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Abstract 
 

The paper presents the results of the investigation of the measurement data 
obtained onboard the spacecraft Foton M-2 by the triaxial accelerometer TAS3. 
TAS3 had a sample rate equal to 1000 readings per second and produced the data 
in a wide spectral range. We extracted the low-frequency component from those 
data and compared it with its calculation analog that was obtained by reconstruc-
tion of the spacecraft attitude motion. The spectral analysis of functions presenting 
the both results was done. It confirmed the influence of the Earth magnetic field 
upon the measurement data. When we made a correction for this influence and re-
fined the position of the accelerometer onboard the spacecraft the results obtained 
in these both ways, coincided with each other very exactly (the mean-root-square 
error doesn't exceed 610  m/s 2 ). 

 
Т. Бойзелинк, К. Ван Бавинхов, В.В. Сазонов, С.Ю. Чебуков. Ана-

лиз низкочастотной составляющей в измерениях микроускорения, вы-
полненных на спутнике Фотон М-2. Исследована низкочастотная состав-
ляющая в данных измерений микроускорения, выполненных на спутнике 
Фотон М-2 трехкомпонентным акселерометром TAS-3. Эти данные получены 
со скоростью выборки 1000 отсчетов в секунду и имеют широкий частотный 
диапазон. Низкочастотная составляющая выделялась из них с помощью дис-
кретных рядов Фурье. Исследование состояло в сравнении этой составляю-
щей с ее расчетным аналогом, найденным по реконструкции вращательного 
движения спутника. Посредством спектрального анализа функций, представ-
ляющих результаты определения низкочастотного микроускорения обоими 
методами, установлено влияние магнитного поля Земли на показания акселе-
рометра. После внесения поправки за такое влияние результаты, полученные 
этими двумя способами совпали со среднеквадратической ошибкой менее 

610  м/с 2 . 
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 1. Two ways of determining quasi-steady residual accelerations onboard 
a spacecraft. This paper contains the analysis of the measurement data obtained 
onboard the spacecraft Foton M-2 by the triaxial accelerometer TAS3. The space-
craft was a free flyer. It was in orbit during the period 31.05.2005 – 16.06.2005. 
The accelerometer was produced by the company RedShift Design and Engineer-
ing BVBA (Sint Niklaas, Belgium). It was placed on the furnace Polizon and oper-
ated continuously during almost the whole flight. Its measurements served for 
monitoring of microgravity environment during technological experiments. 

The residual accelerations onboard a free flyer can be decomposed into two 
components, vibration (high-frequency) and quasi-steady (low-frequency) ones. 
Usually, the spectrum of a vibration component contains frequencies from above a 
few hundredths of Hz. A quasi-steady component has the spectrum in the range 
from zero to a few thousandths of Hz. We analyze below only a quasi-steady acce-
leration component. The following reasons cause it: a spacecraft attitude motion, a 
gradient of the Earth gravitational field, and an atmosphere drag. 

That component can be found by two ways. The first way consists in a low-
frequency filtration of measurement data of an onboard accelerometer. This way 
makes high demands for sensitivity and stability of the accelerometer in a low-
frequency range. Besides, this way gives the quasi-steady acceleration component 
only at the point of the accelerometer location. The second way is based on a re-
construction of a satellite real attitude motion and a subsequent calculation of the 
acceleration along the reconstructed motion by the well-known formula. Let us 
remind that formula and some related definitions. 

Let a spacecraft be a rigid body and a point P  be fixed with its frame. The 
difference between the gravitational field strength at the point P  and the absolute 
acceleration of that point is called a residual acceleration at the point P . We de-
note the difference by b . This quantity plays a part of g  in orbital experiments. 
We assume the atmosphere drag is a sole nongravitational influence upon the 
spacecraft. Then b  is defined by the formula [1] 
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Here, OPr , the point O  is the spacecraft mass center, ω  is the absolute angular 
rate of the spacecraft, the dot above a letter denotes differentiation with respect to 
time t , e  is the gravitational parameter of the Earth, R  is the geocentric radius 
vector of the point O , v  is the velocity of the point O  with respect to the Earth 
surface, a  is the atmosphere density at that point, c  is the spacecraft ballistic 
coefficient. 

The reconstruction of the spacecraft attitude motion can be made by 
processing measurement data of onboard sensors. We can do with indirect mea-
surements if we reconstruct a spacecraft attitude motion using a full system of mo-
tion equations of a rigid body. In particular, we reconstructed the motion of Foton-
12 and Foton M-2 based on measurements of triaxial magnetometers [2, 3]. The 
measurement data were accumulated continually during the most part of the flight 
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but the procedure deals with data segments of a few hours length. The measure-
ment data on each such segment are processed jointly using the least squares me-
thod and integration of the spacecraft attitude motion equations. The procedure re-
sults in the solution of those equations that approximates measurements. Then, we 
calculate the acceleration at a prescribed point of the spacecraft as a function of 
time along the found solution by formula (1). This formula was derived for a gen-
eral situation without any frequency restrictions. But it gives just a quasi-steady 
acceleration component in Foton’s case [4]. 

The second way is rather universal. It allows determining the quasi-steady 
acceleration component at any point fixed with the spacecraft body but it does not 
take into account possible local acceleration features. We can follow various rea-
sons when choice the point P  for application of formula (1) but one reason has to 
be picked out especially. We must consider as P  the points, where accelerometers 
were placed. Then we can compare results obtained in both discussed ways. It al-
lows us to check the accelerometers and the calculation model. 

Such a comparison is made below for the accelerometer TAS3 located on-
board Foton M-2. The results, obtained in these both ways, coincided with each 
other very exactly after we refined the accelerometer position and corrected the fil-
tered data for the influence of the Earth magnetic field. This influence was re-
vealed by spectral analysis of the filtered and calculated data as well as the Earth 
magnetic field strength in the spacecraft fixed coordinate system. 

2. Calculation of quasi-steady accelerations by reconstruction of space-
craft attitude motion. The method of the reconstruction consists in following [3]. 
We assign a time interval 10 ttt   and, using the measurement data, construct on 

it the functions )(ˆ thi  )3,2,1( i  approximating the components of the strength of 
the local magnetic field in the spacecraft structural coordinate system 321 yyy . The 
axis 1y  is the longitudinal axis of the spacecraft and is directed from the landing 
capsule to the device unit. We suppose that the local magnetic field coincide with 
the Earth one at the point O  and calculate its components )(tHi  )3,2,1( i  in the 
Greenwich coordinate system 321 YYY  along the spacecraft orbit basing on the ana-
lytical model IGRF2005. Certain relations should link two sets of functions ob-
tained. The condition of the closest fit of these relations on the interval 10 ttt   
defines the solution to the spacecraft attitude motion equations that approximates 
the real motion. 

