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Anrekapen A. .
Ananuz mampuunvz saday Pumana-Dusvbepma 6 cayuae 6vicokozo poda —

acumnmomura MHo204YAEHOE6 OPIMO2OHANDHDIT HA CUCTNEME UHMEPBANO6 1

AnsaoTtanuga. PaccmarpuBaercst ajanramus MeTojia MaTpuaHoOi 3aga1un Puma-
Ha-['unbbepra JUIs MOy UeHNsT CUJILHBIX ACUMIITOTHK MHOTI'OYJIEHOB OPTOINOHAJ b
HBIX Ha CHCTEME HHTEpPBAJIOB JieficTBUTE/bHONI ocu. OCHOBHBIM MOMEHTOM $B-
JIsieTcst puBJiedenHne rera~-pyHKiuit Pumana Jijist morydennsi aciMITOTHIeCKUX
dopmyn. Pabora MoTrBHpOBaHa pacupocTpaHeHneM 00CyK1aeMOi MEeTOTMKHI Ha
KpaeBble 3aJ1a4y JIJIsl aHAJUTUICCKUX MATPUIl (DYHKINN BHICOKUX Pa3MepHOCTeil
(6osbiie gem 2x2). VIMeHHO Takue 3a7adu BO3HUKAIOT MPH ACHMIITOTHIECKOM
aHajm3e annpokcuMmarnuii dpmura-Ilajge. Pabora npojposkaer cepuio MeToju-
JeCKNX pas3pabOTOK ACHMITOTHYECKON TeXHMKHM MaTpUUHOi 3amaunm Pumana-
['ninbepTa.

Aptekarev A.1.
Matriz Riemann-Hilbert analysis for the case of higher genus - asymptotics of
polynomials orthogonal on a system of intervals

Abstract
The method of the matrix Riemann-Hilbert problem is adapted for obtaining

the strong asymptotics of polynomials orthogonal on a system of intervals on the
real axis. The use of the Riemann theta-functions for deriving the asymptotical
formulas is the main ingredient of the approach. An extension of the technique
under consideration to Boundary Values Problems for analytic matrix functions
of higher dimensions (greater than 2x2) is the main motivation of the work.
Precisely this type of problem arise under asymptotical analysis of the Hermite-
Pade approximants. The paper is continuation of the series of the lecture notes
devoted to exposition of the "Riemann-Hilbert matrix problem"asymptotical
techniques.

!PaBoTa TacTHTHO IONAEPKAHA IPAHTOM HaydHEIX mKkoa HII-3906.2008.1, mporpammoit Ne 1 OMH PAH,
rpaaTamu PO ®I1-08-01-00179, PO ®I1-08-01-90409.



1 Introduction and the model problem statement

The present paper is methodical by nature. It is intended to adapt some tech-
niques connected with the Riemann theta-functions for obtaining the asymptotic
solutions of the matrix boundary value problems in multi-connected domains.
One should note that the methods discussed here have already been
developed in a renown paper [1] and used in a number of subsequent papers.
Nevertheless, we have found it worthwhile to get back to the simplest model
problem of such kind and to expound its solution in such a way that one could
use these methods to obtain solutions for boundary value problems for matrix
of order greater than (2 x 2) — exactly such problems arise in the asymptotic
analysis of the Hermite-Pade approximants (see 2], [3]). As a model problem we
have chosen the problem of obtaining asymptotics on a system of intervals on
the real axis. Of course a great number of papers is devoted to the asymptotical
formulas for this problem (including expressions of asymptotics in terms of
Riemann theta-functions) — see, for instance, [4], [5], |6], |7]. Hence, the result
which is proven here should not be regarded as a new one, and the present
paper in fact offers the material for some advanced course, continuing the series
of papers [8], [9], (see also [10]).

We start with the statement of the problem of finding orthogonal polyno-
mials asymptotics. Let us consider a system of intervals

g+1 g+1
A= o =]la;b] CR,
j=1 j=1

where the weight function is given by
w(z) = wy(2)(z —a))*(z = b))%, z€ Ny, j=1,...,9+1, (1)

here the parameters satisfy o, 3; > —1, and wy(2) is piecewise analytic in some
neighborhood of A:
wo € H(A), wy>0onA.

