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Àïòåêàðåâ À.È.
Àíàëèç ìàòðè÷íûõ çàäà÷ Ðèìàíà-Ãèëüáåðòà â ñëó÷àå âûñîêîãî ðîäà �
àñèìïòîòèêà ìíîãî÷ëåíîâ îðòîãîíàëüíûõ íà ñèñòåìå èíòåðâàëîâ 1

Àííîòàöèÿ. Ðàññìàòðèâàåòñÿ àäàïòàöèÿ ìåòîäà ìàòðè÷íîé çàäà÷è Ðèìà-
íà-Ãèëüáåðòà äëÿ ïîëó÷åíèÿ ñèëüíûõ àñèìïòîòèê ìíîãî÷ëåíîâ îðòîãîíàëü-
íûõ íà ñèñòåìå èíòåðâàëîâ äåéñòâèòåëüíîé îñè. Îñíîâíûì ìîìåíòîì ÿâ-
ëÿåòñÿ ïðèâëå÷åíèå òåòà-ôóíêöèé Ðèìàíà äëÿ ïîëó÷åíèÿ àñèìïòîòè÷åñêèõ
ôîðìóë. Ðàáîòà ìîòèâèðîâàíà ðàñïðîñòðàíåíèåì îáñóæäàåìîé ìåòîäèêè íà
êðàåâûå çàäà÷è äëÿ àíàëèòè÷åñêèõ ìàòðèö ôóíêöèé âûñîêèõ ðàçìåðíîñòåé
(áîëüøå ÷åì 2õ2). Èìåííî òàêèå çàäà÷è âîçíèêàþò ïðè àñèìïòîòè÷åñêîì
àíàëèçå àïïðîêñèìàöèé Ýðìèòà-Ïàäå. Ðàáîòà ïðîäîëæàåò ñåðèþ ìåòîäè-
÷åñêèõ ðàçðàáîòîê àñèìïòîòè÷åñêîé òåõíèêè ìàòðè÷íîé çàäà÷è Ðèìàíà-
Ãèëüáåðòà.

Aptekarev A. I.
Matrix Riemann-Hilbert analysis for the case of higher genus - asymptotics of
polynomials orthogonal on a system of intervals

Abstract
The method of the matrix Riemann-Hilbert problem is adapted for obtaining

the strong asymptotics of polynomials orthogonal on a system of intervals on the
real axis. The use of the Riemann theta-functions for deriving the asymptotical
formulas is the main ingredient of the approach. An extension of the technique
under consideration to Boundary Values Problems for analytic matrix functions
of higher dimensions (greater than 2x2) is the main motivation of the work.
Precisely this type of problem arise under asymptotical analysis of the Hermite-
Pade approximants. The paper is continuation of the series of the lecture notes
devoted to exposition of the "Riemann-Hilbert matrix problem"asymptotical
techniques.

1Ðàáîòà ÷àñòè÷íî ïîääåðæàíà ãðàíòîì íàó÷íûõ øêîë ÍØ-3906.2008.1, ïðîãðàììîé � 1 ÎÌÍ ÐÀÍ,
ãðàíòàìè ÐÔÔÈ-08-01-00179, ÐÔÔÈ-08-01-90409.



1 Introduction and the model problem statement
The present paper is methodical by nature. It is intended to adapt some tech-
niques connected with the Riemann theta-functions for obtaining the asymptotic
solutions of the matrix boundary value problems in multi-connected domains.
One should note that the methods discussed here have already been
developed in a renown paper [1] and used in a number of subsequent papers.
Nevertheless, we have found it worthwhile to get back to the simplest model
problem of such kind and to expound its solution in such a way that one could
use these methods to obtain solutions for boundary value problems for matrix
of order greater than (2 x 2) � exactly such problems arise in the asymptotic
analysis of the Hermite-Pade approximants (see [2], [3]). As a model problem we
have chosen the problem of obtaining asymptotics on a system of intervals on
the real axis. Of course a great number of papers is devoted to the asymptotical
formulas for this problem (including expressions of asymptotics in terms of
Riemann theta-functions) � see, for instance, [4], [5], [6], [7]. Hence, the result
which is proven here should not be regarded as a new one, and the present
paper in fact o�ers the material for some advanced course, continuing the series
of papers [8], [9], (see also [10]).

We start with the statement of the problem of �nding orthogonal polyno-
mials asymptotics. Let us consider a system of intervals

4 :=

g+1⋃

j=1

4j :=

g+1⋃

j=1

[aj, bj] ⊂ R ,

where the weight function is given by
w(z) := w0(z)(z − aj)

αj(z − bj)
βj , z ∈ 4j , j = 1, . . . , g + 1 , (1)

here the parameters satisfy αj, βj > −1 , and w0(z) is piecewise analytic in some
neighborhood of 4:

w0 ∈ H(4) , w0 > 0 on 4 .