The gravitational and some other torques are taken into account in those eq-
uations. The equations are written in the coordinate system 321 xxx  formed by the 
principal central axes of inertia of the spacecraft. The angles between the axes ix  

and iy  did not exceed several degrees. Denote by 3
1,|||| jiijg  the matrix of transi-

tion from the system 321 xxx  to the system 321 YYY , where ijg  was the cosine of the 

angle between axes iY  and jx . The phase vector of the attitude motion equations 

consists of the quantities ig1 , ig2 , and the components i  of the spacecraft angu-
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lar rate ω  in the system 321 xxx  )3,2,1( i . The quantities ig3  are calculated by 
formulas 2213231231 ggggg  , etc. The matrix of transition from the system 

321 xxx  to the structural coordinate system is denoted by 3
1,|||| jiijb . Here, ijb  is the 

cosine of the angle between axes iy  and jx . We consider the solution to the mo-

tion equations minimizing the functional 
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as an approximation of the real attitude motion of the spacecraft on the interval 

10 ttt  . Here, i  are constant shifts in the measurement data. Functional (2) is 
minimized on the initial conditions of the solution at the point 0t  and parameters of 
the mathematical model. The latter include the parameters of the motion equations, 
the shifts i , and three angles specifying the transition matrix |||| ijb . Usually, we 

take 30010001 tt  min and 1  min. 
The example of reconstructing the attitude motion of the spacecraft is pre-

sented in Fig. 1. This figure consists of two parts. Fig. 1a illustrates the agreement 
of the functions )(ˆ thi  and )(tHi  by the found spacecraft motion. Here, the solid 
lines present the plots of the functions )(thi  defined in (2); the marks indicate the 

points  ii nthnt  )(ˆ, 00  , Nn ,,1,0  . The quality of the agreement is 

characterized by the standard deviation N3/min , where min  is the mini-

mum value of functional (2). We have  1147  in this example. 
Fig. 1b presents the plots of the angular rate components )(ti . One can see 

from the plots that the spacecraft motion was similar to Euler’s regular precession 
of an axisymmetric rigid body with the symmetry axis 1x . Foton M-2 was not ex-
actly axisymmetric but it had close inertia moments regarding to the axes 2x  and 

3x . One can also treat that motion as the motion near the stationary rotation of a 
triaxial rigid body around its principal central axis of the minimal inertia moment. 
In this motion 
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Here,  ,  , and W  are arbitrary constants, ||0 W , iI  )3,2,1( i  are the 
moments of inertia of the spacecraft with respect to the axes ix , i.e. its principal 
central moments of inertia. Foton M-2 had 734.0p , 032.1r ; the constants  , 
and W  for each processed interval ],[ 10 tt  are evaluated as 
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The accuracy of formulas (3) is characterized by the quantities 
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The motion in Fig. 1 is characterized by the values 149.1 deg./s, 0021.0  
deg./s, 112.0W deg./s, and 0103.0W deg./s. 

Fig. 1 illustrates the satellite motion in the last hours of the magnetic field 
measurements. The satellite motion was reconstructed in the same manner for pre-
ceding days too [3]. Table 1 presents some results obtained in 13 time intervals. 
Each interval has the length of 270 min. The table contains their initial points 0t  
(the date and time) and the respective values of  ,  ,  , W , and W . Fig. 1 
corresponds to interval 13. 

 

Table 1. Basic results of processing the Mirage measurements 
 

Inter-
val 

Date 
05/06.2005 

0t  
UTC 

 ,    , 
deg./s 

 , 
deg./s 

W , 
deg./s 

W , 
deg./s 

1 31 23:25:30 2947 0.200 0.017 0.107 0.045 
2 1 11:11:08 1318 0.312 0.014 0.082 0.045 
3 2 00:11:50 1428 0.441 0.013 0.099 0.038 
4 2 11:12:25 1566 0.521 0.012 0.066 0.029 
5 3 00:13:07 1038 0.645 0.016 0.070 0.024 
6 3 11:13:43 1231 0.745 0.0070 0.056 0.016 
7 4 00:14:24 1381 0.789 0.0059 0.094 0.029 
8 4 13:15:06 1111 0.849 0.0067 0.145 0.013 
9 5 10:36:15 1340 0.931 0.0059 0.147 0.011 
10 6 11:17:34 1094 1.008 0.0072 0.146 0.011 
11 7 09:18:45 1136 1.066 0.0039 0.131 0.0099 
12 8 09:20:02 1210 1.111 0.0058 0.114 0.010 
13 9 09:21:20 1147 1.149 0.0021 0.112 0.010 

 
The table shows that the angular rate of the satellite increased and formulas 

(3) became more precise coupled with this increase (note the behavior of   and 
W ). The final mode of the attitude motion was formed a few days before the 

flight termination. There were 3.1 deg./s and 1.0W deg./s [5]. 
Fig. 2a illustrates the residual acceleration calculated by formula (1) for the 

motion in Fig. 1. Calculations were made for the point P  with 
m)29.0,0,m06.0( r , where the sensors of the accelerometer TAS3 should be 
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located. The plots in the figure represent time the components of the vector 
),,( 321 bbbb  as functions of time. Here and below, components of vectors are 

referred to the structural coordinate system. Calculating the last term in formula 
(1), we used the ballistic coefficient obtained by processing trajectory measure-
ments [3]. The atmosphere density in (1) was calculated according to GOST R 
(state standard) 25645.166-2004 – Model of the upper atmosphere for ballistic cal-
culations. The matrices |||| ijb  of different intervals ],[ 10 tt  somewhat differed from 

each other. The acceleration was calculated in each interval 10 ttt   using the 
matrix |||| ijb  obtained just for this interval. 

3. Filtration of low-frequency component from TAS3 data. The accele-
rometer TAS3 measured an apparent acceleration )( b . Its sensitive axes were pa-
rallel to the axes of structural coordinate system but axes, corresponding to 1y  and 

3y , had opposite directions. TAS3 had a sample rate equal to 1000 readings per 
second and produced the data in a wide spectral range. The low-frequency filtra-
tion of the data was made using finite Fourier series independently for each vector 
component. 

Let M  and N  be natural numbers, iz  ),,2,1( MNi   be a segment of the 
scalar measurement data. We refer the measurement iz  to the instant ihti  , 0h , 
and seek the low-frequency component, contained in these data, in the form 
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Here, na  are coefficients. They are found by the least squares method. The simple 
explicit formulas are available to calculate them [1]. Some oscillations with rela-
tively high frequencies are often revealed in function (4) that was obtained in this 
way. In order to remove them, some terms in (4) are modified using the correction-
al multipliers 
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      )1,,2,1( 11  NNNn  . 

Here, 1N  is the integer part of the number 2/N . As a rule, we don't use expres-
sions (4) directly but deal with their values 

)~(~
nn tzz  ,     hntn

~~     ),,1,0( Nn  ,     Mhh 
~

.                    (5) 
We refer to these values as the filtered data. We denote the vector components of 
the filtered acceleration data by ib  )3,2,1( i . 

In all examples below, expressions (4) were constructed using data segments 
with a length of 270 min. They were certain of the segments listed in Table 1. The 
above procedure was applied at 001.0h s, 30000M , and 540N . The spec-
trum of functions, obtained in this way, locates within the limits from 0 to 0.017 
Hz. TAS3 measurements have erroneous constant biases in each vector compo-
nent. We changed on that reason the coefficient Na  in (4) to obtain zero mean val-
ue of data (5). Fig. 3a presents the example of the filtered data from TAS3 mea-
surements. It illustrates the same time interval as Fig. 2a. Each coordinate system 
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in Fig. 3a contains a couple of plots. The plot of expression (4) has greater oscilla-
tions. 

