

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 18 за 2007 г.</u>

М. М. Зульпукаров

ISSN 2071-2898 (Print) ISSN 2071-2901 (Online)

Моделирование жёсткой турбулентности методом русел и джокеров

Статья доступна по лицензии Creative Commons Attribution 4.0 International

Рекомендуемая форма библиографической ссылки: Зульпукаров М. М. Моделирование жёсткой турбулентности методом русел и джокеров // Препринты ИПМ им. М.В.Келдыша. 2007. № 18. 35 с.

https://library.keldysh.ru/preprint.asp?id=2007-18

Ордена Ленина институт прикладной математики имени М.В. Келдыша Российской академии наук

М.-Г. М. Зульпукаров

МОДЕЛИРОВАНИЕ ЖЁСТКОЙ ТУРБУЛЕНТНОСТИ МЕТОДОМ РУСЕЛ И ДЖОКЕРОВ

Препринт №

Москва

Ордена Ленина ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ им. М.В. Келдыша Российской академии наук

М.-Г. М. Зульпукаров

МОДЕЛИРОВАНИЕ ЖЁСТКОЙ ТУРБУЛЕНТНОСТИ МЕТОДОМ РУСЕЛ И ДЖОКЕРОВ

Москва 2007

АННОТАЦИЯ

Рассматривается задача построения модели системы по временному ряду в условиях неполноты доступной информации. В качестве примера объекта исследования используется отображение Ершова – модельная система с жёсткой турбулентностью. Приводится решение поставленной задачи с применением метода русел и джокеров, сочетающего детерминированные и вероятностные способы описания поведения системы.

ABSTRACT

The preprint considers a problem of constructing a model basing on time series under condition of source information insufficiency. The Ershov mapping, a simple hard turbulence model, was taken as a sample research object. The problem solution, using the channels and jokers method, combining deterministic and probabilistic ways of system behaviour description, is shown.

Работа выполнена при поддержке РФФИ (проект №05-01-00852).

Введение

Исследование редких катастрофических событий и разработка методов их моделирования – одно из перспективных направлений в нелинейной динамике. Как правило, объект изучения, демонстрирующий подобные явления, представляет собой сложную систему, причём информация об устройстве системы и принципах её функционирования может быть неполна и/или неточна, причины катастрофы неясны, а статистические данные недостаточны.

В качестве примера такой ситуации можно привести аварии на океанских буровых платформах, входящих в список самых дорогих и масштабных сооружений техногенной цивилизации. Ряд исследователей высказывает предположение, что причиной аварий могут быть нелинейные явления на поверхности атмосфера–океан.

Одно из центральных мест в области моделирования процессов на границе водной и воздушной сред занимает двумерное обобщение уравнения Курамото-Цузуки (Гинзбурга–Ландау) [1,2]. При определённых значениях параметров в системе наблюдается так называемая жёсткая турбулентность – хаотический режим с редкими сильными выбросами (пиками), хорошо подходящий для формализованного описания некоторых катастрофических событий.

Для исследования подобных выбросов используется модификация двумерного уравнения Гинзбурга–Ландау – одномерное зависящее от времени уравнение Гинзбурга–Ландау с нелинейностью 5 порядка с малым параметром ε , характеризующим степень диссипации. В пределе при $\varepsilon \to 0$ данное уравнение переходит в нелинейное уравнение Шрёдингера. Известные на сегодняшний день уравнения, описывающие рост выброса и его спад, получены путём исследования последнего [3].

Остаётся открытым вопрос описания фоновой (межпиковой) динамики и перехода от фоновой динамики к пиковой. Для этого было предложено использовать более простые системы, например, системы, демонстрирующие так называемую переключающуюся перемежаемость - хаотический режим с наличием устойчивого инвариантного многообразия, со временем теряющего устойчивость. Для получения эффекта жёсткой турбулентности подобную систему достаточно дополнить механизмом возвращения устойчивости инвариантному многообразию. системы Примером такой является отображение Ершова [4].

В данной работе обсуждается вопрос моделирования жёсткой турбулентности в условиях неполноты информации о наблюдаемой системе. В качестве последней выбрана система Ершова, а неполнота информации заключается в доступности для наблюдения только одной из трёх переменных данной системы.

Для воссоздания наблюдаемого поведения предлагается использовать *метод русел и джокеров*, основанный на совместном применении динамических и вероятностных методов моделирования [3,4,5,6,7,8]. Суть данного метода заключается в учёте факта неоднородности фазового пространства динамической системы – наличия областей сравнительно

простого поведения (*русел*). В пределах русла система может быть представлена простой динамической моделью. Там, где это не представляется возможным, предлагается для описания сложного поведения использовать *джокер* – некоторый простейший алгоритм, как правило, вероятностный.

Рост и спад выброса в системе Ершова представляют собой пример простого поведения, поэтому, предполагается рассматривать их как процессы, относящиеся к руслам. В области устойчивого многообразия система демонстрирует сложное (хаотическое) поведение, для моделирования которого представляется целесообразным использовать джокер.

Главное требование, предъявляемое к разрабатываемой модели – соответствие основных характеристик временных рядов, порождаемых ею и исходной моделью. В качестве таких характеристик были выбраны распределения величины выбросов и длительности межпиковых интервалов.

УРАВНЕНИЕ КУРАМОТО–ЦУЗУКИ (ГИНЗБУРГА–ЛАНДАУ) И ЖЁСТКАЯ ТУРБУЛЕНТНОСТЬ

Уравнение Курамото-Цузуки (иначе называемое уравнением Гинзбурга-Ландау) представляет собой одну из основных математических моделей, занимающих особое место в нелинейной динамике [1,2,3]. Данное уравнение демонстрирует большое разнообразие решений, включая стационарные, периодические и хаотические, и используется, в частности, для описания явлений, имеющих место в нелинейных средах – перехода к турбулентным режимам в гидродинамике, ионно-звуковых волн в плазме, и т.д. Нас интересует его двумерное обобщение, используемое при моделировании процессов, происходящих на границе сред – ветровых волн на воде, морфогенеза, протекающих на поверхности колебательных химических реакций [9].

Двумерное обобщение уравнения Курамото–Цузуки выглядит следующим образом:

$$W_{t} = (1 + ic_{0})W + (1 + ic_{1})\Delta W - (1 + ic_{2})|W|^{2}W.$$
(1)

Здесь *W* – некоторая комплекснозначная функция действительных переменных, а *c*₀, *c*₁, *c*₂ – параметры (действительные постоянные).

