plane manoeuvres must be used. Changes in inclination and longitude of
ascending node are performed by out-of-plane actions, more efficiently respectively
at the Equator and at poles. The perigee anomaly can be affected by all the
accelerations. Further information is carried by the order of magnitude of each
component of B.

Figure 2 reports the control influences components for the Euler problem. Due
to the intrinsically more complex problem carried out and to the different choice of
state variables, the subplots present different behaviours with respect of the previous
ones. In particular the second and third equations now regard p and s and on them
accelerations in every direction can produce effects. Together with the strengthening
due to small eccentricity values already pointed out before, here there are
amplifications due to the dependence of the semilatus rectum on e. This effect is
clearly visible in By;, Bss, By, Bs;. As a consequence, in order to correct produce
changes on p and s accelerations either in-plane either out-of-plane can be provided.
Still the order of magnitude completes the information required.
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Fig.1. Kepler problem: control influence matrix B on one orbit. The dashed trends

refer to e = 0.001.
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5. Relative Orbit Control Scheme

Satellites’ relative motion can be fruitfully described through differences in the
orbital elements associated to the chief and the deputy spacecrafts. Generally this
methodology gives a straight physical insight of the shape of the relative trajectory
and a relative orbit control scheme can be established on such an approach. To this
extent, if EE are employed, equations (12) need to be used to compute how the state
E varies when control and disturbance accelerations act on the deputy satellite. The
reference relative orbit is defined starting from the chief’s EE. As relative control is
sought, no further perturbing actions work on the reference spacecraft:

A

E, = A(E,) +[B(E,)(a,, +u)
E =A(E,) (13)
EE,, = EE, + AEE

The controller receives as input the error with respect to the reference state and
elaborates which accelerations to provide in order to contrast it:

A A

de=E,-E
u= /()
To avoid to insert at every time step errors connected to the mappings between
EE and £ (11), proper initial conditions are given to the reference state, i.e. dashed
block in Figure 3, and E,, is also propagated. Due to the fact that an intermediary

orbit is assumed as the reference to be tracked, the controller counteracts only the
remnant disturbances and errors in the initial conditions.

ref ( 1 4)

i EE = variables-state Lo Chief Dynatmics

bemememmmmmes TR ! Eeference Orbat

e

!

¥
Dizsturbances e DEPU'W_ — Controller

Dwnamics
Control action

4 Actuators

Fig.3. Control scheme structure: feed-back based on information in terms of EE.

The disturbance actions considered in this study are the remnant zonal
harmonics of the Earth gravitational field, till the 6™ order. In the actuation block it is
taken into account the maximum acceleration provided by the engines, here assumed
as 0.01 m/s”,
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6. Design of the Controller

According to (14) the dynamics of the error is given by:
se=E, ~E, = A(E,)+[BE)u+a,,)~AE,) (15)

By defining V as a positive defined function of de and by taking its time
derivatives on the system’s trajectories, u and the matrix P can be designed in order
to have an asymptotic stable closed-loop error dynamics, according to:

V() = oe'(A,— A, +B,u+B,a,,)

. " (16)
V(oe) =o' Pée <0
The real accelerations the controller shall provided are computed as follows:
u=-B,(Poe+B,a,,+(4,—4,))
B, =(B'B)B'; (17)

~

E,=4,+B,a,, _BdBpsPé‘e_BdBpsBdgdist _BdBps (4, _Aref)

hence the pseudo-inverse of the 6x3 matrix B is involved. The control is composed
by a part proportional to the tracking error, one that compensates the disturbances
and one that accounts for the discrepancies between dynamics of the reference and
the deputy. The first one is the responsible for recovering the initial error and gains,
I.e. terms of the diagonal positive defined matrix P, shall be properly tuned. The
second term cancels the effects of the disturbances, hence turns out in an oscillating
contribution still present after that the intermediary reference orbit is established. The
last component, due to the FF description in terms of orbital elements, is small:
differential elements of order 1e-3 can give rise to a large formation geometry.