TAS3 measurements contain not only erroneous constant biases but an erro-
neous infra low-frequency component too. Such a component has frequencies less 
than 0.00005 Hz. It is lacking in calculated accelerations. One should guess it by 
comparing the plots in Fig. 3a with the respective plots in Figs. 2a. This effect 
takes place for the other intervals of Table 1. To obtain the likeness between the 
filtered low-frequency component in TAS3 data and its calculated analog, we elim-
inated the infra low-frequency component from data (5). First, we smoothed these 
data by the expression 
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K

k
kKK

hN

tk
AtAAtZ

1
21 ~sin)(


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where the coefficients kA  were found by the least squares method. We took 

10K  in the case of 540N . The function )(tZ  represented the sought ultra 

low-frequency component. Then we replaced the quantities )~(~
nn tzz   in (5) by the 

quantities )~()~(~
nnn tZtzz  . Just new data (5) are referred bellow as filtered ones. 

These new data are again the values of certain new expression (4). 
Fig. 3b presents the plots of the functions )()( tZtz   related to interval 13. 

Fluent curves in Fig. 3a present the plots of the functions )(tZ . When 540N  and 
10K , the described method of filtering does not change the amplitudes of har-

monic components in the measurement data with frequencies from 4100.3   to 
3103.8   Hz; the filtered data don’t contain harmonics with frequencies higher 

than 3107.16   Hz and lower than 4105.1   Hz. 
Fig. 2b gives a comparison of low-frequency component in TAS3 data on in-

terval 13 with its calculated analog. The plots, drawn by fine lines, were drawn us-
ing the filtered data; the plots, drawn by thick lines, repeat corresponding plots in 
Fig. 2a. The thick lines were obtained from the respective lines in Fig. 3b by the 
following way. First, we changed the sign of the function )(2 tb  (thereby, we made 
the transform bb  ). Then, we added the constant biases to the functions )(tbi  
to obtain the equalities  )()( tbtb ii  )3,2,1( i . The operator of mean value 

  was defined above. 
Fig. 2b shows the functions )(1 tb  and )(1 tb  are close. This fact is valid for 

intervals 7 – 13 in Table 1. The oscillations of 1b  and 1b  in them have large ampli-
tudes and frequencies increasing coupled with  . It is difficult to see proximity in 
the case of functions )(2 tb , )(2 tb  or )(3 tb , )(3 tb . This is valid for all intervals in 
Table 1. C. Van Bavinchove, one of TAS3 creators, supposed the discrepancy was 
caused of the Earth magnetic field influence. The next sections contain the analysis 
confirming this hypothesis. 

4. Spectral analysis of low-frequency acceleration component. Judging 
from the plots in Figs. 2 and 3, the low-frequency component of the acceleration 
onboard Foton M-2 can be represented as a linear combination of a few harmonics 
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(cyclic trends) with frequencies that are incommensurable in the general case. The 
representation promises to be especially exact in intervals 7 – 13 in Table 1. 
Searching for such harmonics is a typical problem of the time series analysis [8, 9]. 
In our case this problem was solved as follows. 

Let data (5) be the filtered data of an acceleration vector component. Expres-
sion (4) that generated them contains harmonics with a fixed set of frequencies. 
This set has a formal sense and does not reflect itself spectral properties of the da-
ta. In order to reveal these properties let us try to fit data (5) by the function 

 

tfbtfaatz  2sin2cos)( 0ap       )0( f ,                     (6) 
 

where 0a , a , b , and f  are parameters. We will seek the values of these parame-
ters by the least squares method. We make up the following expression 
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and minimize it over 0a , a , b , and f . The function ),,,( 0 fbaa  has a lot of 
local minima and only part of them corresponds to real harmonics. To find such 
minima, we solve a number of identical linear least squares problems and calculate 
the function 

),,,(min)( 0
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1
0

fcbaf
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at points of a sufficiently fine uniform grid on the interval )
~

2/(10 hf  . Then the 
plot of this function is drawn and the approximate values of minimum points are 
found. The abscissas of significant (in the value of 1 ) minima are the frequencies 

of desired harmonics. Let the frequencies 
kf  );,,2,1( NMMk    be found in 

this way. We seek the trend corresponding to them in the form 
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1
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where 0a , ka , kb , and 
kk ff   ),,2,1( Mk   are parameters. The values of these 

parameters are found by minimization of the function specified by relations (7) and 
(8) using Gauss-Newton's method. This least squares problem is nonlinear. The 
initial approximation to its solution is formed by the frequencies 

kf  and the solu-
tion of the linear least squares problem (7), (8) over 0a , ka , kb  with these frequen-
cies. 

In order to verify the found solution by simple means, we considered so-
called Schuster's periodogram [6, 7] 
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along with the function )(1 f . Let data (5) under study be generated by function 
(8), where MN  . Then za 0 , the periodogram has local maxima at points 
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kff  , while 222 )1)((4  NfIba kkk  ),,2,1( Mk  . Thus, studying the peri-
odogram maxima one can evaluate the frequencies and amplitudes of harmonic 
components in data (5). 

We present below the plots of the functions 

2
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N

f
fE ,       )(

1

2
)( fI

N
fA


  

instead of functions )(1 f  and )( fI . The minima of the function )( fE  ex-
presses the root mean square error of approximation of data (5) by sole cyclic trend 
(6), while the maxima of function )( fA  estimate the amplitude 22 ba  . 

Consider as an example the results of spectral analysis of the acceleration in 
Fig. 3b. The plots of the functions )( fE  and )( fA  for the acceleration compo-
nents 1b  and 2b  are shown in Figs. 4a, 5a. The component 3b   has essentially the 
same frequency properties as 2b  and so it is not considered in detail. The minimum 
points of the functions )( fA  differ from the maximum points of the respective 
functions )( fE  no more than 6105   Hz.  

Each function )(1 tb  or )(2 tb  contains several harmonics. Constructing ap-
propriate expressions (8), we take into account all clear-cut harmonics (corres-
ponding to well pronounced extrema of )( fE  and )( fA ) and some of slightly de-
finite ones. To analyze these expressions, we introduce the following designations. 
We denote by )(ap, tbi  expression (8) approximated the function )(tbi  )3,2,1( i . 

Plots of the functions )()()( ap, tbtbtb iii   serve to check the approximation. We 

refer to the quantity 22
kkk baA   as the amplitude of a harmonic with the fre-

quency kf  in (8). The frequencies and amplitudes of harmonics of )(ap, tbi  are de-

noted as )(i
kf  and )(i

kA . We also use analogous designations in the case of functions 

)(tbi  and )(thi  defined in Section 2. We take 310  Hz and 610  m/s 2  as the units 
for frequencies and acceleration amplitudes respectively. 

The plots of functions )(tbi , )(ap, tbi , and )(tbi  ( 2,1i ) are given in Figs. 

4b, 5b. We see the approximation is sufficiently exact. This fact confirms the accu-

racy of finding the frequencies )(i
kf  and amplitudes )(i

kA  that are listed in Table 2. 

Here, the frequencies with identical subscripts are approximately equal and empty 
cells mean that corresponding harmonics are absent in a respective function.  