При определённом соотношении значений параметров в системе (1) можно наблюдать так называемую жёсткую турбулентность (в англоязычных источниках используется термин hard/strong turbulence) – хаотический режим с редкими, и при том исключительно сильными выбросами (пиками жёсткой турбулентности). Для исследования данного режима используется специальная модификация уравнения Курамото–Цузуки с более сильной нелинейностью:

$$W_{t} = \varepsilon W + (i + \varepsilon) W_{xx} + (i - \varepsilon) |W|^{4} W.$$
⁽²⁾

Данное уравнение известно под названием зависящего от времени уравнения Гинзбурга–Ландау с нелинейностью 5 порядка (quintic time-dependent Ginzburg– Landau equation, сокращённо – QTDGL). При $\varepsilon = 0$ оно переходит в нелинейное уравнение Шрёдингера

$$W_{t} = iW_{xx} + i|W|^{4}W.$$
(3)

Важное свойство последнего – существование ряда законов сохранения, существенных для описания жёсткой турбулентности. Это закон сохранения «массы»

$$M \equiv \int \left| W \right|^2 dx \, ,$$

«импульса»

$$P = \frac{1}{2i} \int \left(W_x^* W - W^* W_x \right) dx$$

и «энергии»

$$E \equiv \int \left(\left| W_x \right|^2 - \frac{1}{3} \left| W \right|^6 \right) dx \; .$$

На сегодняшний день также известны следующие свойства решений уравнения (2). Во-первых, при малых ε решение уравнения (3) представляет собой хорошую аппроксимацию профиля W(x,t) в области роста больших пиков. Во-вторых, распределение максимумов пиков h описывается (в промежуточном интервале масштабов) степенной асимптотикой $p(h) \sim h^{-\alpha}$, где α – константа, $\alpha \approx 7 \div 8$. В области малых h имеет место иное распределение. Также максимумы пиков ограничены сверху, что, предположительно, объясняется воздействием множителя ε в уравнении (2).

На практике, как правило, из всех характеристик распределения наибольший интерес представляют моменты первого и второго порядка. Здесь существенна интерпретация W. Если имеют смысл величины |W| и $|W|^2$, то аномально большие пики не оказывают принципиального влияния на среднее и дисперсию, то есть, распределение p(h) можно считать эффективно ограниченным. Если же рассматривается величина $|W|^4$, то имеет место картина, характерная для некоторых разновидностей катастрофических событий, когда редкие аномальные выбросы оказывают существенное влияние на среднее и обращают в бесконечность дисперсию.

В численных экспериментах жёсткую турбулентность можно наблюдать, решая уравнение (2) в области длины L с периодическими граничными условиями, с параметром ε в интервале 0,01÷0,0001. Поведение системы зависит от размера области: при L < 5 пики жёсткой турбулентности отсутствуют, в областях промежуточной длины (приблизительно от 10 до 80) наблюдаются возникновения одиночного пика, в более длинных областях возможно возникновение нескольких пиков одновременно.

Внешне, жизненный цикл одиночного пика жёсткой турбулентности выглядит следующим образом (здесь и далее предполагается рассмотрение в

области промежуточной длины). Вначале, в системе наблюдаются медленные нерегулярные пространственно-временные колебания. В каждый момент времени график W(x) выглядит гладким, причём |W| < 1.

Затем, в какой-то момент времени начинается рост пика. Скорость роста значительно превышает характерную величину W_t вне области пика. Ширина пика при этом сокращается.

Далее, после того, как пик достигает максимальной величины (обратно зависящей от ε), начинается его распад. Вначале фазы распада величина пика уменьшается, причём уменьшение происходит быстрее предшествующего роста. Ширина пика при этом увеличивается, а его форма сглаживается.

Распад пика продолжается его превращением в быстро осциллирующий волновой пакет с колоколообразной огибающей. Высота пика при этом имеет величину порядка единиц.

После этого, волновой пакет распространяется в ширину, до заполнения всей области рассмотрения. Амплитуда волн продолжает уменьшаться, а высшие гармоники затухают.

В конце концов, в области рассмотрения вновь наблюдаются медленные колебания. Характерное время сглаживания профиля имеет порядок ε^{-1} . Новый пик может образоваться не прежде, чем происходит сглаживание.

В ходе эволюции пика масса, импульс и энергия ведут себя следующим образом. В начале выброса происходит всплеск энергии – практически мгновенный рост на несколько порядков. Затем, в ходе распада пика, энергия монотонно убывает. Новые пики не возникают, пока энергия не достигнет величины порядка 1.

Масса после возникновения пика начинает убывать, пока не перестанет выполняться условие E > M. После этого начинается рост. В целом, масса меняется значительно слабее, чем энергия: минимальное и максимальное значения различаются менее чем на порядок.

Импульс практически не отражает развитие пика: в расчётах, где его начальное значение близко к нулю, его дальнейшее изменение незначительно.

В настоящее время не известны простые способы точного предсказания момента и координаты начала следующего пика, а также его высоты. В этой связи представляется естественной попытка дополнить динамическое описание системы статистическим, возможно, с привлечением более простых моделей жёсткой турбулентности, чем уравнение (2).

Переключающаяся перемежаемость и отображение Ершова

Один из вариантов упрощённого (качественного) описания жёсткой турбулентности основан на использовании систем, демонстрирующих так называемую *переключающуюся перемежаемость* (*on-off intermittency*). Приведённый термин используется для обозначения разновидности динамического режима, в котором хаотическое движение чередуется с резкими сильными выбросами. В данном случае такое поведение системы обусловлено

наличием устойчивого инвариантного многообразия, теряющего устойчивость в результате бифуркации. Кроме того, система дополнена механизмом возвращения устойчивости инвариантному многообразию. Отметим следующее: предполагается, что хаотическое движение длится достаточно долго, чтобы точное определение основных характеристик выброса (момент начала, длительность, высота, направление) было невозможно.

Примером системы, в которой можно наблюдать переключающуюся перемежаемость, является *отображение Ершова* [3,4]. Данная система строилась описанным ниже образом, с учётом следующих требований:

1. Наличие одной медленной переменной – своего рода параметра в отображении для быстрых переменных. Данная переменная, по аналогии с уравнением (2), называется «энергией» и обозначается *E*, так как предполагается, что именно энергия, среди всех интегралов движения уравнения (2), играет наиболее существенную роль.

2. Наличие быстрых переменных, описывающих соответствующее межпиковой фазе движение на хаотическом аттракторе. Изменение свойств аттрактора в зависимости от медленной переменной. При переходе медленной переменной некоторого критического значения должен происходить *кризис аттрактора* – появление неустойчивой области, так называемой «*дырки*», через которую изображающая точка покидает аттрактор, что соответствует росту пика. Здесь и далее имеется в виду изображающая точка в фазовом пространстве быстрых переменных.

