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Г.В.М. Гайас, М.Р.Лаваньа, А.Р.Голиков, М.Ю.Овчинников. Спутниковая 
группировка: управление относительной орбитой, основывающееся на 
Эйлеровых орбитальных элементах. Препринт Института прикладной 
математики им. М.В. Келдыша РАН, 2008, 25 страниц. 

 Данная работа исследует нелинейное управление (по Ляпунову) с 
обратной связью для создания и поддержания заданной орбиты относительного 
движения. Традиционный подход с обратной связью по декартовым 
координатам векторов ошибок (положения и скорости) траектории приводит к 
точной, но дорогой работе управления. Работа же с орбитальными элементами 
позволяет снизить подобные затраты, выполняя корректирующие манёвры при 
очень подходящих условиях. Более того, это позволяет определять удобный 
план относительного движения аппаратов. Преимущества такого подхода с 
обратной связью, где ошибки задаются в элементах орбиты, можно соединить 
со значительно более полным (для динамики) набором Эйлеровых элементов. 
Эти элементы являются результатом решения Обобщённой задачи двух 
неподвижных центров, поэтому уже принимают в расчёт вклады от второй J2, 
третьей J3 и, частично, четвёртой J4 зональных гармоник. В работе проведён 
необходимый анализ разработки соответствующей методики управления. 
 
Ключевые слова: Эйлеровы орбитальные элементы, промежуточное 
движение, управление относительной орбитой, устойчивость по Ляпунову. 
 
G.V.M. Gaias, M.R.Lavagna, A.R.Golikov, M.Y.Ovchinnikov. Spacecraft 
Formation Flying: Relative Orbit Control based on Euler Orbital Elements. 
Preprint, Inst. Appl. Mathem., Russian Academy of Sciences, 2008, 25 Pages. 

 This work addresses a nonlinear Lyapunov-like feedback control to establish 
and maintain a given relative orbit. Traditional feed-back of cartesian position and 
velocity tracking error vectors results in an accurate, but expensive, control action. 
Working with orbit elements eventually allows to reduce such cost by accomplishing 
corrective maneuvers on particularly convenient conditions. Moreover it allows to 
define convenient target relative motions. Hence, by pursuing this approach, here 
errors in Euler orbit elements are fed-back, thus joining to the previously mentioned 
benefits the intrinsic more exhaustive exploitation of the dynamics that the Euler set 
carries with him. These elements, in fact, arise from the solution of the Generalized 
Problem of Two Fixed Centres, hence already take into account the contributions of 
J2, J3 and partially J4 zonal harmonics. A critical analysis of the design process of the 
controller is carried out. 

 
Key words:  Eulerian orbital elements, intermediary motion, relative orbit control, 
Lyapunov-based control. 
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1. Introduction 
 

Formation Flying FF arises when a satellite, orbiting with respect to a massive 
body, depicts a close relative trajectory around a point which moves under the effect 
of the same attracting centre. The first satellite is referred as deputy whereas the one 
that plays the role of the reference point is called chief. Depending on each space 
application, the chief could be a real satellite or just a virtual point. In cluster 
missions there are more than one deputies. 

From a space system design point of view, FF represents an extremely rich and 
exploitable working environment. It allows to deal with either space-borne 
distributed instruments or cooperating systems. Moreover, the further degree of 
freedom embodied by the relative dynamics allows to perform system 
reconfigurations to meet either scientific objectives or safety recovering. 
Nevertheless, this increase of versatility and reliability at the system level involves a 
set of extremely demanding practical issues from an engineering point of view. Such 
topics spread over different research fields such as the aim of developing hardware 
and algorithms for measuring the relative state (position and velocity); the problem 
of efficiently controlling the relative motion and the search of natural bounded 
relative orbits. Both the two last features are connected to the dynamical aspect of the 
formation and affect fuel consumption, mission lifetime and collision avoidance.  