Following the least squares method, we estimate the accuracy of determina-

tion of the quantities )(i
kf  and )(i

kA  by corresponding standard deviations. These 

standard deviations seem to be not adequate from the probabilistic point of view in 

this situation but they give useful information. The frequency )1(
8f  has the least 

standard deviation equal to 0.00021; standard deviations of the frequencies )3,2(
11f  

and )3,2(
13f  don’t exceed 0.001; standard deviations of the other frequencies are 
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within the limits 005.0001.0  . Standard deviations of the amplitudes )1(
kA  and 

)3,2(
kA  don’t exceed 0.3 and 0.15 correspondingly. 

The standard deviations of the frequencies look too small. We point out for 
comparison that frequency estimations as minima of )(1 f  or maxima of )( fI  

have errors with the upper bound 1)
~

2(  hNf . We have 03.0f  in our case. 

This value looks too much great as the accuracy estimate of the frequencies )(i
kf . 

Certain of the found frequencies admit the obvious interpretation. The fre-

quencies 37.0)3(
2

)1(
2  ff  are caused by spacecraft orbital motion. The orbital 

frequency orbf  (the reciprocal quantity to the orbital period) equals 0.185 so 

orb
)3(

2
)1(

2 2 fff  .                                            (9) 

Return to formulas (3). The motion, which they describe, is called the nutational 
motion and its circular frequency ||p  is called the nutation frequency. This cir-
cular frequency corresponds to the cyclic frequency 2/||nut  pf  and we have 

341.2nut f  for interval 13. Hence, 

nut
)1(

8 ff  ,    nut
)3(

16
)2(

16 2 fff  .                                 (10) 

Just the harmonic with the greatest amplitude has the frequency nutf . The space-
craft nutational motion causes it. This result agrees with formula (1), where the 
first two terms predominate. 

To interpret some other frequencies, let us assume that the spacecraft per-
forms exact Euler’s regular precession of an axisymmetric rigid body. Then we 
have to put 32 II   in (3). Euler’s precession is described usually by the nutation 
angle  , the precession angle 1  and the angle 2 of a proper rotation, the quanti-

ties  , 1 , and 2  being constants in the exact precession. Foton M-2 had [3] 




)1(
tan

p

W ,     



cos

)1(
1




p ,      p2 . 

 

A vector that is a constant in the absolute space has time-dependent components in 
the system 321 xxx . These components are sums of constant terms and four har-
monics with the frequencies 



2

|| 1
pr


f ,    



2

|| 2
nut


f ,    nutprro fff t  ,    || nutprro fff t  . 

The amplitudes of the harmonics have the order )(O , )(O , )1(O , and )( 2O  
respectively when 0 . There are  21 , 904.0pr f , 247.3ro tf , 

438.1ro  tf  in our example. The harmonic with the frequency tf ro  proved to be 
appreciable. We see in Table 2 that 
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Table 2. Frequencies and amplitudes of harmonic components in the calculated and measured accelerations. Interval 13 
 

k  
Frequency 
interpretati

on 

1b  2b  3b  1b  2b  3b  

)1(
kf  )1(

kA  )2(
kf  )2(

kA  )3(
kf  )3(

kA  )1(
kf  )1(

kA  )2(
kf  )2(

kA  )3(
kf  )3(

kA  

1        0.158 0.983     
2 orb2 f  0.371 2.011   0.367 0.531       
3  0.509 1.681           
4        0.698 0.699     
5  0.862 1.357           
6    2.044 0.478 2.035 0.600       
7          2.215 0.214 2.215 0.173 
8 nutf  2.376 20.05     2.375 20.22 2.374 0.674 2.375 0.785 
9    2.535 0.440 2.530 0.655   2.536 0.206 2.536 0.158 
10  2.683 1.255 2.725 0.588 2.720 0.926   2.705 0.204 2.705 0.168 
11 orbrot 2 ff  2.867 2.280 2.887 2.621 2.887 4.475 2.924 2.387 2.891 0.819 2.892 0.664 

12 orbrot ff     3.074 1.884 3.075 1.860   3.075 2.070 3.075 1.694 

13 rotf    3.251 2.018 3.249 2.948 3.223 1.691 3.261 0.764 3.262 0.614 
14          3.371 0.212 3.370 0.174 
15        3.769 0.790     
16 nut2 f    4.746 0.632 4.750 0.606   4.751 0.523 4.751 0.643 
17          5.300 0.210 5.300 0.259 
18    6.143 0.474 6.147 0.357   6.145 0.364 6.145 0.447 

 
 



 13

rot
)3(

13
)2(

13 fff  .                                              (11) 

We see also that 
 

orbrot
)3(

12
)2(

12 ffff  ,    orbrot
)3(

11
)2(

11
)1(

11 2 fffff  .            (12) 
 

The harmonics with the frequencies rotf , orbrot ff  , and orbrot 2 ff   can be ex-
plained by the last two terms in formula (1). In particular, the components of the 
last term that describes the atmosphere drag are presented in the geocentric abso-
lute coordinate system by periodical functions with the orbital period. The second 
column in Table 2 summarizes our interpretation of some found frequencies. 

We performed in the same way the spectral analysis of the functions 
)(tbi plotted in Fig. 2a. Its results are presented in Tables 2 and Figs. 6, 7. We 

omitted plots relating to the function )(3 tb  because it has the same frequency prop-
erties as )(2 tb . Accuracy characteristics of the found harmonics are following. The 

frequency )1(
8f  has the least standard deviation equal to 0.00011; standard devia-

tions of the frequencies )1(
11f  and )3,2(

kf  )16,13,12,11,8( k  don’t exceed 0.001; 

standard deviations of the other frequencies are within the limits 004.0001.0  . 

Standard deviations of the amplitudes )1(
kA  and )3,2(

kA  don’t exceed 0.14 and 0.04 

respectively. 
One can see from Table 2 that the functions )(tbi  contain harmonics with 

about the same frequencies as the functions )(tbi . Therefore we used the same 
principle of the frequency numbering. The close frequencies are in the same line in 
Table 2. It is not surprising that the frequencies of functions )(tbi  satisfy the rela-
tions (9) – (12). However amplitudes of some corresponding harmonics in )(tbi  
and )(tbi  differ markedly. The greatest discrepancy of amplitudes takes place for 

harmonics with the frequencies )3,2(
11f  and )3,2(

13f . There is only one good coinci-

dence of amplitudes. It takes place for harmonics with the frequency nut
)1(

8 ff  . 

We see some coincidence in the case of frequencies )3,2(
12f . Some discrepancy in 

the case of frequencies )3,2(
16f  and )3,2(

18f  can be explained by our pared-down us-

ing the TAS3 geometrical characteristics. The single-axis sensors for different di-
rections had slightly different coordinates in this device whereas we use the same 
coordinates for each sensor. 

It is worth to note that the discrepancy between corresponding frequencies of 
functions )(tbi  and )(tbi  are distinctly smaller than errors in their interpretation in 
terms of rotf , nutf  and orbf . Possibly, the inaccuracy of the interpretation is 
caused by some fine details of the motion. 