Прекращение роста пика и возвращение изображающей точки на аттрактор 3. (аттрактор вновь становится глобально притягивающим). Существует два очевидных способа определения момента возвращения аттрактору свойства притяжения. Первый, параметрический, предполагает зависимость от значения энергии (рост прекращается при превышении энергией некоторого порогового значения). Второй, динамический – зависимость от значений быстрых переменных (рост прекращается при попадании изображающей точки в заданную область фазового пространства). Динамический способ считается в большей степени соответствующим сути поведения системы, заданной уравнением (2). Здесь следует отметить, что для простоты было бы естественно ограничиться единственной быстрой переменной. Однако, в сочетании с динамическим способом ограничения роста пика, это привело бы к колебаниям вокруг порогового значения (при превышении порогового значения рост прекращается, начинается спад, после обратного перехода через порог вновь начинается рост, и так далее). Поэтому, необходимо наличие как минимум двух быстрых переменных, и несколько более сложный механизм остановки роста пика. Например, следующий: изображающая точка, приближается к аттрактору по первой координате и продолжает удаляться по второй, пока не произойдёт возврат по первой координате в область аттрактора. После этого, начинается возврат по второй координате.

4. Максимально возможная простота функции отображения быстрых переменных. Целесообразно использование кусочно-линейной функции.

Итак, система строится следующим образом. Есть две быстрые переменные, *x* и *y*, и соответствующие им два связанных одномерных

отображения с параметром E. Когда E выше порогового значения $E_{\rm cr}$, имеется хаотический аттрактор с некоторой конечной областью притяжения. При уменьшении E до порогового значения и далее, происходит кризис аттрактора – границы аттрактора и его области притяжения соприкасаются, после чего появляется «дырка». При попадании в «дырку» изображающей точки начинается уход последней на бесконечность. Затем, при превышении переменной y некоторого порогового значения $y_{\rm cr}$, начинается возвращение на аттрактор по координате x. Когда изображающая точка достигает аттрактора (и более не покидает его) по координате x, начинается возвращение по координате y.

Далее, энергия Е рассматривается не как параметр, но как медленная переменная. Пока изображающая точка движется в пределах аттрактора, Е медленно убывает, сходясь к некоторой неподвижной точке $E_* < E_{cr}$. При этом, $E > E_{cr}$ нарушается, условие происходит кризис аттрактора, когда изображающая точка начинает уходить на бесконечность, и вместе с этим начинает расти *E*. Как только условие $E > E_{cr}$ вновь начинает выполняться, «дырка» закрывается, и аттрактор становится локально притягивающим (росту значений быстрых переменных это не препятствует). После остановки роста пика по координате x, рост энергии также прекращается, и она вновь начинает медленно убывать.

Соотношение быстрого и медленного масштаба времени определяется параметром ε , задающим скорость изменения энергии. Стоит отметить, что при $\varepsilon \to 0$ рост пика начинается при значении энергии, очень мало отличающемся от критического ($E \to E_{cr} - 0$). Поскольку «дырка» возникает при $E = E_{cr}$ и увеличивается в размерах по мере уменьшения E, постольку в данном случае размеры «дырки» оказываются малы. То есть, разброс начальных значений при росте пика мал и для энергии, и для быстрых переменных. Это не соответствует реально наблюдаемому поведению динамической системы, заданной уравнением (2).

Данная проблема решается путём некоторого усложнения механизма образования пика. При переходе энергии в область $E < E_{cr}$ открывается «дырка» и начинается рост только по одной координает – x. «Дырка» по y открывается только при достижении x некоторого порогового значения x_{cr} . Параметры отображений подбираются таким образом, чтобы переменная x достигала порогового значения за количество итераций, достаточное для образования разброса по y порядка размера аттрактора. Изображающая точка попадает в область открывшейся «дырки» по y спустя некоторое время T_1 . Разброс по T_1 тем больше, чем больше разброс по y к моменту открытия «дырки», и чем меньше размер «дырки».

Время, которое проходит до момента достижения порогового значения по у, обозначается T_2 . Таким образом, после достижения x_{cr} рост по x продолжается в течение времени $T_1 + T_2$. Если размер «дырки» по y мал, то разброс по T_2 также мал, и разброс максимальных значений по x определяется разбросом по T_1 . Окончательно, с учётом изложенных соображений, записывается трёхмерное отображение следующего вида:

$$\begin{cases} x_{n+1} = f\left(x_{n}, k_{x,n}, a_{n}\right) + \gamma \frac{y_{n}}{1+|y_{n}|}, & k_{x} = \begin{cases} k_{x}^{+} > 1, \ y \ge y_{cr} \\ k_{x}^{-} < 1, \ y < y_{cr} \end{cases} \\ y_{n+1} = f\left(y_{n}, k_{y,n}, a_{0}\right) - \gamma_{0} \frac{\varepsilon x_{n}}{1+\varepsilon |x_{n}|}, & k_{y} = \begin{cases} k_{y}^{+} > 1, \ x \le x_{cr} \\ k_{y}^{-} < 1, \ x > x_{cr} \end{cases} \\ E_{n+1} = E_{n} - \varepsilon \left(E_{n} + x_{n}\right) \end{cases} .$$

$$a\left(E\right) = a_{\infty} \frac{E}{E + E_{cr} \left(\frac{a_{\infty}}{a_{cr}} - 1\right)} \end{cases}$$

$$(4)$$

Здесь величины γ и γ_0 – параметры связи одномерных отображений быстрых переменных, а f – кусочно-линейная функция, определяющая характер этих отображений:

$$f(x,k,a) = \begin{cases} \frac{2}{a-1}x + \frac{1+a}{1-a}, & x \ge a\\ \frac{3}{2a+2}x + \frac{2-a}{2a+2}, & -1 \le x < a\\ kx + k - \frac{1}{2}, & x < -1 \end{cases}$$
(5)

График этой функции показан на рис. 1(а).

Рис. 1. Графики функций, входящих в отображение Ершова

(a) – функция f, входящая в одномерные отображения быстрых переменных; x_* – неподвижная точка.

(б) – зависимость параметра *а* фунции *f* от энергии.

Можно видеть, что одномерное отображение, заданное этой функцией, всегда имеет неустойчивую неподвижную точку. При k > 1 появляется ещё одна неустойчивая неподвижная точка, обозначаемая x_* . Эта точка представляет собой границу области притяжения аттрактора данного отображения.

Функция a(E) определяет влияние энергии на параметр *a* функции *f*, и, как следствие, на геометрию аттрактора и его области притяжения, ограничивая это влияние в области больших значений *E*. Величины a_{cr} , a_{∞} –параметры этой функции; её график показан на рис. 1(б).