Let us consider the system of monic orthogonal polynomials:

P(z)=2"+... /Pn(z)z”w(z)dz:(), v=0,...,n—1, (2
A
and the corresponding functions of the second kind:

Rn(z):/ Py(x)w(z) dx _ 1 /P,%(x)w(x) dx  my, @)

T —2z P,(z) T —2z :zn+1+”'
A

VAN

Our goal is to find the asymptotics of P,(2) u R,(2) as n — oo.

3



2 Statement of the result

We start with an introduction of some basic notions which we shall use to state
desired asymptotic formulas.

1°. Standard functions of multi-connected domain geometry.

Let us denote G the complex Green function of the domain 2 := C\A,
(with singularity at the point co). Its derivative is analytic in €2

h(z) ::G/(z):§+... € H(Q), (4)
it has ¢ finite zeros
{z}ier © h(z) =0. (5)
We denote
D(z) == %) = Z oy : (6)
Ca

this function has single valued absolute value in €2; we denote the changes of its
argument around the contours encircling the segments

AN arg®=:27rw,, k=1,...,9. (7)
VAV

We consider also the harmonic measures of the domain (2
(DY © a)wr € Harm(Q), b wila, =0k, kil=1,...g+1,
then (see [4]) in (7) we have wi = wy(c0).

2°. Standard function related to the weight — Szego function.
Let F' € A(Q2), F # 0, is a solution of the boundary value problem

|F\2z— =1 on A, (8)

where w is weight function (1), and h_ is the boundary value of function (4)
corresponding to approaching A from below. Function F' is called Szeg6 function
for weight w. It has single valued absolute value and multi valued argument,
change of which we denote by

A arg F =: 2rclk) | 9)
Ay

By the use of harmonic measures (see [4]) we have

1 0
) = —— 1og< “’(s)) e (O]

AVA



3°. Standard functions of Riemann surface.

Let

Ri=R| R, Ri=C\A, Ry :=4.] A, (10)

be two-sheeted Riemann surface, and {a;}{_, , {bx}{_; be its homological cycles
(cycle ay starts and ends at a point of the segment Ay, crossing the segment
A, through both sheets of the Riemann surface, accordingly, cycle by encircles
the segment Ay, ie. by := A | | Ar-). On R vector of normalized Abel 1st
kind integrals is defined:

ﬁ(C) = {Qk(C) zzl, C ER (A = 5k7l ; bAQk = Bk7 l) , (11)

aj

where the matrix {By, ;} has positive definite imaginary part.
(The function 2 could be considered as a continuation of the harmonic measure
functions §(wy + wg) =: Qi ¢ Ro on the whole Riemann surface (10))

Let

—00,...,00 g g
O(us, ..., uy) = Z exp {WZZ Z Bm,m, + 21 Z myul/} ;
pu=1 v=1 v=1

be multiple series of g variables, with parameter matrix {B,, }.

For an arbitrary vector € € C9 theta-function of the Riemann surface
R (with the parameters B, ,) is defined via substitution of the coordinates of
vector 1(¢) — € as multiple series variables 6

019(¢) =0 (3O ~¢) . (12)

Eventually, we obtain the function of one variable ¢ € R, which has the following
basic properties:

4) 0@ e B®\{Ua));
= (13)
B) 4 {Ck}izl : G(Q(Ck):O, k=1,...,q;

at that if ©© does not identically equal zero , then it has no other zeros, and
there exists isomorphism between the vectors € and {¢;}7_;.

4°. Asymptotics of the orthogonal polynomials.

Let us define vector of constants with the condition

O () =0, k=1,....q9.

™y
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where 1(z) denotes a raising of a point z from the complex plane to Ry sheet
of the Riemann surface (10), (correspondingly, 7 : R — C, and we recall (5)).
We take the vector of constants (see (7), (9))

Crw = <nw1 +cb , MWy + c§g>) :

and define the function

0t ()

T (¢) = 590

=: (Tp,Th) ,

where Ty and T} denotes the values of the function T %w) correspondingly on
the zeroth and first sheets of Riemann surface (10).
Finally, let us designate (see (4), (8) )

F(z) To(2)
F(OO) To(OO) ’

ih(z)  Ti(z)
F(z)F(00) Ty(oo)

Xp(z) := Xg(z) :=

We prove

Theorem 2.1 Using introduced notations, polynomials (2), which are ortho-
gonal with respect to weight (1), and the second kind functions (3) have the
following asymptotics:

Po(z) = (Ca®(2))"Xp(2) (1+0(3))

9

Rl = () Xalo) 1+ 0)

uniformly on the compact sets z € K € Q) , and
Py(z) = ({(Ca®(2))"Xp(2)}, +{(Ca®(2))"Xp(x)} ) (1+0(;))

Rni(ﬂf) = <%)iXRi(x) (1 + O(%)) |

uniformly on the compact sets x € K @ A .