Now, we turn to the spectral analysis of the components of the magnetic 
field strength. We investigated the functions )(thi  calculated by formulas (2) and 

plotted in Fig. 1a. The investigation of the functions )(ˆ thi  gave the same results. 
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The analysis was made according to the scheme above. Its results are presented in 
Table 3 and Figs. 8, 9. The table and figures are arranged in the same manner as 
Table 2 and Figs. 4 – 7. The functions )(2 th  and )(3 th  have the same frequency 

properties, so we cited the plots for )(2 th  only. The quantities )1(
1f  and )1(

1A  in Ta-

ble 3 have the standard deviations equal to 0.0062 and 7000  respectively. The 

frequencies )1(
3f  and )3,2(

11f  have the least standard deviations equal to 0.00019; 

standard deviations of the frequencies )1(
4f  and )3,2(

12f  don’t exceed 0.0004; stan-

dard deviations of the other frequencies are within the limits 003.00005.0  . Stan-

dard deviations of the amplitudes )(i
kA , except )1(

1A , don’t exceed 300 . 

The functions )(thi  contain some harmonics with about the same frequen-
cies as the functions )(tbi  and )(tbi . The first column of Table 3 gives in brackets 
the number of a close frequency from Table 2. Therefore it was not surprising that 
some frequencies, found in the functions )(thi , admit the obvious interpretation. 
Namely, we have the relations 

orbrot
)3,2(

11 2 fff  ,    orbrot
)3,2(

12 fff  ,    orb
)1(

3 2 ff  ,    orb
)1(

4 3 ff   

for frequencies of harmonics with large amplitudes and we have the relations 

orb
)1(

1 ff  ,    nut
)3,2(

8 ff   

for frequencies of harmonics with small amplitudes. 
The frequencies orbrot 2 ff   and rotf  appear both in the functions )(3,2 tb  

and in the functions )(3,2 tb . But their presence in )(3,2 tb  is much more greater – 

the corresponding harmonics have much more greater amplitudes. It is worth to 
compare this fact with the following one. The frequency orbrot ff   is present in 
functions )(3,2 tb  and )(3,2 tb  too; the amplitudes of corresponding harmonics are 

approximately equal in all these functions and are twice greater than amplitudes of 
harmonics with frequencies orbrot 2 ff  , rotf  in )(3,2 tb . Thus transition 

)()( 3,23,2 tbtb   doesn't change the amplitudes for the frequency orbrot ff  , which 

is absent in the functions )(thi , and essentially increases the amplitudes for the 
frequencies orbrot 2 ff  , rotf , which are present in the functions )(3,2 th . This situ-

ation is illustrated by comparison of Figs. 5a, 7a, and 9a. The comparison shows 
that the function )(2 tb  inherits the frequencies from the functions )(2 tb  and )(2 th . 
The same inheritance takes place in the case of functions )(3 tb , )(3 tb  and )(3 th  
(compare corresponding columns in Tables 2, 3). The analogous inheritance in the 
case of functions )(1 tb , )(1 tb , and )(1 th  is not so pronounced (see Figs. 4a, 6a, and 
8a) against a background of the large amplitudes of the harmonics with the fre-
quency nutf  in )(1 tb  and )(1 tb . But if we calculate amplitude ratios for harmonics 
with frequencies closed to rot2 f  in )(1 tb  and )(1 th , we find the influence of the 
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magnetic field has here the same order as in the case of the functions )(3,2 tb  and 

)(3,2 th . Quantitative characteristics of the influence will be described below. 
 

Table 3. Frequencies and amplitudes of harmonic components  
in the magnetic field strength. 

 

k  
Frequency 

interpretatio
n 

1h  2h  3h  
)1(

kf  )1(
kA ,   )2(

kf  )2(
kA ,   )3(

kf  )3(
kA ,   

1  0.026 13960     
2(1) orbf  0.193 3297     

3(2) orb2 f  0.339 20240     
4(3)  0.510 13164     
5(4)  0.700 1775     
6(5)  0.868 6032     
7(6)    2.039 3697 2.039 3707 
8(8) nutf    2.365 3362 2.364 3394 
9(9)    2.526 3892 2.526 3851 

10(10)    2.717 5831 2.717 5849 
11(11) orbrot 2 ff     2.887 28042 2.887 28067 
12(13) rotf    3.245 14010 3.245 14011 

13    3.433 1648 3.433 1671 
14    3.566 2790 3.566 2770 

 
The analogous analysis was made for interval 9 from Table 1 to investigate 

the influence of variations of   on the results obtained. New results proved to be 
in a good agreement with the previous ones. We have 586.2rot f  and 

898.1nut f  based on   for interval 9. The transition )()( 3,23,2 tbtb   increases 

the amplitudes for frequencies 34.22 orbrot  ff  and 70.2rot f  which are 
present in the functions )(3,2 th . The transition )()( 11 tbtb   increases the ampli-

tude for frequency orb2 f , which is present in the function )(1 th . 

5. Correction of filtered TAS3 measurement data. As long as the main 
frequencies of the functions )(tbi  are obtained by joining up the main frequencies 
of the functions )(tbi  and )(thi , we can assume that the Earth magnetic field influ-
enced upon TAS3 measurements linearly. This assumption gives hope to us that 
TAS3 filtered data can be corrected by the formulas 





3

1j
ijiji bhmb     )3,2,1( i , 

where ijm  are constants. We suppose here and below in this Section that the sign 

of the component 2b  has been changed. 



 16

If we make a correction for the magnetic field, it is naturally to make simul-
taneously some other corrections, namely, the correction for infra low-frequency 
errors, the correction for the shift of TAS3 time scale, the correction for the error in 
the spacecraft ballistic coefficient and the correction for misalignment of sensitive 
TAS3 axes with respect to the axes iy . We specify the last correction by the vector 

),,( 321 θ  of infinitesimal rotation of TAS3 sensitive axes with respect to the 
system 321 yyy . The components of θ  can be regarded both to the system 321 yyy  
and to the system formed by sensitive axes of TAS3. The correction of the ballistic 
coefficient is specified by means of multiplication of it by the factor  : cc  . 
This correction compensates short time variations of c  and a  within a long inter-
val in which c  was defined. Taking into account all these corrections and assum-
ing they allow removing all possible errors, we can write 





3

1
1123321 )()()()()(

j
jj thmtZtbtbtb   

)(])[( )(
1

3

1

)1(
1  



tbxxtc a

j
jjj , 

 


3

1
2231132 )()()()()(

j
jj thmtZtbtbtb                    (13) 

)(])[( )(
2

3

1

)2(
2  



tbxxtc a

j
jjj , 





3

1
3312213 )()()()()(

j
jj thmtZtbtbtb   

)(])[( )(
3

3

1

)3(
3  



tbxxtc a

j
jjj , 








K

k

i
k

i
K

i
Ki

hN

ttk
AAttAtZ

1

0)()(
20

)(
1 ~

)(
sin)()(


     )3,2,1( i . 