Динамика системы (4), как и задумывалось, подразделяется на следующие фазы. В межпиковой фазе происходит хаотическое движение на аттракторе; значения обеих быстрых переменных имеют порядок 1. Энергия медленно убывает, соответственно, значение параметра a в отображении для x увеличивается, и, следовательно, наклон правой ветви f возрастает.

Фаза выброса по координате *x* начинается, когда энергия, а значит, и наклон правой ветви *f*, достигает порогового значения. В результате этого, значение x_n может оказаться в области $x < x_*$, что означает выход изображающей точки из области притяжения аттрактора и экспоненциальный рост: $x_n \sim (k_x^+)^n$. Энергия быстро растёт вместе с ростом |x|, $E_n \sim \varepsilon (k_x^+)^n$. В это же время динамика по координате *y* приближённо описывается отображением

$$y_{n+1} = f\left(y_n, k_y^+, a_0\right),$$

пока выполняется условие $|x_n| \ll \frac{1}{\varepsilon}$. Аттрактор этого отображения – локально притягивающий, уход с него на бесконечность невозможен, несмотря на то, что левая ветвь *f* стала растягивающей, когда $|x_n|$ превысило $|x_{cr}|$.

Фаза выброса по y наступает, когда координата x изображающей точки достигает величин порядка $\frac{1}{\varepsilon}$. По мере роста x, появляется необходимость учитывать добавочный член в отображении, описывающем динамику по координате y:

$$y_{n+1} = f\left(y_n, k_y^+, a_0\right) + \Gamma_n, \ \Gamma_n \equiv \gamma_0 \frac{|\varepsilon x_n|}{1 + |\varepsilon x_n|}.$$

Параметры подобраны таким образом, что отображение

$$y_{n+1} = f(y_n, k_y^+, a_0) + \frac{\gamma_0}{2},$$

соответствующее $x_n = \frac{1}{\varepsilon}$, уже не имеет аттрактора. «Дырка» в аттракторе возникает при достижении добавочным членом Γ_n некоторого критического значения

$$\Gamma = \Gamma_{\rm cr} \equiv \frac{1/2}{\left(k_y^+ - 1\right)\frac{1 + a_0}{1 - a_0} - 1}.$$

Её размеры невелики, так что изображающая точка попадает в область «дырки» не сразу, но спустя некоторое количество итераций. Всё это время добавочный член и, как следствие, геометрия «дырки», продолжает меняться, так что момент начала экспоненциального роста $y_n \sim (k_y^+)^n$ и его начальные условия имеют некоторый разброс.

Фаза спада по *x* наступает, как только |y| превышает критическое значение $|y_{cr}|$. Левая ветвь *f* в отображении по *x* становится сжимающей, вследствие чего $|x_n|$ начинает убывать: $x_n \sim (k_x^-)^n$. Параметры подбираются таким образом, что $|x_n|$ убывает быстрее, чем рос до того. Рост энергии сменяется медленным уменьшением: $E_n \sim (1-\varepsilon)^n$. Рост по *y* при этом продолжается.

Рис. 2. Фоновая динамика и пик жёсткой турбулентности в отображении Ершова Графики E(n), x(n), y(n) соответствуют набору значений параметров (6) и даны в полулогарифмическом масштабе, для абсолютных значений. Пунктирная линия соответствует $\lg |E|$, сплошная линия – $\lg |x|$, штриховая линия – $\lg |y|$. Цифрами обозначены фазы: 1 – межпиковая, 2 – выброс по x, 3 – выброс по y, 4 – спад по x, 5 – распад пика.

Фаза распада пика начинается при переходе уменьшающегося $|x_n|$ через пороговое значение $|x_{cr}|$. Левая ветвь f в отображении по y становится

сжимающей, рост $|y_n|$ сменяется ещё более быстрым уменьшением: $y_n \sim (k_y^-)^n$. Пока значение $|y_n|$ превышает пороговое, $|y_{cr}|$, уменьшение |x| продолжается. Параметры должны быть подобраны так, чтобы изображающая точка успела войти по координате x в область аттрактора к моменту перехода y_n через порог, когда правая ветвь f в отображении по x станет растягивающей. Уменьшаясь по модулю, y_n входит в область аттрактора. Система вновь вступает в межпиковую фазу.

Общий вид происходящего в системе показан на рис. 2. Показанное соответствует следующим, приведённым в [3], значениям параметров:

$$\varepsilon = 0,02; \ a_0 = 0,5; \ a_{cr} = -0,2668; \ a_{\infty} = -0,8; \ E_{cr} = 0,3; \ \gamma = 0,122; \gamma_0 = 0,5; \ k_x^+ = 4; \ k_x^- = 0,1; \ k_y^+ = 2; \ k_y^- = 0,1; \ x_{cr} = -\frac{4}{3}; \ y_{cr} = -100.$$
(6)

Данный набор значений параметров используется и во всех дальнейших расчётах.

Для системы (4) известен ряд полученных аналитически (в предположении $\varepsilon \to 0$) законов распределения. Нас, прежде всего, интересуют выражения для функций плотности распределения максимумов¹ пиков по координате *x*

$$\rho_{x_{\max}}(x) = \begin{cases}
\left(\gamma_{0} - \Gamma_{cr}\right)^{3} \frac{\varepsilon C_{1}}{C_{2} |y_{cr}|} \left(-\varepsilon \frac{\left(\gamma_{0} - \Gamma_{cr}\right)^{2}}{C_{2} |y_{cr}|}x\right)^{-1 - C_{1}(\gamma_{0} - \Gamma_{cr})}, & x \leq \frac{C_{2} |y_{cr}|}{\varepsilon (\gamma_{0} - \Gamma_{cr})^{2}}\\ 0, & x > \frac{C_{2} |y_{cr}|}{\varepsilon (\gamma_{0} - \Gamma_{cr})^{2}}\\ C_{1} = \frac{(1 - a_{0}) P_{y,\Gamma_{cr}}(1 + \Gamma_{cr})}{4\Gamma_{cr} (k_{y}^{+} - 1) \log k_{x}^{+}}, & C_{2} \equiv 2(k_{y}^{+} - 1)\Gamma_{cr}^{2}\end{cases}$$
(7)