Remark. One should note, that the obtained formulas differs from the
corresponding ones for the polynomials which are orthogonal on the one interval
with presence of theta-functions 7y and 77 ratio. Besides, zeros of the theta-
function ©F*w) are distributed between "spurious" zeros of P, and "spurious”
additional interpolations — finite zeros of R,,.



3 Proof of the Theorem

3.1 Statement of the matrix boundary value problem

It is well-known (and can be easily shown on the base of (2),(3)), that the matrix

P, Ry,
=Y | (14)
. Rn—l

Mp—1

1
Pn—l

Mp—1

is the unique solution of the following matrix Riemann-Hilbert problem:

( o
Y € H>?(C\A), 3Y € C(A),

Y.=Y. Won A,
V()| = (0(1) O(ee) ) | (15)

- N

O(1) Oe,)
Y(z)‘ = (I+ O (%)) diag {z", 27"} |

\ Z— 00

Here A is the set of interior points of the segments A, e belongs to the set of
g+1

endpoints A : e € |J {a;,b;}, and e, depends on the singularity exponent a
j=1

of the weight function w (see (1)) at the endpoint e

|2 — ag|™ a. € (—1,0) g+1
Ee 1= 1 loglz—a. @ =0 : Qe € U{aj,ﬁj}.
1 a, >0 j=1

At last, the jump matrix is:

v (i1)

Our goal is to find asymptotics of the problem (15) solution for n — oo.

3.2 Geometry of the problem

On the Riemann surface R there exists unique (up to additive constant) Abel

integral G-
((a)G € A(R\{c0¥, 001)})

B log ¢+ O(1), ¢ — ool
< b)G(C)_{ —log ¢+ O(1), ¢ — ool

S~—"
—~
—_
(@)}
~—

[ ¢)g:= ReG — is single valued on R

7



and the additive constant can be fixed by condition:

d)g (z(o)> +g (z(l)) =:1g0+g1=0.
Let us note, that go(z) is Green function of zeroth sheet of Ry, the function
h:=G" € M(R) (17)

is single valued meromorphic function on R (it can be considered as continuation
of the defined in (4) function h from PRy to the whole Riemann surface (10)), it
has ¢ finite zeros on Ry (see (5)),

(M holz) =0, k=1,....g. (18)

We denote the splitted by a-cycles Riemann surface as follows:

g
R=R\J ar. (19)
k=1
By means of Abel integral (16) we define on R the function
d:=ef . (20)
We have R
1) ®eMR),
(I)()(Z) = é + ...
2) im0 1)
(I)l(Z) =L +

3) q)oq)lEl in @

(Here the lower index represents the branch of the function, i.e., from which
sheet of R the values are being taken). It is clear that the values of ® on the
zeroth sheet of R (i.e. ®y), coincide with the values of the defined in (6) function

®, being considered at C\ a, where a is the projection of a-cycles from the zeroth
sheet of R to C:

g
CLZ:UakZCLk:ﬂ'(ag))),k:L...,g. (22)
k=1
At the same time (see (21),(6) and (7)) we have ¢y = Ca and

APy =2nw,, k=1,...,¢. (23)
AV



3.3 Normalization of the initial BVP at the point oo
Let us proceed from the BVP (15) to the BVP for the function

Z =diag (cy", ;") Y diag (P,", ") ,
here {cg, c1} are normalization constants from 2)-(21). We have

(Z € HC\(AJa))

S Zy=Z_Jon AJa :

( Z(z)=14+0(}) , z—>x

where
G ol
2" B, R
J = on A, J:=diag <(I)(E;, ({_2) on a .
0 o 0— *1-
"

(24)

(25)

Taking into account the properties of ® (cm. (21),(23)), we transform the jump

(2T,
Dy
on A
J = 0 D1t -
b,
. 2minw —2Tinw _
\dzag(e ke ’C) onap, k=1,...,¢g

3.4 Opening of the local lenses

(26)

Let A;;L) be a Jordan arc in the upper half-plane connecting the points {ax, by},

Aé_) - be the similar arc in lower half-plane, ng) and ng_) be lens-shaped
domains, bounded with OLYY = A |A, and 0L = AUV |AL, &k =