Let us consider the system of monic orthogonal polynomials:

Pn(z) = zn + . . . :

∫

4

Pn(z) zνw(z) dz = 0 , ν = 0, . . . , n− 1 , (2)

and the corresponding functions of the second kind:

Rn(z) =

∫

4

Pn(x)w(x) dx

x− z
=

1

Pn(z)

∫

4

P 2
n(x)w(x) dx

x− z
=

mn

zn+1
+ . . . . (3)

Our goal is to �nd the asymptotics of Pn(z) è Rn(z) as n →∞.
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2 Statement of the result
We start with an introduction of some basic notions which we shall use to state
desired asymptotic formulas.

1◦. Standard functions of multi-connected domain geometry.
Let us denote G the complex Green function of the domain Ω := C\4,

(with singularity at the point ∞). Its derivative is analytic in Ω

h(z) := G′(z) =
1

z
+ . . . ∈ H(Ω) , (4)

it has g �nite zeros
{z∗k}g

k=1 : h(z∗k) = 0 . (5)
We denote

Φ(z) := eG(z) =
z

C4
+ . . . , (6)

this function has single valued absolute value in Ω; we denote the changes of its
argument around the contours encircling the segments

4
4k

arg Φ = : 2πωk , k = 1, . . . , g . (7)

We consider also the harmonic measures of the domain Ω

{ωk(z)}g+1
k=1 : a) ωk ∈ Harm(Ω) , b) ωk|4l

= δk, l , k, l = 1, . . . g + 1 ,

then (see [4]) in (7) we have ωk = ωk(∞).

2◦. Standard function related to the weight � Szeg�o function.
Let F ∈ A(Ω), F 6= 0, is a solution of the boundary value problem

|F |2i w

h−
= 1 on 4 , (8)

where w is weight function (1), and h− is the boundary value of function (4)
corresponding to approaching4 from below. Function F is called Szeg�o function
for weight w. It has single valued absolute value and multi valued argument,
change of which we denote by

4
4k

arg F = : 2πc(k)
w . (9)

By the use of harmonic measures (see [4]) we have

c(k)
w = − 1

4π

∮

4k

log

(
i
w

h−
(ξ)

)
∂ωk

∂nξ
(ξ) |dξ| .

4



3◦. Standard functions of Riemann surface.
Let

R := R0

⋃
R1 , Ri := C \4 , ∂R01 := 4+

⊔
4− , (10)

be two-sheeted Riemann surface, and {ak}g
k=1 , {bk}g

k=1 be its homological cycles
(cycle ak starts and ends at a point of the segment 4g+1, crossing the segment
4k through both sheets of the Riemann surface, accordingly, cycle bk encircles
the segment 4k, i.e. bk := 4k+

⊔4k−). On R vector of normalized Abel 1st
kind integrals is de�ned:

−→
Ω(ζ) := {Ωk(ζ)}g

k=1 , ζ ∈ R : (4
a l

Ωk = δk, l ; 4
b l

Ωk = Bk, l) , (11)

where the matrix {Bk, l} has positive de�nite imaginary part.
(The function Ωk could be considered as a continuation of the harmonic measure
functions 1

2(ωk + ω̃k) =: Ωk c R0 on the whole Riemann surface (10))
Let

θ(u1, . . . , ug) :=

−∞,...,∞∑
m1,...,mg

exp

{
π i

g∑
µ=1

g∑
ν=1

Bµνmµmν + 2π i

g∑
ν=1

mνuν

}
,

be multiple series of g variables, with parameter matrix {Bµν}.
For an arbitrary vector ~e ∈ Cg theta-function of the Riemann surface

R (with the parameters Bµ,ν) is de�ned via substitution of the coordinates of
vector ~Ω(ζ)− ~e as multiple series variables θ

Θ(~e)(ζ) := θ
(
~Ω(ζ)− ~e

)
. (12)

Eventually, we obtain the function of one variable ζ ∈ R, which has the following
basic properties:

A) Θ(~e) ∈ H(R \ {
g⋃

j=1
aj}) ;

B) ∃ {ζ̇k}g
k=1 : Θ(~e)(ζ̇k) = 0 , k = 1, . . . , g ;

(13)

at that if Θ(~e) does not identically equal zero , then it has no other zeros, and
there exists isomorphism between the vectors ~e and {ζ̇k}g

k=1.

4◦. Asymptotics of the orthogonal polynomials.
Let us de�ne vector of constants with the condition

~e : Θ(~e)(π−1
1 (z∗k)) = 0 , k = 1, . . . , g ,
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where π−1
1 (z) denotes a raising of a point z from the complex plane to R1 sheet

of the Riemann surface (10), (correspondingly, π : R → C, and we recall (5)).
We take the vector of constants (see (7), (9))

~cnw :=
(
nω1 + c(1)

w , . . . , nωg + c(g)
w

)
,

and de�ne the function

T (~e,~cn,w)(ζ) :=
Θ(~e+~cn,w)(ζ)

Θ(~e)(ζ)
= : (T0, T1) ,

where T0 and T1 denotes the values of the function T (~e,~cn,w), correspondingly on
the zeroth and �rst sheets of Riemann surface (10).