By referring only to the dynamics of the centre of mass, the first studies 
regarding the relative motion are related to the docking problem described through 
the Clohessy-Wilthshire equations in the Hill frame HCW [1]. They were derived for 
the Keplerian motion, circular reference orbit and small relative radius and they 
posses an analytical solution. When dealing with proper FF missions, however, such 
some severe hypothesis set up a model which is far from the real phenomenon. As 
explained in [2], denying non linear and eccentricity effects turns out into a really 
expensive control action. Another source of modelling error is committed when 
considering the Earth’s gravity potential as the one produced by a point mass. In [3] 
are defined families of bounded relative orbits that already take into account the 
effect of the 2nd order zonal harmonic of the gravity potential. They are described in 
terms of differences in mean orbital elements. In [4] it is performed a comparison 
between that mean orbital element approach and the traditional cartesian description 
in the Hill frame. For both of them a control scheme is provided. In [5] and [6] it is 
highlighted how the physical insight gained by the orbital element description can be 
exploited to set up cheap control policies for some given applications. Therefore it 
can be stated that, the more accurate the model, the less the manoeuvres required for 
orbit maintenance. Nevertheless, as equations can become more complex, designing 
an efficient controller can become more challenging. 

An alternative approach for achieving a light control amount is to track orbits 
that do not suffer from harsh disturbances: the idea is to establish some natural 
bounded motion as it would provide a longer lifetime. In [7] and [8] are performed 
numerical investigations in order to identify convenient initial conditions for the 
relative motion. 
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In the work here presented the idea of exploiting the physical insight that orbital 
elements provide is kept; though using Euler orbital elements instead of the mean 
Keplerian ones. According to their definition, Euler elements carry with them 
information till the 3rd and partially 4th order of zonal harmonics of the gravity 
potential as they arise from the analytical solution of the Intermediary Motion [9]. As 
a result the equations that describe the Euler elements time variations already include 
all the main disturbances that effect FF of small and similar satellites in Low Energy 
Orbits LEO. As a drawback, however, the controller design becomes more complex, 
due to the structure of such those equations. Here a Lyapunov-like control were 
errors in Eulerian elements are fed-back is developed. Some devices for handling the 
coupling effects embedded in the Intermediary description are needed. 

In this report first the main issues concerning the Generalized Problem of Two 
Fixed Centres GP2FC [10] and the consequent Intermediary Motion IM [9] are 
recalled. Then a comparison between the equations in the orbital elements for the 
Keplerian and Eulerian cases is carried out. Finally the control problem is formulated 
together with the gains’ tuning process supported by the results obtained by the 
simulations run. 

 
2. Euler Orbital Elements 

The GP2FC problem was first formulated in [11]. It consists in studying the 
motion of a point mass P under the gravity attraction of 2 fixed points P1 and P2 
placed on the z axis of a rectangular reference frame at a complex distance aj. The 
origin is set in the system’s centre of mass and to each centre is assigned a complex 
mass Mj according to: 
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By writing W in terms of spherical harmonic series it can be possible to represent the 
gravitational potential field of an arbitrary rigid body by imposing the conditions (3). 
The first requirement is satisfied by letting the origin of the frame to coincide with 
the Planet’s centre of mass. The following two constraints reintroduce the physics of 
the problem as they state that all the final quantities shall be real. 



 5

M

aMaM
MMM

M
nn

n

n

2211
21

1

 0 Im

2,3,...n        0 Im

0






















   (3) 

In order to meet (3) the quantities aj and Mj must be pairs of complex conjugate 
numbers obeying to the following structure: 
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By substituting them back into W and equating the resulting expression with the 
spherical harmonic expansion of the Earth’s potential, k-constraints are derived: 
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Though, due to (4), there are only three degrees of freedom available. Hence after 
having fixed the one concerning the mass, (5) can only be met for k equal to 2 and 3. 
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As a result, the potential function W, together with the numerical values computed in 
(6), perfectly reproduces the effect of the Earth gravity potential till the 3rd zonal 
harmonics. The level of agreement of the next terms depends on the actual planet’s 
mass distribution. For the Earth the 4th term is met up to the 70% of its real value. 
With respect to the whole Earth’s potential W denies terms of magnitude less than 
1e-6; furthermore it does not take into account sectorial and tesseral contributions. 
The asymmetrical behaviour with respect to the equatorial plane is described by . 
By setting this parameter to zero only the J2 effect would be accounted for. 