и по координате у

$$\rho_{y_{\text{max}}}(y) = \begin{cases} C_{\text{Norm}}(-y)^{-1+C_{1}(\gamma_{0}-\Gamma_{\text{cr}})\lg k_{x}^{-}/\lg k_{y}^{+}}, & y \leq \frac{C_{2}y_{\text{cr}}^{2}}{\varepsilon \delta x_{\text{cr}}(\gamma_{0}-\Gamma_{\text{cr}})^{2}} \\ 0, & y > \frac{C_{2}y_{\text{cr}}^{2}}{\varepsilon \delta x_{\text{cr}}(\gamma_{0}-\Gamma_{\text{cr}})^{2}} \end{cases}$$

$$C_{\text{Norm}} = -\frac{\lg k_{x}^{-}}{\lg k_{y}^{+}} C_{1}(\gamma_{0}-\Gamma_{\text{cr}}) \left(C_{2} \frac{y_{\text{cr}}^{2}}{\varepsilon \delta x_{\text{cr}}(\gamma_{0}-\Gamma_{\text{cr}})^{2}}\right)^{-C_{1}(\gamma_{0}-\Gamma_{\text{cr}})\lg k_{x}^{-}/\lg k_{y}^{+}}, \qquad (8)$$

а также функция плотности распределения длительности межпиковых интервалов

¹ Здесь и далее слова «максимум пика» используются для обозначения максимума по абсолютной величине.

$$\rho_{T}(t) \cong \begin{cases} C_{1} \varepsilon (\gamma_{0} - \Gamma_{cr}) e^{-C_{1} \varepsilon (\gamma_{0} - \Gamma_{cr})(t - T_{min})}, & t \ge T_{min} \equiv \frac{1}{\varepsilon} \log \frac{C_{2}}{(\gamma_{0} - \Gamma_{cr})^{2}}, \\ 0, & t < T_{min} \end{cases}$$
(9)

Эти величины далее рассматриваются нами как основные характеристики режима жёсткой турбулентности.

РЕКОНСТРУКЦИЯ ОТОБРАЖЕНИЯ ЕРШОВА: СЛУЧАЙ ОДНОЙ ПЕРЕМЕННОЙ

Итак, пусть имеется система (4), работающая в режиме жёсткой турбулентности. Пусть система рассматривается как «чёрный ящик», скрывающий её устройство, и из трёх порождаемых ею временных рядов, E_n , x_n и y_n , делающий доступным для наблюдения только один – x_n . Наша задача заключается в построении простой (модельной) системы, порождающей временной ряд с аналогичными характеристиками.

Поскольку информация наблюдателя об исходной системе неполна, постольку целесообразно учитывать как динамические, так и статистические характеристики временного ряда. Следовательно, при построении модельной системы можно совместно использовать (хотя бы, для простоты) динамические и вероятностные компоненты, то есть, задействовать метод русел и джокеров. Иными словами, предполагается, что данный метод мог бы упростить построение модельной системы, и при том по возможности полностью использовать доступную информацию об исходной системе. В этом состоит отличие от распространённой практики моделирования, предписывающей игнорировать как можно большую часть доступной информации, с целью упрощения модели.

Первичный анализ информации о наблюдаемой системе

Обсудим, какие характеристики временного ряда x_n могли бы быть рассмотрены при построении модели. Главная особенность временного ряда выбросов, чередующихся наличие редких сильных с длительными Следовательно, среди межпиковыми интервалами. интересующих нас характеристик временного ряда можно выделить характеристики выбросов (распределение максимумов пиков, их продолжительность, динамика роста и и характеристики межпиковых интервалов (продолжительность, спада), межпиковая динамика). Также нас может заинтересовать процесс перехода от межпиковой (фоновой) динамики к росту пика, и обратно, от спада к фоновой динамике.

Прежде всего, нам понадобится правило, позволяющее отличить значения x_n , относящиеся к фазе выброса, от значений x_n , относящихся к межпиковым интервалам. На рис. 2 можно видеть, что первые превышают вторые на много порядков величины. В то же время, длительность выброса крайне мала по сравнению с длительностью межпикового интервала. Отсюда следует, что

медиана $x_{\rm M}$ временного ряда $\{|x_n|\}$ даст оценку характерной величины переменной состояния в межпиковой фазе. Для выделения пиковых значений $x_{\rm n}$ может использоваться пороговое значение – некоторая величина $x_{\rm n} > 0$, превышающая медиану на один или несколько порядков. Надпороговые значения x_n , то есть, такие, что $|x_n| > x_{\rm n}$, считаются относящимися к фазе выброса.

Первая из перечисленных выше характеристик, распределение максимумов пиков, описывается формулой (7). Перепишем её в более удобном для теоретических выкладок виде:

$$\rho_{x_{\max}}(x) = \begin{cases} a_x (-x)^{-b_x}, & x \le B_x \\ 0, & x > B_x \end{cases}.$$
(10)

Можно видеть, что гистограмма максимумов пиков в логарифмических координатах $(\ln(-x), \ln \rho)$ должна (в идеальном случае) представлять собой прямую. Оценив свободный член c_0 и угловой коэффициент c_1 соответствующей линейной функции, например, методом наименьших квадратов, мы получим оценки параметров a_x и b_x :

$$\hat{a}_x = e^{c_0}$$

$$\hat{b}_x = -c_1$$
(11)

(здесь и далее надстрочный знак « [^] » используется для обозначения оценки).

Чтобы оценить B_x , воспользуемся условием нормировки

$$\int_{-\infty}^{+\infty} \rho_{x_{\max}}(x) dx = \frac{a_x}{b_x - 1} (-x)^{-b_x + 1} \Big|_{-\infty}^{-b_x} = \frac{a_x}{b_x - 1} (-B_x)^{-b_x + 1} = 1$$

(предполагается выполнение условия сходимости интеграла $b_x > 1$). Решив уравнение относительно B_x и подставив оценки \hat{a}_x и \hat{b}_x , имеем

$$\widehat{B}_{x} = -\left(\frac{\widehat{a}_{x}}{\widehat{b}_{x}-1}\right)^{\frac{1}{\widehat{b}_{x}-1}}$$
(12)

Распределение длительности межпиковых интервалов (9) перепишем в виде

$$\rho_N(n) = \begin{cases} a_n e^{-b_n n}, & n \ge B_n \\ 0, & n < B_n \end{cases}.$$
(13)

Точно так же, построив гистограмму в полулогарифмических координатах $(n, \ln \rho)$ и воспользовавшись формулами, полностью аналогичными (11), получим оценки \hat{a}_n и \hat{b}_n . Решив уравнение нормировки

$$\int_{-\infty}^{+\infty} \rho_N(n) dn = \frac{a_n}{-b_n} e^{-b_n n} \Big|_{B_n}^{+\infty} = \frac{a_n}{b_n} e^{-b_n B_n} = 1$$

относительно B_n и подставив \hat{a}_n и \hat{b}_n , имеем оценку

$$\widehat{B}_n = \frac{1}{\widehat{b}_n} \ln \frac{\widehat{a}_n}{\widehat{b}_n}.$$
(14)