Finally, let us designate (see (4), (8) )

XP (z) : =
F (z)

F (∞)

T0(z)

T0(∞)
, XR(z) : =

ih(z)

F (z)F (∞)

T1(z)

T0(∞)
.

We prove

Theorem 2.1 Using introduced notations, polynomials (2), which are ortho-
gonal with respect to weight (1), and the second kind functions (3) have the
following asymptotics:





Pn(z) = (C4Φ(z))nXP (z) (1 + O( 1
n))

Rn(z) =

(
C4
Φ(z)

)n

XR(z) (1 + O( 1
n))

,

uniformly on the compact sets z ∈ K b Ω , and




Pn(x) =
({(C4Φ(x))nXP (x)}+ + {(C4Φ(x))nXP (x)}−

)
(1 + O( 1

n))

Rn±(x) =

(
C4

Φ(x)

)n

±
XR±(x) (1 + O( 1

n))
,

uniformly on the compact sets x ∈ K b 4 .

Remark. One should note, that the obtained formulas di�ers from the
corresponding ones for the polynomials which are orthogonal on the one interval
with presence of theta-functions T0 and T1 ratio. Besides, zeros of the theta-
function Θ(~e+~cn,w) are distributed between "spurious" zeros of Pn and "spurious"
additional interpolations � �nite zeros of Rn.
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3 Proof of the Theorem
3.1 Statement of the matrix boundary value problem
It is well-known (and can be easily shown on the base of (2),(3)), that the matrix




Pn Rn

1
mn−1

Pn−1
1

mn−1
Rn−1


 =: Y , (14)

is the unique solution of the following matrix Riemann-Hilbert problem:



Y ∈ H2×2(C\4) , ∃ Y ∈ C(
◦
4) ,

Y+ = Y−W on
◦
4 ,

Y (z)
∣∣∣
z→e

=

(
O(1) O(εe)
O(1) Oεe)

)
,

Y (z)
∣∣∣
z→∞

=
(
I + O

(1
z

))
diag {zn, z−n} ,

(15)

Here
◦
4 is the set of interior points of the segments 4, e belongs to the set of

endpoints 4 : e ∈
g+1⋃
j=1
{aj, bj}, and εe depends on the singularity exponent αe

of the weight function w (see (1)) at the endpoint e

εe : =




|z − ae|αe αe ∈ (−1, 0)
log |z − ae| αe = 0
1 αe > 0

, αe ∈
g+1⋃

j=1

{αj, βj} .

At last, the jump matrix is:

W :=

(
1 w

0 1

)
.

Our goal is to �nd asymptotics of the problem (15) solution for n →∞.

3.2 Geometry of the problem
On the Riemann surface R there exists unique (up to additive constant) Abel
integral G: 




a) G ∈ A (
R\{∞(0),∞(1)})

b) G(ζ) =

{
log ζ + O(1) , ζ →∞(0)

− log ζ + O(1) , ζ →∞(1)

c) g : = Re G− is single valued on R

, (16)
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and the additive constant can be �xed by condition:

c′)g
(
z(0)

)
+ g

(
z(1)

)
=: g0 + g1 = 0 .

Let us note, that g0(z) is Green function of zeroth sheet of R0, the function

h := G′ ∈ M(R) (17)

is single valued meromorphic function on R (it can be considered as continuation
of the de�ned in (4) function h from R0 to the whole Riemann surface (10)), it
has g �nite zeros on R0 (see (5)),

{z∗k}g
k=1 : h0(z

∗
k) = 0 , k = 1, . . . , g . (18)

We denote the splitted by a-cycles Riemann surface as follows:

R̂ := R\
g⋃

k=1

ak . (19)

By means of Abel integral (16) we de�ne on R the function

Φ := eG . (20)

We have
1) Φ ∈ M(R̂) ,

2)





Φ0(z) = z
c0

+ . . .

Φ1(z) = 1
c1z

+ . . .

, z →∞

3) Φ0Φ1 ≡ 1 in C .