Being the XYZ frame the Geocentric Inertial Equatorial frame, then the dynamics of 
a point-mass in the most general case is described by (7): W is the potential of the 
GP2FC, R collects all the other disturbances written as potentials whereas F 
represents all the remnant types of accelerations acting on the system, i.e. non 
conservative contributions and control action. In the pure Keplerian motion none of 
these three inputs appear. It is defined as Intermediary Motion the dynamics gained 
when only R and F are zero. 
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The IM turns out to be a Hamiltonian Autonomous system, hence it possesses 6 
constants of motion, among which the first integral of the energy 1 and the 
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conservation of the projection of the angular momentum on the Equatorial plane 3. 
In order to integrate the IM by quadrature, it is necessary to introduce a set of 
spheroidal-type coordinates related to XYZ according to:  
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The motion of P remains near the attracting planet if its energy 1 is negative, that 
implies, as stated by (8), that the orbit never exceeds the region delimitated by the 
two ellipsoids of max and min. The asymmetrical behaviour inducted by  affects the 
maximum excursions in z; whereas w has the meaning of a longitude.  

Starting from the set of constants of motion Euler Orbital Elements EE can be 
defined in such a way to take into account the qualitative considerations mentioned 
before; to be the closets of possible to their correspondents in the Kepler’s set and to 
possess the cleanest dependence with respect to time. In Table 1 the complete EE set 
is reported together with their main characteristics. 

Tab.1.  Euler Orbital Elements 

Element Definition Correlations 
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The first element a carries an indication of the distance of the spacecraft from 
the origin; e is related to the separation between the two ellipsoids bounding the 
region of motion. The third element i is associated to the maximum height that the 
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spacecraft can reach with respect to the equatorial plane and to the conservation of 
the projection of the angular motion on the same plane. As a result, for i greater than 
90° the orbit is retrograde. 

The shape of the region of motion is fully determined by these three elements. It 
shall be emphasized that, due to their definition, a, e and  involve the computation 
of 1, 2 and  from the 1st integrals of motion. To achieve such an outcome 
expansion till the 4th order in  (9) and  can be used for defining a set of mapping 
relations. The final error gained is of magnitude of 1e-9. 
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The remnant elements 0, 0 and M0 map the initial position of the satellite on 
the intermediary orbit. They are worked out from the canonical equations, which 
involve some elliptic integrals of the 1st type in the amplitude variables  and , that 
respectively play the role of the true latitude and true anomaly of the satellite on the 
intermediary orbit. Once known the initial value of the angular EE, the osculating 
terms are computed by first solving for the true anomaly  through equation (10) and 
subsequently by using the relations reported in the last column of Table 1. 
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4. Satellite’s Equations for the Perturbed Motion 

The closed form solution of the IM already takes into account the secular effects 
due to the first zonal harmonics. As described in Table 1, they affect the last three EE 
but they do not modify the shape of the region of motion. Nevertheless, when dealing 
with the dynamics in the most general case all the disturbing contributions of the 
right side of equations (7) are present. As a consequence, all the EE would 
experience some variations with time with respect to the osculating nominal values 
of the IM solution. In order to evaluate such actions an equivalent set of the Gauss’ 
Variational Equations GVE for the Keplerian motion can be written by exploiting the 
variational methodology and by expressing the disturbances accelerations into a 
convenient local frame. 

Besides, in order to avoid the numerical issues that arise for circular or polar 
chief’s orbits, a transformation of the EE set into a more convenient one, is 
performed as shown in (11). To the Eulerian eccentricity value it is summed a 
vanishing and always positive quantity. Then the forthcoming semilatus rectum is 
employed. For what concerns the Eulerian inclination the same idea is exploited: 



 8

from s it is subtracted a vanishing always positive quantity. The rest of the working 
set is constituted by the angular osculating EE. 
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From now on, this working set of variables Ê  would be referred as the state of the 
system. Though, to have a straightforward comprehension of the orbit shape, chief’s 
orbit will be given by a Kepler set. Hence at the initial instant of time a 
transformation between that set and the working one is performed. 

The equations that express how the state varies due to the action of the disturbances 
not already accounted for in the IM problem can be written as follows: 
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where A represents the nominal IM solution whereas B describes how the rest of the 
accelerations acting on the system affect each component of the state. Therefore B is 
the control influence matrix for this set of equations and by analyzing its elements it 
can be understood when is convenient to correct for each component of the state, i.e. 
orbital element. To this extent the set of Keplerian elements listed in Table 2 is 
assumed and it is performed a comparison between the behaviour of each element of 
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B for GVE and equations (12). Trends are evaluated over 2 radians of the true 
anomaly ; the eccentricity is varied in the range written down in the table. 