If B,B, were the identity matrix, then P could be simply chosen from the time

duration of the transient for recovering the initial error. However, both B, involves
some numerical issues and B,B,, carries with itself the natural couplings intrinsic in

the nature of the phenomenon. Figure 4 and 5, respectively depict the element-by-
element trends over 2r radians of those two matrixes. The first picture deals with the
eccentricity’s span of Table 2, whereas the weighting matrix is computed only for e =
0.05. The pseudo-inverse presents some picks when the determinant of the quantity
(B'B) decreases to quite zero, and especially for small eccentricity values. As a
consequence the real control commands turn out to be amplified and edgier than the
ideal ones. Figure 5 allows to evaluate the coupling effects among the control
actions. In order to accomplish it the diagonal terms should be monitored: they
should be dominant with respect to the extra-diagonal ones, to be likely the ideal
situation represented by the identity matrix. The first two rows, and columns due to
symmetry, satisfy this requirement. All the angular terms, on the contrary, do not
fulfil it. And, even whenever for almost the whole orbit the diagonal term is greater
than the correspondent extra-diagonal ones, they all are of the same order of
magnitude anyway. To fully understand this behaviour it is useful to go back to
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Figure 2. There, each column can be viewed as how the correspondent control
component acts, at a fixed true anomaly, on every element of the state. For what
concerns the radial and transversal accelerations, respectively first and second
columns, it can be noted that the most dangerous couplings arise between pericentre
and mean anomaly and between s and p. In this second case, however, the order of
magnitude of the different possible control actions fixes what is more convenient,
hence compensates the before mentioned coupling. The out-of-plane action generates
a dangerous combined effect between pericentre anomaly and longitude of ascending
node. Actions on s and (2 are naturally decoupled.

Taking into account all these considerations the structure of the gain matrix P can be
employed to limit some of those issues. In [4], where an approach on orbital
elements was also exploited, it was suggested how a time varying gain matrix turns
out to be useful to help in supporting the natural dynamics of the system instead of
fighting it. Together with such a heritage, here it is pursued the idea of creating some
differences in the order of magnitude among some of the tracking error contributions
to unbalance the equilibrium in the structure of B, B, that would lead to a steady-

state error.

Tab.3. Variable gains: structure and values assumed for the incoming simulations.

Structure P constant Amplitude Speed N
F, 0.005 --- ---
P, 0.005 === ---
P + A, cos" (9) 0.000005 0.005 2
Py + Ay sin™ (9) 0.000005 0.005 2
P, +4,sin" () 0.000005 0.0001 2
P, + 4, cos” (w) 0.000001 0.00001 2

In Table 3 the final choice of structure and numerical values of the gains is
resumed. The first two gains are constant as their correspondent equations are
decoupled. They are mainly corrected by the in-plane accelerations and the
magnitude of the gain was derived by trading off the time for recovering the initial
error and the maximum acceleration that the engines can provide. All the other gains
are composed by a constant term plus one varying along the orbit. The idea of the
constant contribution is to switch off some *“noise” information when it is not
needed. On the contrary, when the satellites reaches convenient positions corrections
on same components of the state are encouraged by the time varying part. Then the
amplitude gives the magnitude effect whereas the exponent, i.e. velocity, gives how
fast the switching is activated. For what regards s and (2, it is
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200 400 0 200 400 O 200 400 0 200 400

200 400 0 200 400 0 200 400 0 200 400

Fig.5. Euler problem: matrix that weights the control commands evaluated on one
orbit for e = 0.05. True anomaly is on the abscisses, whereas state-component
weights are on the ordinates. Sectors divide the rows; diagonal terms are highlighted.
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simply encouraged the natural tendency of correcting them respectively at Equator
and poles. Their amplitude is the same. Regarding the last two equations, again it is
exploited some complementary scheduling of the corrections. Nevertheless, due to
the structure of B, when acting on one also the other is affected. The only option
available is to emphasized some difference in order of magnitude, together with the
one performed when the command is switched off by the angle dependency. For all
the time varying quantities, the action is not too impulsive: a smooth behaviour is
preferred.