(21)

(Here the lower index represents the branch of the function, i.e., from which
sheet of R the values are being taken). It is clear that the values of Φ on the
zeroth sheet of R̂ (i.e. Φ0), coincide with the values of the de�ned in (6) function
Φ, being considered at C\a, where a is the projection of a-cycles from the zeroth
sheet of R to C:

a :=

g⋃

k=1

ak : ak = π(a(0)
k ) , k = 1, . . . , g . (22)

At the same time (see (21),(6) and (7)) we have c0 = C4 and

4
4k

Φ0 = 2πωk , k = 1, . . . , g . (23)
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3.3 Normalization of the initial BVP at the point ∞
Let us proceed from the BVP (15) to the BVP for the function

Z := diag (c−n
0 , c−n

1 ) Y diag (Φ−n
0 , Φ−n

1 ) , (24)

here {c0, c1} are normalization constants from 2)-(21). We have




Z ∈ H(C\(4⋃
a))

Z+ = Z−J on 4⋃
a

Z(z) = I + O
(1

z

)
, z →∞

, (25)

where

J :=




Φ−n
0+

Φ−n
0−

Φ−n
1+

Φ−n
0−

w

0
Φ−n

1+

Φ−n
1−




on 4 , J := diag

(
Φ−n

0+

Φ−n
0−

,
Φ−n

1+

Φ−n
1−

)
on a .

Taking into account the properties of Φ (ñì. (21),(23)), we transform the jump

J : =








(
Φ0+

Φ0−

)−n

w

0

(
Φ1+

Φ1−

)−n




on 4

diag
(
e2πinωk, e−2πinωk

)
on ak , k = 1, . . . , g

. (26)

3.4 Opening of the local lenses
Let 4(+)

k be a Jordan arc in the upper half-plane connecting the points {ak, bk},
4(−)

k - be the similar arc in lower half-plane, L
(+)
k and L

(−)
k be lens-shaped

domains, bounded with ∂L
(+)
k = 4(+)

k

⊔4k and ∂L
(−)
k = 4(−)

k

⊔4k, k =
1, . . . , g + 1 correspondingly. Let us designate

4(±) :=

g+1⊔
i=1

4(±)
i , L(±) :=

g+1⊔
i=1

L
(±)
i ,

9



and introduce matrix-function

D :=




1 0

1

w

(
Φ0

Φ1

)−n

1


 . (27)

Let us also de�ne the function

Ẑ :=





z D−1 in L(+)

z D in L(−)

z in C\{
L(+) ⋃ L(−)

}
. (28)

The formulas (25)-(26) yield that Ẑ satisfy the following BVP:




Ẑ ∈ H
(
C\{4⋃4(+) ⋃4(−) ⋃ a})

Ẑ+ = Ẑ− Ĵ on {4⋃4(+) ⋃4(−) ⋃ a}

Ẑ(z) = I + O
(1

z

)
, z →∞

. (29)

with the jump

Ĵ :=





D on 4(+) ⋃4(−)

W̃ on 4

J on a

, (30)

where
W̃ :=

(
0 w

− 1
w 0

)
. (31)

The fact that the jumps on the contours a are identical, both inside and outside
the lenses, follows from the identity

J D+ = D− J on a .

3.5 The limit external BVP
If we address to the explicit form (27) of the jump D on the external boundary
of the lenses 4(+) ⋃4(−), we see that beyond the endpoints this jump tends to

10



the identity matrix when n →∞. Because of this, for obtaining the asymptotics
for the solutions of problems (29)-(30) we need to solve the following BVP:

X :





X ∈ H
(
C\{4⋃

a})

X+ = X−

{
W̃ at 4
J at a

X(z) = I + O
(1

z

)

, (32)

where, W̃ is given in (31)

W̃ :=

(
0 w

− 1
w 0

)
on 4 ,

and the jump on the projection a-cycle (see (26)) is

J := diag
(
e2πinωk, e−2πinωk

)
on ak , k = 1, . . . , g .

The solution of this problem constitutes indeed the main (methodical) content
of this paper.

3.5.1 Szeg�o function (from the viewpoint of Riemann surface)

By means of the function h de�ned in (17), we modify the weight function w

(see (1)), de�ned on 4:
wh : = i

w

h0−
on 4 (33)

(wh is analogue of "trigonometrical" weight for the polynomials orthogonal on
the segment.)
Let us de�ne the function wh on the contour ∂R01 separating the two sheets of
R:

wh :=

{
wh on 4+

wh on 4−
.

Let dω̂ξ1ξ2
(ζ) be meromorphic, single valued on R̂ di�erential with simple poles

at the points ξ1, ξ2 and with residues +1 è −1 there correspondingly. Di�erential
of such kind can be called Cauchy di�erential (see [11]).

d

dζ
ω̂ξ1ξ2

(ζ) =





1
ζ−ξ1

+ O(1) , ζ → ξ1

−1
ζ−ξ2

+ O(1) , ζ → ξ2

. (34)

11



Let us designate ξ̃ the point of R which has the same projection on C as the
point ξ, but belongs to the other sheet:

ξ, ξ̃ ∈ R : π(ξ) = π(ξ̃) , ξ 6= ξ̃ .