1,...,9+ 1 correspondingly. Let us designate

g+1 g+1

AE) = |_| Agi), L®) .= |_| LZ(-i),
i=1 =1



and introduce matrix-function

1 0
D = 1 (I)() -n , (27>
w (I)l
Let us also define the function
(2D 'Vin L)
Z:={ zD inL" . (28)
Lz inC\{LWHYL}
The formulas (25)-(26) yield that Z satisfy the following BVP:
(Ze H(C\{aUaHUatUad)
 Z, =27 om{AULADUAOUa} . (29)
\ 2(2’):14—0(%) , 2 — 00
with the jump
(D on APYAL)
J=X W onA : (30)
|/ ona
where
W::(_Ol 7“5’) . (31)

The fact that the jumps on the contours a are identical, both inside and outside
the lenses, follows from the identity

JD, = D_J on a.

3.5 The limit external BVP

If we address to the explicit form (27) of the jump D on the external boundary
of the lenses A U A we see that beyond the endpoints this jump tends to

10



the identity matrix when n — co. Because of this, for obtaining the asymptotics
for the solutions of problems (29)-(30) we need to solve the following BVP:

(X e H(C\{AUa})

WatA

32
Jat a ’ (32)

X 4 X+:X{

_ 1
where, W is given in (31)

W:z( 0 1(;)) on A ,

1
w
and the jump on the projection a-cycle (see (26)) is

J = diag (e2mm"k, e_%mwk) onag, k=1,...,9.

The solution of this problem constitutes indeed the main (methodical) content
of this paper.

3.5.1 Szegd function (from the viewpoint of Riemann surface)

By means of the function h defined in (17), we modify the weight function w
(see (1)), defined on A:

wy, = i on A (33)
ho—

(wy, is analogue of "trigonometrical" weight for the polynomials orthogonal on

the segment. )
Let us define the function wy, on the contour 0Ry; separating the two sheets of

R:
I JANT
he wp, on A_

Let d¢,e,(¢) be meromorphic, single valued on R differential with simple poles
at the points &1, & and with residues +1 u —1 there correspondingly. Differential
of such kind can be called Cauchy differential (see [11]).
d . g__lgl + O(l) ) C - fl
d_<w§1€2 (C) - » . (34)
—s T 01), ¢—=¢&

11



Let us designate gthe point of 98 which has the same projection on C as the
point &, but belongs to the other sheet:

EEER - wE)=m(), £#E.

Definition. We shall call piecewise-holomorphic on ?%\89%1 function

FE) = exp d — / n () dD(Q) § , €€ MRy (35)

471

Szegd function of the weight function w.
Let us note the main properties of F:

/ ~

DFEFE) =1, vEeR,

< 2) Fi=F wy on O0Ro1 , (36)

3)Fy=F e on ay, k=1
\ + — v - k =L..9,

here the constants cgf ) have the form:

1
(k) .~
ey 5 In wy(¢) dQ2%(C) (37)
O0Ro1
and {dQ;(¢)}{_, is the basis of normalized holomorphic (of 1-st kind) Abel

differentials (see (11)):

/dwc): " /dwc):Bi,k, ik=1,...9, (39

a; bl

here 0 is Kronecker symbol, and the matrix ||B;g| is symmetric and has
positive defined imaginary part.
[J Let us prove the properties (36) - (see details in [11]).
1) All the residues of the differential dﬁgg(( )+ d&?gg(g ) equals zero.
2) From (35), taking into account 1), we have:
— [ Qa0 = 2 F(Q) = M F(©) ~ I FE) .

271
0Ro1

substituting into the left part
Inw, =InF, —InF_ |

12



by means of Sokhocky-Plemelj formulas (or Cauchy Residue Theorem) we obtain
the identity proving 2).
3) Follows from the well-known Riemann relation:

t€ap > d&}t_,_p(C) — d@t_p(C) = —QWZko<C) , k= 1,2, ... |

3.5.2 Limiting external problem with weight-independent jumps (the statement)

Let us consider the branches of Szegd function (defining vector Szegd function
on the plane):

F(z)=FY), 1=0,1,zeC, 2V en.