7. Simulations and Results

In the simulations here presented, as a benchmark, it is considered the
establishment of a relative motion with respect to a chief satellite on an eccentric
orbit, as performed in [4]. Usually the eccentricity of the reference satellite involves
some issues in modelling and controlling the relative dynamics. All the Keplerian
initial elements of the chief’s orbit are reported in Table 4. They are provided in
order to give a straighter insight of the problem. According to the control scheme
depicted in Figure 3, this information is first translated into the correspondent
Eulerian set and subsequently in the working one.

Tab.4. Chief initial conditions: Keplerian orbital elements.

a [km] e [ad] I [deg] Q [deqg] o [deg] M [deg]
7550 0.05 48 0 10 80

The reference orbit is defined from the chief EE set through a difference in
orbital elements. Generally the approach of defining the relative motion through
differences between such constants of the two satellites is convenient for at least the
following reasons. First there is no need to solve the equations of relative motion to
derive information about the spacecraft position, as for the dynamics expressed in a
local frame. Secondly it doesn’t rely on any hypothesis embedded in the modelling
scheme, such as small relative radii for linearization purposes or small eccentricity
values of the reference orbit like for Hill-modelling extensions. In the introduction
paragraph it was pointed out how the choice of the target relative motion is a crucial
aspect for real FF missions. Coherently, when possible, invariant orbits are sought as
they do not require strong and expensive control for position maintenance during
their lifetime. By exploiting Eulerian orbital elements it is possible to define relative
motions which are insensitive up to the effects caused by the presence of J;. Such
orbits arise from the observation that, for the nominal IM, the elements connected to
the shape of the region of motion do not vary with time. Moreover all the coefficients
related to the time dependences in the remnant elements are function of exactly those
shape-describing elements. Hence, in order to have a frozen-bounded relative orbit,
taking into consideration the deformations due to the first zonal harmonics of the
gravity potential, it is simply necessary to ask that all the satellites have matching
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deviations from the nominal behaviour, i.e. same time derivates of Eulerian longitude
of ascending node, pericentre anomaly and mean anomaly. Nevertheless, by asking
this for all the angular elements simultaneously turns out into a poor freedom in
designing the shape of the relative motion. In this case, in fact, only extensions of
Leader-Follower configuration, or oscillations in the out of plane direction are
achievable together with a displacement into the along-track direction fixed by a
difference in mean anomaly. However, if it can be accepted to perform some
corrections on the relative orbit, one of those three constraints can be relaxed, hence
establishing some circular motion of the deputy satellite with respect to the reference
one. It shall be emphasized that, as here EE are employed, the before mentioned
further corrections are tiny because they have only to compensate for the
disturbances not already accounted for in the IM.

The relative orbit used in the simulations is defined in Table 5 and it is a J,-J3
invariant relative orbit of the type of a General Circular Orbit GCO. The designing
parameter assigned consists in a difference in the Eulerian inclination; differences in
a and e are consequently derived to meet the constraints of matching time variations
in true latitude and longitude of ascending node between the two satellites.

Tab.5. Definition of the relative orbit to be tracked, through differences of EE.

da [m]

de [ad]

di [deq]

Q2 [deq]

o [deq]

M [deg]

-0.652

0.577e-3

0.006

0

0

0

Simulation depicted in Figure 6 refers to the establishment of the target orbit
given in Table 5, when the deputy initial error is given in terms of differences in EE
as follows:

oa=-100m,  &i=005°,  &=-001° (18)