De�nition. We shall call piecewise-holomorphic on R̂\∂R01 function

F(ξ) := exp





1

4πi

∫

∂R01

ln wh(ζ) dω̂ξξ̃(ζ)



 , ξ ∈ R̂\∂R01 (35)

Szeg�o function of the weight function w.
Let us note the main properties of F :





1)F(ξ)F(ξ̃) ≡ 1 , ∀ξ ∈ R ,

2)F+ = F−wh on ∂R01 ,

3)F+ = F− e 2πic
(k)
w on ak , k = 1, . . . , g ,

(36)

here the constants c
(k)
w have the form:

c(k)
w := − 1

2πi

∫

∂R01

ln wh(ζ) dΩk(ζ) , (37)

and {dΩk(ζ)}g
k=1 is the basis of normalized holomorphic (of 1-st kind) Abel

di�erentials (see (11)):
∫

ai

dΩk(ζ) = δi,k ,

∫

bi

dΩk(ζ) = Bi,k , i, k = 1, . . . , g , (38)

here δi,k is Kronecker symbol, and the matrix ‖Bi,k‖ is symmetric and has
positive de�ned imaginary part.
¤ Let us prove the properties (36) - (see details in [11]).
1) All the residues of the di�erential dω̂ξξ̃(ζ) + dω̂ξ̃ξ(ζ) equals zero.
2) From (35), taking into account 1), we have:

1

2πi

∫

∂R01

ln wh(ζ) dω̂ξξ̃(ζ) = 2 lnF(ξ) = lnF(ξ)− lnF(ξ̃) ,

substituting into the left part

ln wh = lnF+ − lnF− ,

12



by means of Sokhocky-Plemelj formulas (or Cauchy Residue Theorem) we obtain
the identity proving 2).
3) Follows from the well-known Riemann relation:

t ∈ ak ⇒ dω̂t+p(ζ)− dω̂t−p(ζ) = −2πi dΩk(ζ) , k = 1, 2, . . . , g . ¥

3.5.2 Limiting external problem with weight-independent jumps (the statement)

Let us consider the branches of Szeg�o function (de�ning vector Szeg�o function
on the plane):

Fl(z) := F(z(l)) , l = 0, 1 , z ∈ C , z(l) ∈ Rl .

We have F0, F1 ∈ H
(
C\{4⋃

a}) , F0± = F1∓wh on 4 , è




F0+ = F0−e 2πic
(k)
w

F1+ = F1−e− 2πic
(k)
w

, on ak , k = 1, 2, . . . , g .

Let us note that F0 coincides with the standard de�nition of Szeg�o function (see
(8)-(9)).

Let us have

F (z) := (F0(z), F1(z)) , F∞ := F (∞) . (39)

We de�ne (see (32))
X̃ := F−1

∞ X F . (40)
Then for this function we have the following BVP:





X̃ ∈ H
(
C\{4⋃

a}) ,

X̃+ = X̃−H on 4⋃
a ,

X̃∞ = I ,

(41)

where for the jump matrix H, taking into account (33) and the boundary
properties of the Szeg�o vector-function components, we get:

H :=





(
0 −ih0−
1

ih0−
0

)
on 4

diag
{

e 2πi(nωk+c
(k)
w ), e−2πi(nωk+c

(k)
w )

}
on ak , k = 1, . . . , g .

(42)

13



Thus, we have transformed our problem (32) into the problem (41)-(42) with
the jump on 4 (i.e. through b-cycle) being standard (independent of the weight
w) function h, and the jump through the projection of a-cycle being const for
all ak , k = 1, . . . , g.

We begin solution of this problem with constructing the function with the
jump H on 4, and continuous passing through a. Next, by means of Riemann
theta-function, which is holomorphic on R̂ (see (19)), i.e. continuous passing
through b-cycles, we satisfy the boundary conditions on a.

3.5.3 Limiting external problem with weight-independent jumps (preliminaries)

1◦. One standard scalar rational function on R.

On the Riemann surface of zero genus (C, for instance) rational function
from Rn class (single valued on this surface rational functions of the degree
n) could be de�ned (up to multiplicative constant) via arbitrary setting of the
position of n poles and n zeros. It is known (from Abel's theorem), that on the
Riemann surface of genus g arbitrary positions could be taken up by all the zeros
and poles of rational function except g ones, position of which could be uniquely
determined from the position of others (this is why there are no single valued
rational functions from the class R1 on the Riemann surface of genus > 1).

Let us de�ne on R the rational function χ, which is multiple of the divisor

χ ∈ M(R) :
(∞(0))

(∞(1) π−1
1 (z∗1) . . . π−1

1 (z∗g))

∣∣∣∣∣ χ , (43)

i.e. we �x g+1 pole (one at the point∞(1) and g poles at the zeros of h0 function
projected on the �rst sheet (see (18)) and one zero at the point∞(1). Other zeros
(g ones) take some determined positions so that χ is singlevalued on R.