Here, the functions )(tZi  compensate infra low-frequency errors in filtered data,   
is the shift of TAS3 time scale with respect to the time scale used for description of 

spacecraft attitude motion, the functions )(tcij  and )()( tb a
j  are defined by relations 

(see (1), ie  are unit vectors along the axes iy ) 





















3

1
23

(3
)(

j
jjii

ie
ii c ee

R

R)eR

R
ωeωωe


 ,     




3

1

)(||
j

j
a

ja bc evv , 

 

the quantities jx  set the origin of TAS3 coordinate system with respect to the 

spacecraft mass center, )(k
jx  )3,2,1( j  are the coordinates of the TAS3 sensor for 
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the axis ky  in the TAS3 own coordinate system, 

2.56)1(
1 x  mm,    5.48)1(

2 x  mm,    0.57)1(
3 x  mm, 

5.36)2(
1 x  mm,    3.22)2(

2 x  mm,    5.70)2(
3 x  mm, 

0.31)3(
1 x  mm,    5.48)3(

2 x  mm,    8.27)3(
3 x  mm, 

 

We considered relations (13) as equations for determining the unknown 

quantities i , ix , )(i
kA , ijm ,  , and  . We look for these quantities in the follow-

ing way. Let   be given. We consider relations (13) at the points nt
~  defined by 

formulas (5). The quantities )~( ni tb  are calculated at filtration and we don’t exclude 
the infra low-frequency component from them because this corrections are pro-

vided by functions )(tZi . The quantities )~( nij tc  and )~()( n
a

i tb  are calculated 

by interpolation using finite Fourier series. Those series were constructed before-
hand basing on the proper solution of spacecraft motion equations. We obtained as 

a result the overdetermined linear system with the unknown quantities i , ix , )(i
kA , 

ijm , and  . We treat the problem of finding its solution as a standard linear re-

gression problem. We solve it by the least squares method for each   at points of 
the uniform grid with the step 1 s and calculate the standard deviation )( bb   
of discrepancies in (13). The value )(minarg*  b  is considered to be the re-
quired estimate of  . The solution of the regression problem at *   gives us the 
required estimates of the quantities listed above. The standard deviations of those 
quantities, calculated at *   in the framework of a linear regression problem 
previously mentioned, are adopted as accuracy characteristics of the found esti-
mates. We emphasize the standard deviations are calculated at fixed  , which is 
supposed to be known, and are so-called conditional standard deviations. The un-
conditional standard deviation   of the estimate *  is calculated by the formula 

 

1

2
*

22

*
22 )(

)2333()(2














 

d

d
KN b

b . 

 

The results of solution of the regression problem are presented in Table 4 
and Figs. 10 – 12. These results were obtained for some intervals from Table 1. 
They were obtained at 10K  but they almost coincide with the results for 5K  
and 3K . Table 4 contains the estimates of the quantities  , ix ,  , i , and ijm  

as well as their standard deviations. The unit of i  and i  is radian, the unit of 

ijm  and ijm  is 710  m/(s 2 Oe). 

Figs. 10a, 11a, and 12a contain the plots of the functions )(ˆ tbi  and )(tbi  
)3,2,1( i  defined by the left-hand sides and right-hand sides of formulas (13). 

Thick lines depict the plots of the functions )(tbi ; fine lines depict the plots of the
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Table 4. Estimations of TAS3 adjusting parameters. The unit of ijm  and mij  is 710 m/(s 2 Oe) 
 

Interval b , 
610 m/s 2  

 , 
s 

 , 
s 

1x , 
mm 

1x , 
mm 

2x , 
mm 

2x , 
mm 

3x , 
mm 

3x , 
mm 

    

1 0.764 –48 3.0 22.3 19 –121.0 5.5 –219.8 4.5 0.929 0.023 
2 0.675 –37 2.4 –13.7 13 –96.9 2.9 –229.1 2.8 1.089 0.016 
4 0.801 –22 2.5 –16.7 13 –109.8 2.5 –231.0 2.4 1.179 0.020 
6 0.748 –32 1.7 1.6 12 –86.0 1.9 –227.2 1.9 1.043 0.020 
8 0.781 –25 1.7 –7.0 5.0 –94.3 0.74 –241.2 0.73 1.095 0.015 
9 0.999 –32 1.8 –8.1 5.8 –63.6 0.83 –238.8 0.82 0.939 0.016 
10 0.742 –23 1.2 –8.4 4.1 –96.1 0.57 –235.8 0.57 0.900 0.012 
11 0.745 –19 1.4 –10.9 4.3 –96.8 0.60 –226.1 0.60 1.078 0.013 
12 0.952 –23 1.9 –9.8 6.0 –69.4 0.85 –236.4 0.84 0.895 0.017 
13 0.734 –15 1.2 –7.8 4.6 –104.2 0.66 –229.8 0.64 1.040 0.014 

 

Interval 1  1  2  2  3  3  11m  11m  12m  12m  13m  13m  

1 0.002 0.020 –0.039 0.017 0.0007 0.013 –189.2 2.9 –5.1 2.1 –87.2 3.5 
2 0.040 0.013 0.014 0.011 0.020 0.0085 –197.9 1.9 –16.6 1.9 –101.8 2.3 
4 –0.099 0.016 –0.010 0.0099 0.006 0.0076 –184.6 1.7 –15.8 1.9 –97.2 2.4 
6 0.060 0.015 –0.017 0.0089 0.040 0.0064 –191.0 1.6 –5.3 1.7 –99.5 2.2 
8 –0.008 0.012 –0.034 0.0037 0.026 0.0025 –186.9 2.8 –16.7 1.4 –98.2 1.5 
9 0.132 0.014 –0.010 0.0043 0.018 0.0028 –188.7 2.9 –1.8 1.9 –105.2 2.0 
10 –0.026 0.011 –0.033 0.0030 0.024 0.0019 –189.0 2.5 –14.9 1.4 –100.8 1.5 
11 0.022 0.011 –0.026 0.0032 0.012 0.0021 –178.8 3.0 –13.5 1.4 –96.4 1.5 
12 0.161 0.015 –0.021 0.0044 0.022 0.0029 –185.9 3.1 –6.6 1.9 –101.8 2.0 
13 –0.043 0.013 –0.040 0.0034 0.013 0.0022 –184.1 2.6 –18.1 1.4 –99.6 1.5 
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Table 4 (continuation). Estimations of TAS3 adjusting parameters. The unit of ijm  and mij  is 710 m/(s 2 Oe) 
 

Interval 21m  21m  22m  22m  23m  23m  31m  31m  32m  32m  33m  33m  

1 6.6 3.2 –104.4 1.6 –26.7 3.9 –21.9 3.6 –1.9 2.3 –169.4 2.8 
2 3.1 2.4 –105.9 1.7 –29.2 2.5 –14.5 2.6 –14.5 2.0 –170.9 1.8 
4 11.6 2.1 –111.4 1.7 –35.2 3.2 –15.2 2.4 –10.9 2.4 –172.0 1.8 
6 7.8 1.9 –108.0 1.6 –26.5 3.0 –18.3 2.2 –17.2 2.2 –176.0 1.9 
8 2.8 2.8 –111.7 1.5 –23.9 2.3 –11.6 2.8 –21.7 1.8 –171.8 1.4 
9 2.2 2.9 –98.4 1.9 –6.8 2.9 –10.7 3.0 –9.8 2.3 –184.8 1.9 
10 10.3 2.5 –106.3 1.5 –26.0 2.2 –25.4 2.6 –11.3 1.8 –174.7 1.4 
11 10.6 3.0 –106.9 1.5 –22.6 2.2 –20.3 3.0 –28.8 1.8 –180.5 1.4 
12 6.7 3.1 –96.4 1.9 –4.2 3.1 –15.3 3.2 –18.6 2.4 –188.1 1.8 
13 2.3 2.6 –115.4 1.5 –28.2 2.5 –19.7 2.6 –20.1 1.9 –170.2 1.4 
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Table 5. Estimations of TAS3 adjusting parameters. The unit of ijm  and mij  is 710 m/(s 2 Oe) 
 