Tab.2.  Keplerian elements set employed for the evaluation of each term of B 

a [km] e [ad.] I [deg]  [deg]  [deg] M [deg] 

7550 [0.001,0.3] 48 0 10 [0,360) 

 

Figure 1 and 2 illustrate the plots obtained, dashed lines refer to the minimum 
value of eccentricity here considered. In some subplots it is useful to mark, by a 
square on the axis of abscises, the moment when the true latitude  is  90°; 
respectively the north and south poles of the positive orbits. Every picture is called 
according to the position of the element that represents into the control influence 
matrix. Unit dimensions are coherent according to such dimensional equations. 

For what concerns the Keplerian motion, i.e. Figure 1, it can be noted that B11 
and B21 vary proportionally to sin(); B12 oscillates around a mean positive value 
depending on 1/r(); in B51, B52, B61, B62 small values of eccentricity amplify the 
nominal cos() trend. Such an eccentricity effect can be appreciated also in B22, B33, 
B43, B52, B53 and B62 where r() multiplies the oscillating factor. Finally B33 is 
proportional to cos() whereas B43 and B53 vary with r()sin(). As each colon of B 
introduces the action of an acceleration into one of the local-frame directions, it is 
easily derived that in order to correct on semi-axes, eccentricity and mean anomaly 
in-plane manoeuvres must be used. Changes in inclination and longitude of 
ascending node are performed by out-of-plane actions, more efficiently respectively 
at the Equator and at poles. The perigee anomaly can be affected by all the 
accelerations. Further information is carried by the order of magnitude of each 
component of B.  

Figure 2 reports the control influences components for the Euler problem. Due 
to the intrinsically more complex problem carried out and to the different choice of 
state variables, the subplots present different behaviours with respect of the previous 
ones. In particular the second and third equations now regard p and s and on them 
accelerations in every direction can produce effects. Together with the strengthening 
due to small eccentricity values already pointed out before, here there are 
amplifications due to the dependence of the semilatus rectum on e. This effect is 
clearly visible in B23, B33, B43, B53. As a consequence, in order to correct produce 
changes on p and s accelerations either in-plane either out-of-plane can be provided. 
Still the order of magnitude completes the information required. 
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Fig.1.  Kepler problem: control influence matrix B on one orbit. The dashed trends 
refer to e = 0.001. 
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Fig.2.  Euler problem: control influence matrix B on one orbit. The dashed trends 

refer to e = 0.001. 
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5. Relative Orbit Control Scheme 

 
Satellites’ relative motion can be fruitfully described through differences in the 

orbital elements associated to the chief and the deputy spacecrafts. Generally this 
methodology gives a straight physical insight of the shape of the relative trajectory 
and a relative orbit control scheme can be established on such an approach. To this 
extent, if EE are employed, equations (12) need to be used to compute how the state 
Ê  varies when control and disturbance accelerations act on the deputy satellite. The 
reference relative orbit is defined starting from the chief’s EE. As relative control is 
sought, no further perturbing actions work on the reference spacecraft: 

EEEEEE

EAE

uaEBEAE

cref

cc

distddd






)ˆ(ˆ

))](ˆ([)ˆ(ˆ





                                 (13) 

The controller receives as input the error with respect to the reference state and 
elaborates which accelerations to provide in order to contrast it: 

)(
~

ˆˆ

efu

EEe refd








                                                         (14) 

To avoid to insert at every time step errors connected to the mappings between 
EE and Ê  (11), proper initial conditions are given to the reference state, i.e. dashed 

block in Figure 3, and refÊ  is also propagated. Due to the fact that an intermediary 

orbit is assumed as the reference to be tracked, the controller counteracts only the 
remnant disturbances and errors in the initial conditions.  

 

Fig.3.  Control scheme structure: feed-back based on information in terms of EE. 

 
The disturbance actions considered in this study are the remnant zonal 

harmonics of the Earth gravitational field, till the 6th order. In the actuation block it is 
taken into account the maximum acceleration provided by the engines, here assumed 
as 0.01 m/s2. 
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6. Design of the Controller 

According to (14) the dynamics of the error is given by: 

)ˆ())](ˆ([)ˆ(ˆˆ
refdistddrefd EAauEBEAEEe                           (15) 

By defining V as a positive defined function of e and by taking its time 
derivatives on the system’s trajectories, u and the matrix P can be designed in order 
to have an asymptotic stable closed-loop error dynamics, according to:  

0)(
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                                    (16) 