On the secondary satellite disturbances are acting as well. In the subplots are
respectively shown the transients of the tracking errors in a and p, in the left-top
corner, of s and of all the remnant angular orbital elements. In the last view it is
sketched the trajectory the deputy performs while trying to achieve the target orbit,
plotted in the Hill frame centred in the chief satellite. As expected from the structure
of the control weight matrix, a and p present an ideal-like behaviour, and quickly
recover their initial errors. Also s slowly moves to the requested value. The other
angular elements, on the contrary, present a transient phase and then stabilize on a
steady-state value different from the required one, i.e. zero. Such a behaviour was
predicted when analyzing the couplings among such terms, and, in the Hill frame, it
turns out into a relative orbit of the proper shape but displaced from the target one of
a quantity composed by the combination of the steady-state errors on pericentre and
mean anomaly. Except for the variables shown in the first subplot, for whom gains
were set to be constant, it can be easily recognizable how corrections are performed
with an impulse-like approach, coherently with the exploitation of the dynamics of
the system. The total AV imparted for performing this reconfiguration is 15.73 m/s,
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see Table 6, hence greater than what reported in [4] for a similar manoeuvre,
However, it shall be remarked that, such a performance index depends on the gains’
design, the consequent thrust profile, the type of relative orbit sought and, finally, the
initial mean anomaly value. Some optimization of the control features shall be
accomplished focused on each specific application. For what concerns the final goal,
however, a finer result is here achieved as osculating elements are used instead of
mean ones, and target orbit already takes into account also the J; effect.
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Fig.6. 1% simulation: Lyapunov-like control. Initial condition and gains are
summarized respectively in Tables 4, 5 and 3. Initial errors are given by (18).

In order to avoid the steady-state error, the action of the controller can be
enriched by adding a contribution proportional to the error with respect to the aimed
value of the pericentre anomaly as follows:

up =K, (EE)) (19)

The idea is to force some further action on the system, hence spending
something more, to impose some artificial ranking on the corrective manoeuvres to
be performed. The gain of this extra contribution is fixed trading off the time needed
for recovering that component of the tracking error, the maximum acceleration
provided by the engines and the subsequent increase of AV required. According to
the dynamics, the proportional part (19) shall be introduced in (16) in order to
compute the real commands that the actuators shall provide:
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QTOT = _Bps (P&e + Bd Qdist + (Ad - Aref) + ILtP)

] (20)

Ed =A,+B,a,, - BdBpsPé‘e_BdBpsBdgdist - BdBps (4, - Aref) - BdBPBpsZP

The matrix Bp is a design parameter and it regulates which control acceleration,
I.e. direction, to use to impart such a further action. Finally, the contribution is
reinserted in the equation through the control influence matrix B computed at the
current state of the deputy. In Figure 7 there are presented the results gained by a
simulation in which the new control action is employed. All the rest of the
environment is kept as before. What immediately catches one’s attention is the
different behaviour of the tracking error of s and of the pericentre anomaly, of
course.
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Fig.7. 2" simulation: Lyapunov-like control and proportional part on the error in
PA. Initial condition and gains are summarized respectively in Tables 4, 5 and 3.
Initial errors are given by (18).

Now the out-of-plane action is more effective and the inclination of the deputy’s
orbit changes more, till the last orbit insertion in the target’s plane is accomplished.
Because of the artificial ranking imposed on the corrections, the tracking errors on
every component of the state, with the exception of the mean anomaly go to the
expected value. Yet the steady-state error is decoupled, hence according to the
physics of the problem this means that, by simply accomplishing the same
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manoeuvre some time, i.e. final mean anomaly error, before or later, the expected

target trajectory is established.
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Fig.10. 4™ simulation: Lyapunov-like control and proportional part on the error
in PA given by only the radial component S. Initial condition and gains are
summarized respectively in tables 4, 5 and 3. Initial errors are given by (18). A
proper correction of the initial time of the manoeuvre is performed.
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Fig.11. Control accelerations’ profiles needed for the 4™ simulation. They are
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Figure 8 presents the result gained when, together with the complete control
law, correction in difference of Eulerian mean anomaly on the definition of the target
relative orbit is set. Both the amount of the correction and of the final errors gained
are reported in Table 6. Figure 9 shows the control accelerations that the actuators
shall provide. Due to the further action the AV required increases with respect to the
first simulation performed. Despite this, the final result is much more accurate.