Interval b , 
610 m/s 2  

 , 
s 

 , 
s 

1x , 
mm 

1x , 
mm 

2x , 
mm 

2x , 
mm 

3x , 
mm 

3x , 
mm 

    

8 0.820 –28 0.82 25.4 3.5 –83.3 0.76 –242.1 0.77 1.105 0.016 
9 1.024 –26 0.79 16.2 3.9 –84.7 0.84 –236.8 0.84 0.937 0.016 
10 0.793 –26 0.65 21.7 2.8 –83.5 0.61 –237.0 0.61 0.901 0.013 
11 0.766 –19 0.57 16.3 2.9 –96.0 0.61 –226.1 0.62 1.083 0.013 
12 0.988 –18 0.74 26.0 4.1 –89.9 0.87 –233.9 0.87 0.882 0.017 
13 0.763 –19 0.64 25.0 3.1 –85.8 0.66 –232.4 0.67 1.035 0.015 

 
Interval 11m  11m  12m  12m  13m  13m  

8 –190.6 3.0 –16.0 1.5 –104.4 1.5 
9 –188.2 3.0 –13.0 1.9 –106.2 1.9 
10 –190.5 2.7 –13.1 1.5 –106.4 1.5 
11 –177.3 3.1 –15.8 1.4 –100.5 1.4 
12 –184.5 3.2 –18.1 1.9 –104.2 1.9 
13 –182.4 2.7 –13.7 1.5 –107.2 1.5 

 
Interval 21m  21m  22m  22m  23m  23m  31m  31m  32m  32m  33m  33m  

8 6.8 2.9 –108.4 1.5 –28.0 1.4 –5.5 2.9 –16.1 1.4 –171.2 1.5 
9 4.4 2.9 –99.9 1.9 –20.0 1.9 –9.2 2.9 –11.5 1.9 –180.7 1.9 
10 15.1 2.7 –104.8 1.5 –27.5 1.5 –19.6 2.7 –6.7 1.5 –173.7 1.5 
11 11.9 3.0 –106.9 1.4 –26.2 1.4 –16.3 3.0 –26.6 1.4 –179.0 1.4 
12 8.3 3.2 –99.8 1.9 –22.4 1.9 –12.7 3.2 –17.6 1.9 –182.6 1.9 
13 4.6 2.6 –111.6 1.4 –29.0 1.5 –12.9 2.6 –12.6 1.5 –169.8 1.5 
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Table 6. Estimations of TAS3 adjusting parameters. The unit of quantities ijm  and mij  is 710 m/(s 2 Oe) 

 

Interval b , 
610 m/s 2  

 , 
s 

 , 
с 

1x , 
mm 

1x , 
mm 

2x , 
mm 

2x , 
mm 

3x , 
mm 

3x , 
mm 

    

8 0.781 –25 0.79 –7.0 5.0 –94.3 0.74 –241.2 0.73 1.095 0.015 
9 1.005 –25 0.79 –6.8 5.8 –88.8 0.84 –236.4 0.83 0.930 0.016 
10 0.742 –24 0.61 –8.9 4.1 –92.2 0.58 –236.3 0.57 0.900 0.012 
11 0.745 –18 0.56 –10.3 4.3 –100.7 0.60 –225.4 0.60 1.077 0.013 
12 0.958 –16 0.72 –6.9 6.0 –99.3 0.86 –232.7 0.85 0.874 0.017 
13 0.734 –17 0.62 –8.9 4.6 –95.5 0.65 –231.3 0.64 1.036 0.014 

 
Interval 2  2  3  3  11m  11m  12m  12m  13m  13m  

8 –0.035 0.0037 0.026 0.0024 –186.9 2.8 –16.7 1.4 –98.2 1.5 
9 –0.023 0.0043 0.018 0.0028 –188.2 2.9 –11.9 1.9 –102.4 2.0 
10 –0.032 0.0030 0.024 0.0019 –189.0 2.5 –13.3 1.4 –101.2 1.5 
11 –0.027 0.0032 0.011 0.0021 –178.7 3.0 –14.9 1.4 –95.9 1.5 
12 –0.034 0.0044 0.022 0.0029 –185.5 3.1 –17.6 1.9 –98.3 2.0 
13 –0.037 0.0034 0.013 0.0022 –184.2 2.6 –14.6 1.4 –100.7 1.5 

 
Interval 21m  21m  22m  22m  23m  23m  31m  31m  32m  32m  33m  33m  

8 2.8 2.8 –111.4 1.4 –22.7 1.4 –11.5 2.8 –22.5 1.4 –171.9 1.4 
9 1.3 2.9 –101.6 1.9 –19.0 1.9 –13.3 3.0 –14.4 1.9 –181.6 1.9 
10 10.8 2.5 –105.4 1.4 –23.5 1.4 –24.8 2.6 –11.2 1.4 –175.1 1.4 
11 10.2 3.0 –107.9 1.4 –24.5 1.4 –20.8 3.0 –29.4 1.4 –179.9 1.4 
12 4.6 3.1 –100.9 1.9 –18.8 1.9 –18.6 3.2 –23.6 1.9 –183.4 1.9 
13 2.8 2.6 –113.4 1.4 –25.1 1.4 –19.0 2.6 –18.5 1.4 –171.3 1.4 
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functions )(ˆ tbi . Figs. 10b, 11b, and 12b contain the plots of the differences 

)()(ˆ)( tbtbtb iii   )3,2,1( i . The functions, obtained in both ways, are in a 
good agreement with each other. The differences )(tbi  are small and look as irre-
gular oscillations with sufficiently high frequencies. The figures illustrate only in-
tervals 2, 6 and 13 but they give an idea about all intervals in Table 1. 

The values of b  in Table 4 are close for all intervals but the estimates of 
the most interesting fitted parameters ix  were stabilized only since interval 8 (see 
standard deviations xi  in Table 4). The useful signal in measurement data was 
apparently lost against background of infra low-frequency errors in preceding in-
tervals. One can see from Table 1 and Figs. 10a, 11a, and 12a that amplitudes of 

1b , maximal values of || 2b , || 3b , and frequencies of these functions increased 
coupled with  . So, the low-frequency filtration enabled to extract the useful sig-
nal in ib  starting the certain value of  . 

The weighted mean values of the parameters ix  in the last six rows of Table 
4 are 7.81 x  mm, 9.902 x  mm, 8.2333 x  mm, the weights being propor-

tional to 2
xi . The standard deviations of these mean values are 58.01 x  mm, 

0.72 x  mm, 4.23 x  mm. The mean values of the quantities xi  in the last 
six rows of Table 4 are 0.51 x  mm, 71.02 x  mm, 70.03 x  mm. The ana-
logous estimates for the factor   are 993.0 , 065.0 , 014.0 . The es-

timates turned out to be fairly accurate. So, the aerodynamic term in formula (1) 
was calculated correctly. 