The real accelerations the controller shall provided are computed as follows: 
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                (17) 

hence the pseudo-inverse of the 6x3 matrix B is involved. The control is composed 
by a part proportional to the tracking error, one that compensates the disturbances 
and one that accounts for the discrepancies between dynamics of the reference and 
the deputy. The first one is the responsible for recovering the initial error and gains, 
i.e. terms of the diagonal positive defined matrix P, shall be properly tuned. The 
second term cancels the effects of the disturbances, hence turns out in an oscillating 
contribution still present after that the intermediary reference orbit is established. The 
last component, due to the FF description in terms of orbital elements, is small: 
differential elements of order 1e-3 can give rise to a large formation geometry. 
If psd BB  were the identity matrix, then P could be simply chosen from the time 

duration of the transient for recovering the initial error. However, both psB  involves 

some numerical issues and psd BB  carries with itself the natural couplings intrinsic in 

the nature of the phenomenon. Figure 4 and 5, respectively depict the element-by-
element trends over 2 radians of those two matrixes. The first picture deals with the 
eccentricity’s span of Table 2, whereas the weighting matrix is computed only for e = 
0.05. The pseudo-inverse presents some picks when the determinant of the quantity 

)( BBt  decreases to quite zero, and especially for small eccentricity values. As a 
consequence the real control commands turn out to be amplified and edgier than the 
ideal ones. Figure 5 allows to evaluate the coupling effects among the control 
actions. In order to accomplish it the diagonal terms should be monitored: they 
should be dominant with respect to the extra-diagonal ones, to be likely the ideal 
situation represented by the identity matrix. The first two rows, and columns due to 
symmetry, satisfy this requirement. All the angular terms, on the contrary, do not 
fulfil it. And, even whenever for almost the whole orbit the diagonal term is greater 
than the correspondent extra-diagonal ones, they all are of the same order of 
magnitude anyway. To fully understand this behaviour it is useful to go back to 
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Figure 2. There, each column can be viewed as how the correspondent control 
component acts, at a fixed true anomaly, on every element of the state. For what 
concerns the radial and transversal accelerations, respectively first and second 
columns, it can be noted that the most dangerous couplings arise between pericentre 
and mean anomaly and between s and p. In this second case, however, the order of 
magnitude of the different possible control actions fixes what is more convenient, 
hence compensates the before mentioned coupling. The out-of-plane action generates 
a dangerous combined effect between pericentre anomaly and longitude of ascending 
node. Actions on s and  are naturally decoupled.  
Taking into account all these considerations the structure of the gain matrix P can be 
employed to limit some of those issues. In [4], where an approach on orbital 
elements was also exploited, it was suggested how a time varying gain matrix turns 
out to be useful to help in supporting the natural dynamics of the system instead of 
fighting it. Together with such a heritage, here it is pursued the idea of creating some 
differences in the order of magnitude among some of the tracking error contributions 
to unbalance the equilibrium in the structure of  psd BB  that would lead to a steady-

state error.  

Tab.3.  Variable gains: structure and values assumed for the incoming simulations. 

Structure P constant Amplitude Speed N 

aP  0.005 --- --- 

pP  0.005 --- --- 

)(cos N
ss AP   0.000005 0.005 2 

)(sin NAP    0.000005 0.005 2 

)(sin 
NAP   0.000005 0.0001 2 

)(cos N
MM AP   0.000001 0.00001 2 

 

In Table 3 the final choice of structure and numerical values of the gains is 
resumed. The first two gains are constant as their correspondent equations are 
decoupled. They are mainly corrected by the in-plane accelerations and the 
magnitude of the gain was derived by trading off the time for recovering the initial 
error and the maximum acceleration that the engines can provide. All the other gains 
are composed by a constant term plus one varying along the orbit. The idea of the 
constant contribution is to switch off some “noise” information when it is not 
needed. On the contrary, when the satellites reaches convenient positions corrections 
on same components of the state are encouraged by the time varying part. Then the 
amplitude gives the magnitude effect whereas the exponent, i.e. velocity, gives how 
fast the switching is activated. For what regards s and , it is 
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Fig.4.  Euler problem: pseudo-inverse on one orbit. The dashed trends refer to e = 
0.001. 
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Fig.5.  Euler problem: matrix that weights the control commands evaluated on one 
orbit for e = 0.05. True anomaly is on the abscisses, whereas state-component 

weights are on the ordinates. Sectors divide the rows; diagonal terms are highlighted. 
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simply encouraged the natural tendency of correcting them respectively at Equator 
and poles. Their amplitude is the same. Regarding the last two equations, again it is 
exploited some complementary scheduling of the corrections. Nevertheless, due to 
the structure of B, when acting on one also the other is affected. The only option 
available is to emphasized some difference in order of magnitude, together with the 
one performed when the command is switched off by the angle dependency. For all 
the time varying quantities, the action is not too impulsive: a smooth behaviour is 
preferred. 
 