Рост пика, согласно (4) и (5), в области больших |x| описывается отображением

$$x_{n+1} = k_x^+ x_n + k_x^+ - \frac{1}{2}.$$
 (15)

Здесь мы пренебрегли членом, содержащим y_n . В силу его сравнительной малости при заданном наборе значений параметров (6), а также ненаблюдаемости переменной y по условиям задачи, воздействие данного члена можно считать слабой флуктуацией. Отображение (15) можно переписать в виде

$$(x_n - x_*) = (x_0 - x_*)(k_x^+)^n,$$
 (16)

где x_* – его неподвижная точка. При отсутствии флуктуаций эта точка ограничивает область роста справа. Таким образом, точки на графике в полулогарифмических координатах $(n, \ln(-x_n))$, относящиеся к росту пика, в области больших |x| (порядка максимума пика) должны аппроксимироваться некоторой прямой. Имеем оценку \hat{k}_x^+ для коэффициента k_x^+ :

$$\hat{k}_{x}^{+} = e^{c_{1}},$$
 (17)

где *с*₁ – угловой коэффициент данной прямой.

Спад пика в области больших |x| описывается уравнением

$$x_n \sim (k_x^-)^n, \ x_{n+1} = k_x^- x_n$$
 (18)

(начальное значение для данного отображения – точка максимума пика).

Оценку \hat{x}_* неподвижной точки x_* несложно вычислить, зная оценки свободного члена c_0 и углового коэффициента c_1 линейной функции (15):

$$\widehat{x}_* = \frac{c_0}{1 - c_1}.$$
(19)

Оценки c_0 и c_1 можно получить, аппроксимировав прямой точки, относящиеся к росту пика, на графике (x_n, x_{n+1}) . Данные оценки будут весьма неточными по ряду причин. Во-первых, в силу экспоненциального роста x_n , для построения

аппроксимирующей прямой можно использовать очень небольшое количество соседних точек (3 или 4 точки для набора значений параметров (6); некоторого повышения точности можно добиться, накапливая точки, относящиеся к разным пикам, а также заменив в формуле (19) c_1 более точной оценкой \hat{k}_x^+). Во-вторых, оценка по точкам $|x| \sim |x_*|$ неточна, так как в этой области возрастает влияние слабых флуктуаций в (15). В-третьих, оценка по точкам $|x| \gg |x_*|$ неточна, поскольку погрешность оценки свободного члена линейной функции нарастает по мере удаления от начала координат.

С другой стороны, нас интересует не столько получение точной оценки x_* , сколько воспроизведение динамики роста пика. Поэтому, оставим за собой право определять \hat{x}_* , исходя из соображений простоты построения модели.

Процедура получения оценки \hat{k}_x^- для коэффициента k_x^- полностью аналогична описанной выше. Роль неподвижной точки сжимающего отображения не представляется существенной.

Фоновая динамика внешне выглядит как случайное отображение некоторой ограниченной области на себя, при выходе из этой области начинается рост пика. Будем считать эту область отрезком $[D_{x,\min}, D_{x,\max}]$. Поскольку пик растёт в отрицательном направлении, величину $D_{x,\max}$ можно оценить как максимальное значение x_n за время наблюдения:

$$\widehat{D}_{x,\max} = \max_{\{n\}} \left\{ x_n \right\}.$$
(20)

Величину $D_{x,\min}$ можно оценить как минимальное значение x_n в промежутке между какими-либо двумя соседними пиками:

$$\hat{D}_{x,\min} = \min\{x_n | N_1 < n < N_2\},$$
(21)

где N_1 – момент окончания спада первого пика, а N_2 – момент начала роста второго.

Для определения N_1 и N_2 можно поступить следующим образом. Рассматривая поведение системы в области больших |x| ($|x| \gg x_n$), нетрудно выделить некоторый момент N_0 , относящийся к спаду первого пика. Считая, что в процессе спада значение x_n непрерывно возрастает, N_1 можно оценить как первый, начиная с N_0 , момент нарушения этой закономерности:

$$x_n < x_{n+1}, \ n = N_0, N_0 + 1, \dots
 x_{N_1} \ge x_{N_1 + 1}$$
(22)

Аналогично, выделяется некоторый момент N_3 , относящийся к росту второго пика, и определяется N_2 :

$$x_{n-1} > x_n, \ n = N_3, N_3 - 1, \dots
 x_{N_2 - 1} \le x_{N_2}$$
(23)

Фоновая динамика и процедура получения оценок $D_{x,\min}$ и $D_{x,\max}$ показана на рис. 3. Для повышения точности оценки $D_{x,\min}$ можно повторить описанную процедуру для нескольких межпиковых интервалов.

Рис. 3. Фоновая динамика, оценки границ области фоновой динамики

График $x_n(n)$ в межпиковой фазе. Цифрами обозначены точки: 1 – точка с ординатой $x = D_{x,max}$ согласно (20), 2 – точка с ординатой $x = \hat{D}_{x,min}$ согласно (21), 3 – точка с абсциссой $n = N_0$, 4 – точка с абсциссой $n = N_1$ согласно (22), 5 – точка с абсциссой $n = N_3$, 6 – точка с абсциссой $n = N_2$ согласно (23). Пунктирной линией обозначен порог $|x| = x_{\Pi}$.

Предварительные соображения по схеме русел и джокеров

Итак, анализируя временной ряд *x_n*, можно выделить:

- фазу фоновой динамики,
- событие перехода от фоновой динамики к росту пика,
- фазу роста,
- событие остановки роста (достижения максимума пика),
- фазу спада,
- событие перехода от спада к фоновой динамике.

Динамика в фазах роста и спада описывается простыми уравнениями (16) и (18). Исходя из этого, имеет смысл назначить для моделирования роста и спада два русла, C_1 и C_2 , соответственно.

Фоновая динамика хаотична, а момент перехода от фоновой динамики к росту пика – случайная величина (переменная E, инициирующая переход, не наблюдается). Следовательно, имеет смысл использовать джокер для их описания. Обозначим данный джокер J_1 . Как будет видно далее, этот же джокер можно использовать и для описания события перехода от спада к фоновой динамике.

Достижение максимума пика – также случайное событие (смена динамики не следует из уравнения роста; инициирующая её переменная *у* не наблюдается). Для его описания используем джокер, обозначенный **J**₂.