So far the action of the proportional part was carried out by all the three
components of the control acceleration, and all of them play a role according to B,.
Nevertheless by considering that the proportional contribution was added to
compensate the error in pericentre anomaly, which, according to the dynamics of the
system is primarily affected by the in plane corrections, it is convenient to demand
all that work to the component S of this supplementary control. The other two
components B and 7 would only insert respectively, a strong disturbing coupling
action with the out of plane dynamic and a fighting strategy with respect to the
approach fixed for the gains, see Table 3. To achieve this, it can be used the matrix
Bp which compares in (20). Figure 10 presents the result gained when the correction
proportional to the error in pericentre anomaly is performed by the radial-in-plane
component S. The profile of s reveals how the manoeuvre less involves changes in
inclinations, with great benefits on the total AV spent, see Table 6. Figure 11 shows
the correspondent control accelerations, hence it is possible to compare the different
behaviour of B in the two cases: now it only works for part of the control law.
Finally, as a result, the real trajectory covered by the deputy presents a very different
profile, coherently with the fact that small changes in the orbital elements reflect into
great modifications of the relative dynamics of the spacecrafts, according to the way
they are defined.

Tab.6. Final errors gained in terms of EE and correspondent AV spent by the control
action performed in the different simulations presented before.

Final 1 2" 3" 4
Error simulation simulation simulation simulation
da [m] 1.8569¢e-3 3.9621e-3 2.3456e-4 5.68e-5
oe [ad] 2.11e-9 4.99e-9 6.67e-11 8.6e-11
di [deq] 1.5744e-5 3.7236e-5 4.741e-7 7.1e-7
30 [deg] 6.4072e-4 1.8310e-4 6.489e-6 2.24e-8
dm [deg] 0.051935 1.3299¢e-4 4.701e-6 2.572e-7
M [deg] 0.125814 0.068952 0.000312 0.000204
AV [m/s] 15.73 24.29 24.13 20.79
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Final Remarks

In this work a relative orbit control scheme for formation flying missions is
addressed. The study relies on the exploitation of orbital elements, as they provide a
clear physical insight in the description of the dynamics of a point with respect to a
massive body. By supporting this approach, relative target orbits and relative motion
are expressed respectively by differences in Euler orbital elements and in their
variations in time. Eulerian orbital elements represent a convenient mathematical tool
as they already involve all the most effective phenomena that occur in the formation
flight of small satellites in low energy orbits. However, the intrinsic complexity of
the problem moves from the modelling level to the design of the controller: the
equations that rule the time variation of the Eulerian elements for the perturbed
motion are highly nonlinear and intrinsically coupled.

The proposed control law is based on the theory of Lyapunov. Besides gains
that vary across the orbit are used. In order to avoid a final steady-state error a further
control action is introduced: it consists in a contribution proportional to the error in
pericentre anomaly. Due to such a complex design process, for each special
application it is suggested to accomplish an optimization study to work out what are
the best gains’ values and starting time of the reconfiguration manoeuvre, taking into
account the available thrusters. This means that, the great enlargement of possibilities
that such a comprehensive modelling tool offers, both in terms of accuracy and
generality of the situations that can be described, is paid by a certain lack of
robustness which affects the control scheme. From a higher level point of view, the
exploitation of such a rich modelling tool, together with the proposed control
scheme, requires a parallel investigation of the management of the operations during
the whole formation flying mission: scheduling of different working modes.

Despite of these features, the proposed approach can be employed either for
performing reconfigurations of the formation, either for accomplishing fine control
phases, i.e. during scientific segments. The first chance is based on the idea of
exploiting the natural dynamics of the phenomenon to achieve expensive
manoeuvres; the second one gets benefits from the fact that Eulerian elements
already take into account zonal effects till J; and partially J,. For what concerns tight
formations, it is suggested to carry out also a check for collision avoidance: as
mentioned when analysing the results gained, small changes in the orbital elements
can reflect into great modifications of the relative motion.

Finally, beneath this work an introduction on the design of convenient relative
orbits is presented. The idea is to match the time variations of some orbital elements,
caused by the environment, in the definition of the orbit to be tracked. As a result the
control has to balance only the further disturbances not already taken into account in
the model. The simulations run deal with the establishment or reconfiguration of a
formation into such frozen-bounded motion.
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