We have Fy, Fi € H (C\{AUa}) , For=Fzwyon A, u
F0+ — FO_€27TZ'C$)

, on ap, k=1,2....9.
F1+=F1 6—2772'055)

Let us note that Fjy coincides with the standard definition of Szegd function (see

(8)-(9))-

Let us have
F(z) = (Fo(2), F1(2)) , Fs := F(00) . (39)

We define (see (32)) _
X = FongF' (40)

Then for this function we have the following BVP:
(X e H(C\{AUda}) .

¢ X, =X_H on AJa, (41)

~

Xo=1

\

where for the jump matrix H, taking into account (33) and the boundary
properties of the Szegd vector-function components, we get:

( 0 —ihg-
( 1 ZOO ) on A
) tho—

. k

(42)

—27ri(nwk+c$f)

) e )} onap, k=1,...,9.

13



Thus, we have transformed our problem (32) into the problem (41)-(42) with
the jump on A (i.e. through b-cycle) being standard (independent of the weight
w) function h, and the jump through the projection of a-cycle being const for
allar , k=1,...,9.

We begin solution of this problem with constructing the function with the
jump H on A, and continuous passing through a. Next, by means of Riemann
theta-function, which is holomorphic on R (see (19)), i.e. continuous passing
through b-cycles, we satisty the boundary conditions on a.

3.5.3 Limiting external problem with weight-independent jumps (preliminaries)

1°. One standard scalar rational function on ‘R.

On the Riemann surface of zero genus (C, for instance) rational function
from R, class (single valued on this surface rational functions of the degree
n) could be defined (up to multiplicative constant) via arbitrary setting of the
position of n poles and n zeros. It is known (from Abel’s theorem), that on the
Riemann surface of genus g arbitrary positions could be taken up by all the zeros
and poles of rational function except g ones, position of which could be uniquely
determined from the position of others (this is why there are no single valued
rational functions from the class R; on the Riemann surface of genus > 1).

Let us define on fR the rational function y, which is multiple of the divisor

X € M(R) X s (43)

(0o 7t (29) .. (%))
i.e. we fix g+1 pole (one at the point ool and g poles at the zeros of hg function
projected on the first sheet (see (18)) and one zero at the point co(™). Other zeros
(g ones) take some determined positions so that x is singlevalued on fR.
Unique function of such kind exists, up to a multiplicative constant, which

we fix by the following condition:

X(€) =—€+..., £ = ool (44)
The other (not prescribed) zeros of x function on R we denote as
GYL X =0, j=1,....g. (15)

14



2°.Matrix function with the required jump on A.

We start with constructing the solution of the problem (41) with H| :=I.

a

I.e., we look for the function )~(, such that

(=
X e HC\AQ),

) )?+:)A(:_HOHA, (46)
X| =1I.

\ 00

Let us consider the function
X = (xoo ot ) — ( 1 th ) in C\A . (47)
10 T11 ixo —hoxi

Holomorphicity condition and normalization at the point oo for (44) follows
from the definitions of the functions h (em. (17)) u x = {x0, X1}, (see (43)-(44)).
Let us check the boundary conditions on A:

;’Z _ < oo+ To1+4+ > _ )’,} ( 01 iho_ > _ ihlo,xm_ —ihO—I'OO_
" Ti0+ Tii+ “\ —tp- 0 ihifﬂll— —tho-z10- |
(48)

We advert to the explicit form (47) of the function X and (taking into account
that hg— = —hoy on A) we get the identity.

3°. Some minimal information about Riemann theta-function.

Let us remind the basic facts about Riemann theta-function (some of them
were already listed in the item 3° of the section 2). Theta-function is the entire

function of g complex variables (uy, ug, ..., uy) =: U :
—090,...,00 g g g
0(u) = Z exp {Wi Z Z B,mum, + 271 Z myul,} ,
my,...,Myg p=1 v=1 v=1

where all the summation indices {m;}_; changes independently from —oo to
0o, and the matrix || B,, || is symmetric and has positive defined imaginary part.

If we take as variables of #(w) g Abel 1-st kind integrals with normalized holomorphic
differentials (see (38)):

¢
uy = / di(t) —er = (C) —er, ..., uy:=Qy(C) — ey,

Qg1

15



with arbitrary vector of complex constants

€:=(e1,...,eq),

and as matrix B — the matrix of b-periods of these integrals (38), then we obtain
the function of one variable ( € R which is called Riemann theta-function of
the surface fR:

019(¢) =0 ((¢) - 2) . (49)
Let us recall, basic properties of ©(9)((), (see details in, for instance, [11]) :

1) ©9() e HR), R:=R\a.