Unique function of such kind exists, up to a multiplicative constant, which
we �x by the following condition:

χ(ξ) = −ξ + . . . , ξ →∞(1) . (44)

The other (not prescribed) zeros of χ function on R we denote as

{ζj}g
j=1 : χ(ζj) = 0 , j = 1, . . . , g . (45)
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2◦.Matrix function with the required jump on 4.

We start with constructing the solution of the problem (41) with H
∣∣∣
a

:= I.

I.e., we look for the function ˜̃
X , such that




˜̃
X ∈ H(C\4) ,

˜̃
X+ =

˜̃
X−H on 4 ,

˜̃
X

∣∣∣∣
∞

= I .

(46)

Let us consider the function
˜̃
X :=

(
x00 x01

x10 x11

)
=

(
1 ih0

iχ0 −h0χ1

)
in C\4 . (47)

Holomorphicity condition and normalization at the point∞ for (44) follows
from the de�nitions of the functions h (ñì. (17)) è χ = {χ0, χ1}, (see (43)-(44)).

Let us check the boundary conditions on 4:

˜̃
X+ =

(
x00+ x01+

x10+ x11+

)
=

˜̃
X−

(
0 ih0−

−i 1
h0−

0

)
=

(
1

ih0−
x01− −ih0−x00−

1
ih0−

x11− −ih0−x10−

)
.

(48)
We advert to the explicit form (47) of the function ˜̃

X and (taking into account
that h0− = −h0+ on 4) we get the identity.

3◦. Some minimal information about Riemann theta-function.
Let us remind the basic facts about Riemann theta-function (some of them

were already listed in the item 3◦ of the section 2). Theta-function is the entire
function of g complex variables (u1, u2, . . . , ug) =: ~u :

θ(~u) :=

−∞,...,∞∑
m1,...,mg

exp

{
π i

g∑
µ=1

g∑
ν=1

Bµνmµmν + 2π i

g∑
ν=1

mνuν

}
,

where all the summation indices {mj}g
j=1 changes independently from −∞ to

∞, and the matrix ‖Bµν‖ is symmetric and has positive de�ned imaginary part.
If we take as variables of θ(~u) g Abel 1-st kind integrals with normalized holomorphic
di�erentials (see (38)):

u1 :=

ζ∫

ag+1

dΩ1(t)− e1 =: Ω1(ζ)− e1 , . . . , ug := Ωg(ζ)− eg ,
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with arbitrary vector of complex constants

~e := (e1, . . . , eg) ,

and as matrix B � the matrix of b-periods of these integrals (38), then we obtain
the function of one variable ζ ∈ R which is called Riemann theta-function of
the surface R:

Θ(~e)(ζ) := θ
(
~Ω(ζ)− ~e

)
. (49)

Let us recall, basic properties of Θ(~e)(ζ), (see details in, for instance, [11]) :

1) Θ(~e)(ζ) ∈ H(R̂) , R̂ := R\ a .

2) The function Θ(~e)(ζ) has precisely g zeros on R (if it is not identically
equal to zero):

{ζν} : Θ(~e)(ζν) = 0 , ν = 1, . . . , g .

These zeros are connected with the vector of constants e with the following
relation:

g∑

k=1

Ωk(ζν) ≡ eν − kν , mod (periods) , ν = 1, . . . , g , (50)

where kν are called Riemann constants and have the form (for arbitrary Riemann
surface of genus g):

kν = −1

2
+

1

2
Bνν −

k∑
j=1
j 6=ν

∫

aj

Ων−(t) dΩj(t) , ν = 1, . . . , g .

Thus, to obtain Θe(ζ) with the �xed zeros in {ζν}g
ν=1, one should choose the

vector of constants by means of (50). Inverse problem of the search for {ζν}g
ν=1

satisfying the system (50) with the given right-hand sides, is called Jacobi
problem of Abel integrals inversion.

3) On the a-cycles the function Θ(~e)(ζ) satis�es the boundary condition

Θ
(~e)
+ (ζ) = Θ

(~e)
− (ζ) exp{π iBjj + 2π i (Ω+

j (ζ)− ej}, ζ ∈ aj , j = 1, . . . , g . (51)

Let us note that the problems (50) and (51) are equivalent in the following sense:
the aggregate of zeros of each nontrivial solution for BVP (51) on R forms the
solution for Jacobi problem (50) and, conversely, one can consider each solution
for (50) as the aggregate of zeros of some nontrivial solution for problem (51). Let
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us also emphasize the following fact that is useful for applications: for arbitrary
vector of constants

~c := (c1, . . . , cg) ,

the meromorphic on R̂ function (which is multiple of the ({ζν})−1 see (50)) :

T (~e,~c)(ζ) :=
Θ(~e+~c)(ζ)

Θ(~e)(ζ)

∣∣∣ ({ζν})−1 (52)

on the a-cycles has the constant (independent of ζ) jumps:

T
(~e,~c)
+ = T

(~e,~c)
− e−2π i cν on aν , ν = 1, . . . , g . (53)

3.5.4 Solution of the limiting external BVP

Let us modify the function ˜̃
X (see (47))
˜̃
X :=

(
1 ih0

iχ0 −h0χ1

)
,

keeping all the properties of the problem (46), except continuity on a-cycles, so
that that modi�ed function acquires the constant jumps H on the projections
of a-cycles (see (42))

H := diag
{

e 2πi(nωk+c
(k)
w ), e−2πi(nωk+c

(k)
w )

}
on ak , k = 1, . . . , g .