Попутно заметим, что алгоритмы моделирования случайных событий должны быть рассчитаны на использование стандартного датчика случайных чисел, показания которого считаются случайной величиной, равномерно распределённой на отрезке [0,1]. В дальнейших выкладках мы будем обозначать её *Z*, а соответствующую функцию плотности распределения –

$$\rho_{Z}(z) = \begin{cases} 1, & z \in [0,1] \\ 0, & z \notin [0,1] \end{cases}.$$
(24)

Русла С₁ и С₂

Динамика в русле C_1 задаётся уравнением роста пика (16). Из этого уравнения следует, что рост пика не может начинаться с точки $x = x_*$. Следовательно, имеет смысл ограничить область русла неравенством

$$x \le A_x < x_* \, .$$

В некоторой окрестности x_* влияние слабых флуктуаций является определяющим, и динамика хаотична. Область роста пика примыкает к области фоновой динамики слева, и с точки зрения наблюдателя, данная окрестность x_* относится к области фоновой динамики. Фактически, точка $x = A_x$ ограничивает окрестность слева, поэтому можно считать, что

$$A_x = D_{x,\min} . (25)$$

Будем полагать, что начальное значение x_0 , согласно намеченной схеме русел и джокеров, представляет собой результат работы джокера J_1 – случайную величину. Функцию плотности распределения x_0 обозначим $\rho_{x_0}(x)$.

Динамика в русле C_2 задаётся уравнением спада (18). Поскольку рост и спад пика происходят в одной и той же области фазового пространства, область русла C_2 будет совпадать с областью русла C_1 . Таким образом, требуется уточнять, какое из русел в данный момент считается действующим.

Джокер J₂

Разработка алгоритма джокера подразумевает решение двух задач. Вопервых, необходимо задать правило выбора момента срабатывания джокера. Во-вторых, требуется определить саму процедуру срабатывания.

Вторая задача в данном конкретном случае представляется более простой. срабатывания Результат джокера J_2 должен заключаться В TOM, что экспоненциальный рост значения наблюдаемой переменной сменяется экспоненциальным спадом. Таким образом, процедура срабатывания представляет собой изменение уравнения отображения (в терминах намеченной схемы русел и джокеров – переключение между руслами C₁ и C₂). Здесь просматривается аналогия с предложенным в [8] джокером типа «шов», также меняющим уравнение движения без перемещения изображающей точки.

Разница между джокером типа «шов» и джокером J_2 должна состоять в определении момента срабатывания. Первый срабатывает при пересечении фазовой траекторией линии, представлающей собой область джокера. В случае второго, это простое правило неприменимо. Координата изображающей точки в момент срабатывания джокера J_2 представляет собой максимум пика – случайную величину. Продолжительность роста пика – также случайная величина, что не даёт возможности «настроить» джокер на срабатывание в фиксированные моменты времени.

Таким образом, момент срабатывания джокера J_2 должен определятся некоторым вероятностным предикатом. Его аргументами могут быть как время n, так и координата x. Остановимся на определении момента срабатывания исходя из координаты, так как этот способ в большей степени соответствует «традиционному» понятию области джокера.

В результате, мы пришли к следующему алгоритму. В процессе роста пика на каждой итерации принимается решение: либо срабатывает джокер и рост пика останавливается (пик достигает максимального значения), либо рост русла С₁. Вероятность соответствии уравнением продолжается В С срабатывания джокера зависит от значения x на данной итерации, $p = p_{J_{x}}(x)$. $p_{\mathbf{J}}(\mathbf{x}),$ обеспечивающей Наша задача сводится к поиску функции распределение максимумов, соответствующее распределению (10). По этой причине мы будем ссылаться на (10) как на целевое распределение.

Рис. 4. Рост пика, срабатывание джокера и спад пика в логарифмической системе координат

Штриховая линия обозначает отображение, описывающее рост пика (движение в русле С1).

Штрих-пунктирная линия обозначает отображение, описывающее спад пика (движение в русле C_2).

Символом \blacktriangle отмечены значения переменной состояния в процессе роста.

Символом • отмечена точка срабатывания джокера.

Символом **v** отмечены значения переменной состояния в процессе спада.

Для удобства дальнейших выкладок, перейдём к логарифмической системе координат:

$$\tilde{x} \equiv \log_{k_x^+} (x_* - x), \ x < x_*$$
 (26)

Искомую зависимость вероятности срабатывания джокера от координаты далее будем обозначать $\tilde{p}_{J_2}(\tilde{x})$. Удобство (26) состоит в том, что отображение, описывающее рост пика, примет очень простой вид (рис. 4) –

$$\tilde{x}_{n+1} = \tilde{x}_n + 1. \tag{27}$$

Найдём вид целевого распределения в новых координатах. Для этого нам понадобится формула распределения функции случайной величины. Пусть имеется некоторая случайная величина V с функцией плотности распределения $\rho_V(v)$. Пусть задана некоторая детерминированная функция g, непрерывная, строго монотонная и имеющая обратную функцию g^{-1} на всей области рассмотрения. Функция от случайной величины W = g(V) будет случайной величиной с функцией плотности распределения

$$\rho_W(w) = \rho_V(g^{-1}(w)) \left| \frac{d}{dw} g^{-1}(w) \right|.$$
(28)

Сопоставим x_{\max} *V*, \tilde{x}_{\max} *W*, а функцию (26) *g*. Отметим, что в области $x \le B_x < x_*$, во-первых, функция *g* отвечает всем предъявляемым требованиям, а во-вторых, величиной x_* в выражении (26) можно пренебречь в силу неравенства $|x_*| \ll |B_x|$. Отсюда:

$$g^{-1}(\tilde{x}) = -(k_x^+)^{\tilde{x}}$$
$$\frac{d}{d\tilde{x}}g^{-1}(\tilde{x}) = -(k_x^+)^{\tilde{x}}\ln k_x^+$$
$$\rho_{x_{\max}}(g^{-1}(\tilde{x})) = a_x(k_x^+)^{-b_x\tilde{x}}$$

Далее, можно видеть, что мы перешли от степенного распределения к экспоненциальному:

$$\begin{aligned}
\rho_{\tilde{x}_{\max}}\left(\tilde{x}\right) &= \begin{cases} \tilde{a}_{x}e^{-b_{x}\tilde{x}}, & \tilde{x} \ge \tilde{B}_{x} \\ 0 & \tilde{x} < \tilde{B}_{x} \end{cases} \\
\tilde{a}_{x} &= a_{x}\ln k_{x}^{+} \\
\tilde{b}_{x} &= (b_{x}-1)\ln k_{x}^{+}
\end{aligned}$$
(29)