2) The function ©©(¢) has precisely g zeros on R (if it is not identically
equal to zero):

{¢,} - G(éj(cy):0, v=1,...,9.

These zeros are connected with the vector of constants e with the following
relation:

NE

() =e, — ky,, mod(periods) , v=1,...,¢, (50)
k=1

where k, are called Riemann constants and have the form (for arbitrary Riemann
surface of genus g):

k
1 1
ky§+53uu;/ﬂv(t)dﬂj(t)7 v=1....9.
v U

Thus, to obtain ©.(¢) with the fixed zeros in {{,}?_,, one should choose the
vector of constants by means of (50). Inverse problem of the search for {(,}7_;
satisfying the system (50) with the given right-hand sides, is called Jacobi

problem of Abel integrals inversion.
3) On the a-cycles the function ©9)(() satisfies the boundary condition
0L(¢) = 0'9(C) exp{mi Bj; + 2mi (A (() —e;}, (€ a5, j=1,...,9. (51)

Let us note that the problems (50) and (51) are equivalent in the following sense:
the aggregate of zeros of each nontrivial solution for BVP (51) on R forms the
solution for Jacobi problem (50) and, conversely, one can consider each solution
for (50) as the aggregate of zeros of some nontrivial solution for problem (51). Let

16



us also emphasize the following fact that is useful for applications: for arbitrary
vector of constants

c:=(c1,...,¢q),
the meromorphic on %R function (which is multiple of the ({¢,})™" see (50)) :
oy o 090
TED () = )t 52
on the a-cycles has the constant (independent of ¢) jumps:
Tf’g) = 7@ g=2mic, o a,, v=1,...,9. (53)

3.5.4 Solution of the limiting external BVP

Let us modify the function X (see (47))

5. ( _1 ihg > |
ixo —hoxi

keeping all the properties of the problem (46), except continuity on a-cycles, so
that that modified function acquires the constant jumps H on the projections
of a-cycles (see (42))

(k)

, : ()
H = diag {62”’(”“)”%

—27i(nwg+cw

)} onap, k=1,...,9.
Let us remind the notations. Projections of zeros of the function h (see (18)) are
-1
{m (2 Hier
and we denote the zeros x on R; as

{G Yoy -

By means of (50) we define two vectors of constants

¢ OO (ep) = 0
e 09 () =0

k=1,....q. (54)

Let us denote also (see (42)) vector of constants
Cow = (nwl +cM o nw, + cg’)) =: (c%lzu, e 07(1920) :

We consider two meromorphic functions on R (see (52)):

. O (¢ +enw)
T(@ 7Cn7u)) (C) — 6(6*)(C)(<) R
Sie , CENR.
@, Bow) 0 “tenu)(()
TEe0 = —gme

17



In view of (53) both of these functions have on a-cycle of R the jump

T, = T e~ 2minwted)) o ap, k=1,...,9g. (55)

Finally, let us denote the diagonal matrix of constants:

i { (1 e0) (1) ) (56

here lower index denotes the branch of the function (i.e. from which sheet of R
the values are being taken).
Let us consider the function

LR k(LT ()
X(2) =T . (57)
ixo(2) Ty ™ (2) —ho(2)x1(2) T ™) (2)

Now let us check that it is indeed the solution of the problem (41). First condition
(holomorphicity) follows from (54), (43). Third condition (normalization) is
consequence of (56) and 3) in (46). Let us check the jumps.

First, we look at the jump for the diagonal matrix H on the projection of
a-cycle from Ry to C. We have for ay,

N To+ thoT1+
X, =T =

ixoTor —hoxiTi+
T, o 2mici ihoT,_e?™ ek,
=T
X0 Ty e 2rics —hox1 Ty_e?micnn

Since that the projection of a-cycle from the sheet R; changes its orientation,
(55) yields the identity.
Now we look at the jump on A (projection of b-cycle). The functions T°
(see (52)), as well as x, are continuous on b-cycles, i.e.,
Tor =Tz, xox=x1 on A4
since that the role of T' (57) is analogical to the role of x, the jump of the matrix

(57) on A is the same as one of the matrix X (sce (48)).
Thus, (57) is indeed solution of (41). Summing up, we see that the function

X :=F XF!, (58)

where Fo , F are defined in (39), and X is defined in (57), is the solution of
external limiting BVP (32).
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3.6 Local BVPs