7. Simulations and Results 

In the simulations here presented, as a benchmark, it is considered the 
establishment of a relative motion with respect to a chief satellite on an eccentric 
orbit, as performed in [4]. Usually the eccentricity of the reference satellite involves 
some issues in modelling and controlling the relative dynamics. All the Keplerian 
initial elements of the chief’s orbit are reported in Table 4. They are provided in 
order to give a straighter insight of the problem. According to the control scheme 
depicted in Figure 3, this information is first translated into the correspondent 
Eulerian set and subsequently in the working one. 

Tab.4.  Chief initial conditions: Keplerian orbital elements. 

a [km] e [ad] i [deg]  [deg]  [deg] M [deg] 

7550 0.05 48 0 10 80 

 

The reference orbit is defined from the chief EE set through a difference in 
orbital elements. Generally the approach of defining the relative motion through 
differences between such constants of the two satellites is convenient for at least the 
following reasons. First there is no need to solve the equations of relative motion to 
derive information about the spacecraft position, as for the dynamics expressed in a 
local frame. Secondly it doesn’t rely on any hypothesis embedded in the modelling 
scheme, such as small relative radii for linearization purposes or small eccentricity 
values of the reference orbit like for Hill-modelling extensions. In the introduction 
paragraph it was pointed out how the choice of the target relative motion is a crucial 
aspect for real FF missions. Coherently, when possible, invariant orbits are sought as 
they do not require strong and expensive control for position maintenance during 
their lifetime. By exploiting Eulerian orbital elements it is possible to define relative 
motions which are insensitive up to the effects caused by the presence of J3. Such 
orbits arise from the observation that, for the nominal IM, the elements connected to 
the shape of the region of motion do not vary with time. Moreover all the coefficients 
related to the time dependences in the remnant elements are function of exactly those 
shape-describing elements. Hence, in order to have a frozen-bounded relative orbit, 
taking into consideration the deformations due to the first zonal harmonics of the 
gravity potential, it is simply necessary to ask that all the satellites have matching 
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deviations from the nominal behaviour, i.e. same time derivates of Eulerian longitude 
of ascending node, pericentre anomaly and mean anomaly. Nevertheless, by asking 
this for all the angular elements simultaneously turns out into a poor freedom in 
designing the shape of the relative motion. In this case, in fact, only extensions of 
Leader-Follower configuration, or oscillations in the out of plane direction are 
achievable together with a displacement into the along-track direction fixed by a 
difference in mean anomaly. However, if it can be accepted to perform some 
corrections on the relative orbit, one of those three constraints can be relaxed, hence 
establishing some circular motion of the deputy satellite with respect to the reference 
one. It shall be emphasized that, as here EE are employed, the before mentioned 
further corrections are tiny because they have only to compensate for the 
disturbances not already accounted for in the IM. 

The relative orbit used in the simulations is defined in Table 5 and it is a J2-J3 
invariant relative orbit of the type of a General Circular Orbit GCO. The designing 
parameter assigned consists in a difference in the Eulerian inclination; differences in 
a and e are consequently derived to meet the constraints of matching time variations 
in true latitude and longitude of ascending node between the two satellites.  

Tab.5.  Definition of the relative orbit to be tracked, through differences of EE. 

a [m] e [ad] i [deg]  [deg]  [deg] M [deg] 

-0.652 0.577e-3 0.006 0 0 0 

 

Simulation depicted in Figure 6 refers to the establishment of the target orbit 
given in Table 5, when the deputy initial error is given in terms of differences in EE 
as follows: 

 01.0,05.0,100  ima                           (18) 