Let us remind the notations. Projections of zeros of the function h (see (18)) are
{π−1

1 (z∗k)}g
k=1 ,

and we denote the zeros χ on R1 as
{ζk}g

k=1 .

By means of (50) we de�ne two vectors of constants
e∗ : Θ(e∗)(π−1

1 (z∗k)) = 0

ẽ : Θ(ẽ) (ζk) = 0
, k = 1, . . . , g . (54)

Let us denote also (see (42)) vector of constants

~cn,w :=
(
nω1 + c(1)

w , . . . , nωg + c(g)
w

)
=: (c(1)

n,w, . . . , c(g)
n,w) .

We consider two meromorphic functions on R̂ (see (52)):

T (e∗, ~cn,w)(ζ) :=
Θ (e∗+~cn,w)(ζ)

Θ(e∗)(ζ)

T (ẽ , ~cn,w)(ζ) :=
Θ (ẽ+~cn,w)(ζ)

Θ(ẽ)(ζ)

, ζ ∈ R̂ .
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In view of (53) both of these functions have on a-cycle of R the jump

T+ = T−e−2π i (nωk+c
(k)
w ) on ak, k = 1, . . . , g . (55)

Finally, let us denote the diagonal matrix of constants:

T−1
∞ :=

{(
T

(e∗, ~cn,w)
0 (∞)

)−1
,

(
T

(ẽ, ~cn,w)
1 (∞)

)−1
}

, (56)

here lower index denotes the branch of the function (i.e. from which sheet of R

the values are being taken).
Let us consider the function

X̃(z) := T−1
∞




T
(e∗, ~cn,w)
0 (z) ih0(z)T

(e∗, ~cn,w)
1 (z)

iχ0(z) T
(ẽ, ~cn,w)
0 (z) −h0(z)χ1(z) T

(ẽ, ~cn,w)
1 (z)


 . (57)

Now let us check that it is indeed the solution of the problem (41). First condition
(holomorphicity) follows from (54), (43). Third condition (normalization) is
consequence of (56) and 3) in (46). Let us check the jumps.

First, we look at the jump for the diagonal matrix H on the projection of
a-cycle from R0 to C. We have for ak

X̃+ := T−1
∞




T0+ ih0T1+

iχ0 T0+ −h0χ1 T1+


 =

= T−1
∞




T0−e−2π i c
(k)
n,w ih0T1−e2π i c

(k)
n,w

iχ0 T0−e−2π i c
(k)
n,w −h0χ1 T1−e2π i c

(k)
n,w


 .

Since that the projection of a-cycle from the sheet R1 changes its orientation,
(55) yields the identity.

Now we look at the jump on 4 (projection of b-cycle). The functions T

(see (52)), as well as χ, are continuous on b-cycles, i.e.,
T0± = T1∓ , χ0± = χ1∓ on 4 ;

since that the role of T (57) is analogical to the role of χ, the jump of the matrix
(57) on 4 is the same as one of the matrix ˜̃

X (see (48)).
Thus, (57) is indeed solution of (41). Summing up, we see that the function

X := F∞X̃ F−1 , (58)

where F∞ , F are de�ned in (39), and X̃ is de�ned in (57), is the solution of
external limiting BVP (32).
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3.6 Local BVPs
Let us get back to the BVP (29)-(31), (27). Since the jump D (see (27)) does not
tend uniformly to the identity matrix at the neighborhood of the 4 endpoints,
we should consider the local BVPs at the neighborhood of each endpoint. Let
e ∈ {aj, bj}g

j=1; we consider the neighborhood Oe of the point e. We look for the
solution of the following local BVP:





Ue ∈ H(Oe\{4e

⋃4(+)
e

⋃4(−)
e }) ,

Ue+ = Ue−

{
D on 4(+)

e
⋃4(−)

e

W̃ on 4e

,

Ue = (I + o(1))X on ∂Oe .

(59)

Let us note that the problem (59) does not di�er signi�cantly from the correspon-
ding local BVP for the case when the set 4 consists of the single segment. The
only distinction is that in the boundary condition on the external boundary
function X (solution of the external limit BVP) is di�erent. For the case of one
segment and orthogonality weight (1) local BVP is solved in [12]. In order to
obtain solution of the problem (59), we take the corresponding solution from
[12] and change X in it to X from (58).