Let us get back to the BVP (29)-(31), (27). Since the jump D (see (27)) does not
tend uniformly to the identity matrix at the neighborhood of the A endpoints,
we should consider the local BVPs at the neighborhood of each endpoint. Let
e € {aj, bj}gzl; we consider the neighborhood O, of the point e. We look for the
solution of the following local BVP:

(U e HONAUAT YA,

(+) (-)
Uer = U, { o (59)

7\

W on A, 7

| Ue = (I +0(1))X on 00O,

Let us note that the problem (59) does not differ significantly from the correspon-
ding local BVP for the case when the set A consists of the single segment. The
only distinction is that in the boundary condition on the external boundary
function X (solution of the external limit BVP) is different. For the case of one
segment and orthogonality weight (1) local BVP is solved in [12]. In order to
obtain solution of the problem (59), we take the corresponding solution from
[12] and change X in it to X from (58).
We have
Ue = Ee‘/eAe )

where

-1
A, = diag {(@a”wl/Q) , @g”w1/2} ,
1

1
B - §X diag (w1/2,w_1/2)M€ diag (\/m, W) 3

here
1 —1 1 ,
Maj = —7 1 ) Mbj = i 1 v J = 17 cot 7g+17 @(Z) — _21qu)0(z)>

and in order to give the expression for V,, we introduce the matrices
Lo, (%) LK, (%)
W, = ,
nriod, (%) —ne K, (%)
and Uy, (the same matrix, as for ¥,,, but with a; changed to [3; second column
multiplied on -1). Now one can define V, in the sectors O} U Oéﬂ U Oé_) by the
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use of the following formulas:
( (

v, in OF, U, in O}
I 0 A 1 0\ . A
‘/ai — < \I’ai < eaﬂri 1 ) 1mn Oai : %1 - < \Ijbi (_6_52.7” 1 ) n Obi ’
1 0 . (9) 1 0 A (5)
\ \Ijai (_e—ami 1 ) n Oai \ \llbi < eﬁﬂri 1 ) 1 Obi

here O .= L® N0, , 07 := 0.\ {0 u oM.

3.7 The final transform and the asymptotic formulas

Let us consider the function

( 7X-1 in C\ {9'01 (OQJUOI,])}

J = < (60)

Zrr—1 . Cp 9+l
| ZU;" in O, €5 €{aj, b},

Analysis of the problems (59), (32) and (29) yields that

J e H(@\{(A<+> U A())\{QU Oy, ugU obj}}\{gu 90, U gU aobj}).

Jump on the break lines uniformly tends to the unitary matrix when n — oo

J+:J_Ebon Z, TTZZKI, n — oo,
0
and, eventually,
J(o00) = 1.
The standard arguments (see [12]|) make it possible to conclude:
J=1I in C, when n—oo. (61)

Substituting (14) into (24) and further into (28), we obtain
, R

(01@1)_n Ol_n " on K @ @\{L(+) U L(_)}

* x

N)
I

P, R, o
(Cio) " T (o) mw G| on K e {I®)

x *
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and, in view of (60), (61), we get

~

1
Z=I+0(=)X, n—oo,
n
which yields the following asymptotic formulas:
Po(2) = (C1®1(2)) "X11(2) (14 0(3))

. , z€c KeC\A,
B2 = () Xulo) (1+0()

as well as on A (62) easily yields

Ryi(z) = (@ix)) Xi91(2) (1 + O(%)) :

besides, for P, from (62) on A we get,

P, = (R£+ + (01@1+)_”X11+> (1+ O(%)) =

_ ((qii)n Az - (01‘1)1+)nX11+> (1+ O(%)) :

w

From the explicit form of the matrix X it is clear that
Xior = wXy— on A,

which yields that uniformly for x € K € A

Py(z) = {(C1®14(2)) " Xi1y(2) + C1®1-(2)) "Xu-(2)} (1+0(-)) .

Let us give the explicit form of the first row of the matrix X (see (57), (58)):

S

Fy(00) T\ )
Xll(Z) = 0( ) 0

z , Fy(oo T(e*’g’“”) z
0 )()  Xpa(2) = ihg @*05()) | ()7
Fo(z) 1% ) (00) T\ (o) Fi(2)

and remind the boundary properties of the functions Fy, Fi:

F()i = qu:ii oIl JAN ,
ho_

as well as explicit form of the function T'(¢" Guw)
0+ fl(()
©(¢)

T ) () 1=
This completes the proof of the Theorem.
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