On the secondary satellite disturbances are acting as well. In the subplots are 
respectively shown the transients of the tracking errors in a and p, in the left-top 
corner, of s and of all the remnant angular orbital elements. In the last view it is 
sketched the trajectory the deputy performs while trying to achieve the target orbit, 
plotted in the Hill frame centred in the chief satellite. As expected from the structure 
of the control weight matrix, a and p present an ideal-like behaviour, and quickly 
recover their initial errors. Also s slowly moves to the requested value. The other 
angular elements, on the contrary, present a transient phase and then stabilize on a 
steady-state value different from the required one, i.e. zero. Such a behaviour was 
predicted when analyzing the couplings among such terms, and, in the Hill frame, it 
turns out into a relative orbit of the proper shape but displaced from the target one of 
a quantity composed by the combination of the steady-state errors on pericentre and 
mean anomaly. Except for the variables shown in the first subplot, for whom gains 
were set to be constant, it can be easily recognizable how corrections are performed 
with an impulse-like approach, coherently with the exploitation of the dynamics of 
the system. The total V imparted for performing this reconfiguration is 15.73 m/s, 
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see Table 6, hence greater than what reported in [4] for a similar manoeuvre. 
However, it shall be remarked that, such a performance index depends on the gains’ 
design, the consequent thrust profile, the type of relative orbit sought and, finally, the 
initial mean anomaly value. Some optimization of the control features shall be 
accomplished focused on each specific application. For what concerns the final goal, 
however, a finer result is here achieved as osculating elements are used instead of 
mean ones, and target orbit already takes into account also the J3 effect. 
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Fig.6.  1st simulation: Lyapunov-like control. Initial condition and gains are 
summarized respectively in Tables 4, 5 and 3. Initial errors are given by (18). 

In order to avoid the steady-state error, the action of the controller can be 
enriched by adding a contribution proportional to the error with respect to the aimed 
value of the pericentre anomaly as follows: 

))5(ˆ(EKu PP         (19) 

The idea is to force some further action on the system, hence spending 
something more, to impose some artificial ranking on the corrective manoeuvres to 
be performed. The gain of this extra contribution is fixed trading off the time needed 
for recovering that component of the tracking error, the maximum acceleration 
provided by the engines and the subsequent increase of V required. According to 
the dynamics, the proportional part (19) shall be introduced in (16) in order to 
compute the real commands that the actuators shall provide: 



 20

PpsPdrefdpsddistdpsdpsddistddd

PrefddistdpsTOT

uBBBAABBaBBBePBBaBAE

uAAaBePBu





)(ˆ

))((






        (20) 

The matrix BP is a design parameter and it regulates which control acceleration, 
i.e. direction, to use to impart such a further action. Finally, the contribution is 
reinserted in the equation through the control influence matrix B computed at the 
current state of the deputy. In Figure 7 there are presented the results gained by a 
simulation in which the new control action is employed. All the rest of the 
environment is kept as before. What immediately catches one’s attention is the 
different behaviour of the tracking error of s and of the pericentre anomaly, of 
course. 
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Fig.7.  2nd simulation: Lyapunov-like control and proportional part on the error in 
PA. Initial condition and gains are summarized respectively in Tables 4, 5 and 3. 

Initial errors are given by (18). 

Now the out-of-plane action is more effective and the inclination of the deputy’s 
orbit changes more, till the last orbit insertion in the target’s plane is accomplished. 
Because of the artificial ranking imposed on the corrections, the tracking errors on 
every component of the state, with the exception of the mean anomaly go to the 
expected value. Yet the steady-state error is decoupled, hence according to the 
physics of the problem this means that, by simply accomplishing the same 
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manoeuvre some time, i.e. final mean anomaly error, before or later, the expected 
target trajectory is established. 
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Fig.8.  3rd simulation: all the features employed in the 2nd simulation are kept. 
However here a correction in the initial time of the manoeuvre is performed. 
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Fig.9.  Control accelerations’ profiles needed for the 3rd simulation. They are 
expressed in the [S, T, B] local frame. 
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Fig.10.  4th simulation: Lyapunov-like control and proportional part on the error 

in PA given by only the radial component S. Initial condition and gains are 
summarized respectively in tables 4, 5 and 3. Initial errors are given by (18). A 
proper correction of the initial time of the manoeuvre is performed. 
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Fig.11.  Control accelerations’ profiles needed for the 4th simulation. They are 

expressed in the [S, T, B] local frame. 
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Figure 8 presents the result gained when, together with the complete control 
law, correction in difference of Eulerian mean anomaly on the definition of the target 
relative orbit is set. Both the amount of the correction and of the final errors gained 
are reported in Table 6. Figure 9 shows the control accelerations that the actuators 
shall provide. Due to the further action the V required increases with respect to the 
first simulation performed. Despite this, the final result is much more accurate.  