It s interesting to estimate misalignment of sensitive TAS3 axes with respect 
to the axes iy . This misalignment is described by the angles i . The weighted 

mean values of these angles in the last six rows of Table 4 are )5.1(027.01  , 

)7.1(029.02  , )1.1(019.03  . The standard deviations of these mean values 
are 036.01  , 0045.02  , 0024.03  . The mean values of the quantities 

i  in the last six rows of Table 4 are 013.01  , 0037.02  , 0024.03  . 

The estimates of the quantities 2  and 3  look fairly good. The estimate of 1  is 
not so exact. 

Since the angles i  were small, it worth to solve our regression problem un-
der the condition 0i  )3,2,1( i . The results of solving this problem for the last 
six intervals of Table 1 are presented in Table 5. All these results were obtain un-
der 10K . Table 5 is arranged analogously to Table 4. The values of b  in it are 
just a little larger than in Table 4 but estimates of the coordinate 1x  differ visibly in 
these tables. In particular, we have for data in Table 5 5.211 x  mm, 5.872 x  
mm, 1.2343 x  mm, 9.11 x  mm, 0.22 x  mm, 3.23 x  mm, 4.31 x  
mm, 73.02 x  mm, 73.03 x  mm. Of course, the difference in values of 1x  is 
small in comparison with TAS3 dimensions but it is large in comparison with the 
values of 1x , 1x , and 1x . We point out also the decrease of the standard devia-
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tions   in Table 5 as against Table 4. Table 6 contains results of solving the re-
gression problem under the conditions 01   and 10K  for the same intervals as 
in Table 5. The results occurred distinctly closer to data in Table 4 but the standard 
deviations   remained small. 

Now, we consider the estimates of coefficients ijm  and their standard devia-

tions. The weighted mean values of these coefficients in the last six rows of Table 
4 are 

0.1770.196.17

6.201.1078.5

8.993.138.185

||||





ijm  

 

0.39.23.2

3.41.36.1

3.28.25.1

|||| ijm ,        

6.10.29.2

5.26.18.2

7.16.18.2

|||| mij . 

The unit of these quantities are  710  m/(s 2 Oe). The analogous average characte-
ristics for Tables 5 and 6 are close to these. One can see in Tables 4 – 6 that the 
differences between estimates of ijm  in different tables have the same order as ap-

propriate mij . The values of ijm  in Tables 4 – 6 show that the influence of the 

magnetic field is approximately the same for all components ib  

6. Conclusion.  The investigation of TAS3 measurement data showed that 
this accelerometer was sufficiently exact and sensitive to measure quasi-steady ac-
celerations. TAS3 was designed first of all for measuring high-frequency accelera-
tions with sufficiently large amplitudes onboard spacecraft. Therefore extraction of 
a quasi-steady acceleration component from its measurement data demanded spe-
cial efforts. In particular, we had to eliminate infra low-frequency errors and to 
make a correction for the influence of the Earth magnetic field. The infra low-
frequency errors were apparently caused by a zero drift, a thermal influence, etc. 
TAS3 didn’t have respective compensative facilities. Fortunately, the quasi-steady 
acceleration at the TAS3 location was sufficiently large and had appropriate fre-
quencies as early as a few days after the beginning of the flight. Moreover, the time 
dependence of the quasi-steady acceleration could be described in the very conve-
nient mathematical form owing to the specific attitude motion of the spacecraft. 
The influence of the Earth magnetic field upon TAS3 readings was very small and 
could not be taken into account in regular situations of the device operation. But 
quasi-steady accelerations have usually so small amplitudes that the correction 
needs. All listed facts caused the methods of processing the TAS3 measurement 
data in low-frequency range and enabled to show utmost opportunities of this acce-
lerometer. 
 Our investigation demonstrated once again that the calculated way of deter-
mining the quasi-steady acceleration component is efficient. It gives detailed in-
formation about real though rather idealized accelerations in low-frequency range. 
This information can be very useful in analysis of acceleration measurement data. 



 24

Besides in some situations, this information alone gives an exact and complete de-
scription of low-frequency microgravity environment onboard spacecraft. 
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                                                         (a)                                                                                               (b) 
 

Fig. 1. On the reconstruction of the spacecraft attitude motion in interval 13: (a) the approximation of the magnetic field mea-
surements, (b) the spacecraft angular rate. The instant 0t  in the plots corresponds to 09:21:20 UTC 09.06.2005,  1147 , 

1491.1 deg./s, 0021.0 deg./s, 1124.0W deg./s, 0103.0W deg./s. 
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                                                           (a)                                                                                             (b) 
 

Fig. 2. The accelerations at the point of TAS3 location: (a) calculated for the motion in interval 13 (Fig. 1), (b) measured by 
TAS3 (bold-faced lines shifted to the left on 30s) and calculated for the motion in interval 13. 



 27

              
 

                                                          (a)                                                                                             (b) 
 

Fig. 3. Elimination of the ultra low-frequency component from the filtered TAS3 measurements in interval 13: 
(a) before elimination (fluent curves represent the ultra low-frequency component), (b) after elimination. 
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                                                        (a)                                                                                                (b) 
 

Fig. 4. The filtered acceleration component 1b  in interval 13; (a) the spectra, (b) the harmonic approximation and its error. 



 29

             
 

                                                         (a)                                                                                             (b) 
 

Fig. 5. The filtered acceleration component 2b  in interval 13; (a) the spectra, (b) the harmonic approximation and its error. 
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                                                         (a)                                                                                               (b) 
 

Fig. 6. The calculated acceleration component 1b  in interval 13; (a) the spectra, (b) the harmonic approximation and its error. 
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                                                         (a)                                                                                                (b) 
 

Fig. 7. The calculated acceleration component 2b  in interval 13; (a) the spectra, (b) the harmonic approximation and its error. 



 32

              
 

                                                         (a)                                                                                                (b) 
 

Fig. 8. The component 1h  of calculated strength of the Earth magnetic field in interval 13; 
(a) the spectra, (b) the harmonic approximation and its error. 
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                                                         (a)                                                                                                (b) 
 

Fig. 9. The component 2h  of calculated strength of the Earth magnetic field in interval 13; 
(a) the spectra, (b) the harmonic approximation and its error. 
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                                                          (a)                                                                                             (b) 
 

Fig. 10. The accelerations at the point of TAS3 location in interval 2, 7107.6 b m/s 2 ; 

(a) the corrected filtered functions )(ˆ tbi  and their calculated analogs )(tbi , (b) the differences )()(ˆ)( tbtbtb iii   
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                                                          (a)                                                                                             (b) 
 

Fig. 11. The accelerations at the point of TAS3 location in interval 6, 7105.7 b  m/s 2 ; 

(a) the corrected filtered functions )(ˆ tbi  and their calculated analogs )(tbi , (b) the differences )()(ˆ)( tbtbtb iii  . 
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                                                          (a)                                                                                            (b) 
 

Fig. 12. The accelerations at the point of TAS3 location in interval 13, 7103.7 b m/s 2 ; 

(a) the corrected filtered functions )(ˆ tbi  and their calculated analogs )(tbi , (b) the differences )()(ˆ)( tbtbtb iii  . 
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