We have
Ue = EeVeAe ,

where
Ae = diag

{(
Φ−n

0 w1/2
)−1

, Φ−n
0 w1/2

}
,

Ee :=
1

2
X diag (w1/2, w−1/2) Me diag

(√
π n ϕ,

1√
π n ϕ

)
;

here

Maj
:=

(
1 −i

−i 1

)
, Mbj

:=

(
1 i

i 1

)
, j = 1, . . . , g +1, ϕ(z) = −2 log Φ0(z),

and in order to give the expression for Ve, we introduce the matrices

Ψai
:=




Iαi

(
nϕ
2

)
i
πKαi

(
nϕ
2

)

nπ i ϕ1I
′
αi

(
nϕ
2

) −nϕ1 K ′
αi

(
nϕ
2

)


 ,

and Ψbi
(the same matrix, as for Ψai

, but with αi changed to βi second column
multiplied on -1). Now one can de�ne Ve in the sectors O∗

e ∪O
(+)
e ∪O

(−)
e by the
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use of the following formulas:

Vai
:=





Ψai
in O∗

ai

Ψai

(
1 0

eαiπ i 1

)
in O

(+)
ai

Ψai

(
1 0

−e−αiπ i 1

)
in O

(−)
ai

, Vbi
:=





Ψbi
in O∗

bi

Ψbi

(
1 0

−e−βiπ i 1

)
in O

(+)
bi

Ψbi

(
1 0

eβiπ i 1

)
in O

(−)
bi

,

here O
(±)
e := L(±) ∩Oe , O∗

e := Oe \ {O(+)
e ∪O

(−)
e }.

3.7 The �nal transform and the asymptotic formulas
Let us consider the function

J :=





ẐX−1 in C\
{

g+1⋃
j=1

(
Oaj

⋃
Obj

)
}

ẐU−1
ej

in Oej
, ej ∈ {aj, bj}g+1

j=1

. (60)

Analysis of the problems (59), (32) and (29) yields that

J ∈ H

(
C \

{
(4(+) ∪4(−))\

{
g+1⋃

j=1

Oaj
∪

g+1⋃

j=1

Obj

}}
\
{

g+1⋃

j=1

∂Oaj
∪

g+1⋃

j=1

∂Obj

})
.

Jump on the break lines uniformly tends to the unitary matrix when n →∞
J+ = J−Ĩn on

∑
0

, Ĩn ⇒ I , n →∞ ,

and, eventually,
J(∞) = 1.

The standard arguments (see [12]) make it possible to conclude:
J ⇒ I in C , when n →∞ . (61)

Substituting (14) into (24) and further into (28), we obtain

Ẑ =








Pn

(C1Φ1)−n

Φ−n
1

C−n
1

Rn

∗ ∗


 on K b C\{L(+) ⋃ L(−)}




Pn

(C1Φ1)−n
∓ Rn

(C1Φ1)−nw

Φ−n
1

C−n
1

Rn

∗ ∗


 on K b {L(±)}

, (62)
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and, in view of (60), (61), we get

Ẑ = (I + O(
1

n
))X , n →∞ ,

which yields the following asymptotic formulas:




Pn(z) = (C1Φ1(z))−nX11(z) (1 + O( 1
n))

Rn(z) =

(
C1

Φ1(z)

)−n

X12(z) (1 + O( 1
n))

, z ∈ K b C\4 ,

as well as on 4 (62) easily yields

Rn±(x) =

(
C1

Φ1±(x)

)−n

X12±(z) (1 + O(
1

n
)) ,

besides, for Pn from (62) on 4 we get

Pn =

(
Rn+

w
+ (C1Φ1+)−nX11+

)
(1 + O(

1

n
)) =

=

((
C1

Φ1+

)−n
X12+

w
+ (C1Φ1+)−nX11+

)
(1 + O(

1

n
)) .

From the explicit form of the matrix X it is clear that

X12+ = wX11− on 4 ,

which yields that uniformly for x ∈ K b 4

Pn(x) =
{
(C1Φ1+(x))−nX11+(x) + C1Φ1−(x))−nX11−(x)

}
(1 + O(

1

n
)) .

Let us give the explicit form of the �rst row of the matrix X (see (57), (58)):

X11(z) :=
F0(∞)

F0(z)

T
(e∗, ~cnw)
0 (z)

T
(e∗, ~cnw)
0 (∞)

; X12(z) := ih0
F0(∞)

T
(e∗, ~cnw)
0 (∞)

T
(e∗, ~cnw)
1 (z)

F1(z)
,

and remind the boundary properties of the functions F0, F1:

F0± = F1∓i
w

h0−
on 4 ,

as well as explicit form of the function T (e∗, ~cn,w)

T (e∗, ~cn,w)(ζ) :=
Θ (e∗+ ~cn,w)(ζ)

Θ e∗(ζ)
.

This completes the proof of the Theorem. ¥
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