So far the action of the proportional part was carried out by all the three 
components of the control acceleration, and all of them play a role according to Bd. 
Nevertheless by considering that the proportional contribution was added to 
compensate the error in pericentre anomaly, which, according to the dynamics of the 
system is primarily affected by the in plane corrections, it is convenient to demand 
all that work to the component S of this supplementary control. The other two 
components B and T would only insert respectively, a strong disturbing coupling 
action with the out of plane dynamic and a fighting strategy with respect to the 
approach fixed for the gains, see Table 3. To achieve this, it can be used the matrix 
BP which compares in (20). Figure 10 presents the result gained when the correction 
proportional to the error in pericentre anomaly is performed by the radial-in-plane 
component S. The profile of s reveals how the manoeuvre less involves changes in 
inclinations, with great benefits on the total V spent, see Table 6. Figure 11 shows 
the correspondent control accelerations, hence it is possible to compare the different 
behaviour of B in the two cases: now it only works for part of the control law. 
Finally, as a result, the real trajectory covered by the deputy presents a very different 
profile, coherently with the fact that small changes in the orbital elements reflect into 
great modifications of the relative dynamics of the spacecrafts, according to the way 
they are defined. 

 

Tab.6.  Final errors gained in terms of EE and correspondent V spent by the control 
action performed in the different simulations presented before. 

Final 
Error 

1st 
simulation 

2nd 
simulation 

3rd 
simulation 

4th 
simulation 

a [m] 1.8569e-3 3.9621e-3 2.3456e-4 5.68e-5 

e [ad] 2.11e-9 4.99e-9 6.67e-11 8.6e-11 

i [deg] 1.5744e-5 3.7236e-5 4.741e-7 7.1e-7 

 [deg] 6.4072e-4 1.8310e-4 6.489e-6 2.24e-8 

 [deg] 0.051935 1.3299e-4 4.701e-6 2.572e-7 

M [deg] 0.125814 0.068952 0.000312 0.000204 

V [m/s] 15.73 24.29 24.13 20.79 
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Final Remarks 

In this work a relative orbit control scheme for formation flying missions is 
addressed. The study relies on the exploitation of orbital elements, as they provide a 
clear physical insight in the description of the dynamics of a point with respect to a 
massive body. By supporting this approach, relative target orbits and relative motion 
are expressed respectively by differences in Euler orbital elements and in their 
variations in time. Eulerian orbital elements represent a convenient mathematical tool 
as they already involve all the most effective phenomena that occur in the formation 
flight of small satellites in low energy orbits. However, the intrinsic complexity of 
the problem moves from the modelling level to the design of the controller: the 
equations that rule the time variation of the Eulerian elements for the perturbed 
motion are highly nonlinear and intrinsically coupled. 

The proposed control law is based on the theory of Lyapunov. Besides gains 
that vary across the orbit are used. In order to avoid a final steady-state error a further 
control action is introduced: it consists in a contribution proportional to the error in 
pericentre anomaly. Due to such a complex design process, for each special 
application it is suggested to accomplish an optimization study to work out what are 
the best gains’ values and starting time of the reconfiguration manoeuvre, taking into 
account the available thrusters. This means that, the great enlargement of possibilities 
that such a comprehensive modelling tool offers, both in terms of accuracy and 
generality of the situations that can be described, is paid by a certain lack of 
robustness which affects the control scheme. From a higher level point of view, the 
exploitation of such a rich modelling tool, together with the proposed control 
scheme, requires a parallel investigation of the management  of the operations during 
the whole formation flying mission: scheduling of different working modes. 

Despite of these features, the proposed approach can be employed either for 
performing reconfigurations of the formation, either for accomplishing fine control 
phases, i.e. during scientific segments. The first chance is based on the idea of 
exploiting the natural dynamics of the phenomenon to achieve expensive 
manoeuvres; the second one gets benefits from the fact that Eulerian elements 
already take into account zonal effects till J3 and partially J4. For what concerns tight 
formations, it is suggested to carry out also a check for collision avoidance: as 
mentioned when analysing the results gained, small changes in the orbital elements 
can reflect into great modifications of the relative motion. 

Finally, beneath this work an introduction on the design of convenient relative 
orbits is presented. The idea is to match the time variations of some orbital elements, 
caused by the environment, in the definition of the orbit to be tracked. As a result the 
control has to balance only the further disturbances not already taken into account in 
the model. The simulations run deal with the establishment or reconfiguration of a 
formation into such frozen-bounded motion. 
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