В дальнейшем нам понадобится соотношение коэффициентов, которое нетрудно получить из уравнения нормировки:

$$\tilde{a}_x = \tilde{b}_x e^{\tilde{b}_x \tilde{B}_x} \,. \tag{30}$$

Отметим следующее важное свойство отображения (27). Пусть дан некоторый интервал $\left[\tilde{Q}_x, \tilde{Q}_x + s\right), \tilde{Q}_x = const, s \leq 1$. Очевидным образом, он не пересекается со своим образом $\left[\tilde{Q}_x + 1, \tilde{Q}_x + s + 1\right)$ и прообразом $\left[\tilde{Q}_x - 1, \tilde{Q}_x + s - 1\right)$. Обозначим $\rho_{\tilde{Q}_x,s}(\tilde{x})$ условную функцию плотности распределения значений \tilde{x} (условием является попадание в данный интервал в процессе роста пика). Из (28) следует, что условная функция плотности распределения на *i*-образах(прообразах) $\left[\tilde{Q}_x + i, \tilde{Q}_x + s + i\right)$ данного интервала

$$\rho_{\tilde{Q}_{x}+i,s}(\tilde{x}) = \rho_{\tilde{Q}_{x},s}(\tilde{x}-i), \ i \in \mathbb{Z}$$

Интервал $\left[\tilde{Q}_{x}+u,\tilde{Q}_{x}+u+s\right), u \in \mathbb{R}$, в общем случае, не является образом (прообразом) $\left[\tilde{Q}_{x},\tilde{Q}_{x}+s\right)$. Однако, при условии s=1 первый интервал можно разбить на два подинтервала – образы(прообразы) соответствующих подинтервалов второго интервала с числом итераций, различающимся на единицу. Следовательно, обозначив $\rho_{\tilde{Q}_{x}}(\tilde{x}) \equiv \rho_{\tilde{Q}_{x},1}(\tilde{x})$, можно записать соотношение

$$\rho_{\tilde{S}_{x}}\left(\tilde{x}\right) = \rho_{\tilde{Q}_{x}}\left(\tilde{x} - \tilde{S}_{x} + \tilde{Q}_{x}\right).$$
(31)

В дальнейших выкладках будем предполагать, что в процессе роста пика изображающая точка гарантированно попадает в интервал $\left[\tilde{B}_x, \tilde{B}_x + 1\right)$, и, как следствие, функция плотности распределения значений \tilde{x} на данном интервале совпадает с $\rho_{\tilde{B}_x}(\tilde{x})$. Для этого необходимо, чтобы начальные значения находились полностью в области $\tilde{x} < \tilde{B}_x$, то есть,

$$\int_{-\infty}^{\tilde{B}_{x}} \rho_{\tilde{x}_{0}}\left(\tilde{x}\right) d\tilde{x} = 1$$

(хотя бы, с некоторой приемлемой точностью). Тогда функция плотности распределения максимумов пиков в интервале $\tilde{x} \in [\tilde{B}_x, \tilde{B}_x + 1)$ будет равна

$$\rho_{\tilde{x}_{\max}}\left(\tilde{x}\right) = \rho_{\tilde{B}_{x}}\left(\tilde{x}\right)\tilde{p}_{J_{2}}\left(\tilde{x}\right), \ \tilde{x} \in \left[\tilde{B}_{x}, \tilde{B}_{x}+1\right].$$
(32)

Согласно (31), для образов указанного интервала можно записать последовательность уравнений следующего вида:

$$\rho_{\tilde{x}_{max}} \left(\tilde{x} + 1 \right) = \rho_{\tilde{B}_{x}} \left(\tilde{x} \right) \left(1 - \tilde{p}_{J_{2}} \left(\tilde{x} \right) \right) \tilde{p}_{J_{2}} \left(\tilde{x} + 1 \right) \rho_{\tilde{x}_{max}} \left(\tilde{x} + 2 \right) = \rho_{\tilde{B}_{x}} \left(\tilde{x} \right) \left(1 - \tilde{p}_{J_{2}} \left(\tilde{x} \right) \right) \left(1 - \tilde{p}_{J_{2}} \left(\tilde{x} + 1 \right) \right) \tilde{p}_{J_{2}} \left(\tilde{x} + 2 \right) \dots , \rho_{\tilde{x}_{max}} \left(\tilde{x} + n \right) = \rho_{\tilde{B}_{x}} \left(\tilde{x} \right) \left[\prod_{i=0}^{n-1} \left(1 - \tilde{p}_{J_{2}} \left(\tilde{x} + i \right) \right) \right] \tilde{p}_{J_{2}} \left(\tilde{x} + n \right) \tilde{x} \in \left[\tilde{B}_{x}, \tilde{B}_{x} + 1 \right) \\n \in \mathbb{N}$$
(33)

Здесь мы учли то обстоятельство, что изображающая точка попадает в следующий интервал, только если джокер не срабатывает на данном интервале. Общий вид функции $\rho_{\tilde{x}_{max}}(\tilde{x})$ показан на рис. 5.

Рис. 5. Типичный вид распределения максимумов пиков для джокера J_2 На графике показан общий вид распределения максимумов пиков, обеспечиваемый джокером J_2 в соответствии с формулами (32) и (33). Для наглядности, в качестве $\rho_{\tilde{B}_x}(\tilde{x})$ и $\tilde{p}_{J_y}(\tilde{x})$ взяты произвольные функции.

Отсюда, имеем уравнение

$$\rho_{\tilde{x}_{\max}}\left(\tilde{x}+n+1\right) = \rho_{\tilde{x}_{\max}}\left(\tilde{x}+n\right)\left(1-\tilde{p}_{J_2}\left(\tilde{x}+n\right)\right)\frac{\tilde{p}_{J_2}\left(\tilde{x}+n+1\right)}{\tilde{p}_{J_2}\left(\tilde{x}+n\right)},$$
$$\tilde{x} \in \left[\tilde{B}_x, \tilde{B}_x+1\right), \ n \in \mathbb{N}.$$

Учитывая, что из (29) следует

$$\frac{\rho_{\tilde{x}_{\max}}\left(\tilde{x}+n+1\right)}{\rho_{\tilde{x}_{\max}}\left(\tilde{x}+n\right)}=e^{-\tilde{b}_{x}}, \ \tilde{x}\geq\tilde{B}_{x}, \ n\in\mathbb{N},$$

получаем для $\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}\right)$ рекуррентное соотношение:

$$\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}+n+1\right) = \frac{\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}+n\right)}{\left(1-\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}+n\right)\right)}e^{-\tilde{b}_{x}}, \ \tilde{x} \in \left[\tilde{B}_{x}, \tilde{B}_{x}+1\right), \ n \in \mathbb{N},$$

или, что эквивалентно,

$$\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}+1\right) = \frac{\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}\right)}{\left(1-\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}\right)\right)}e^{-\tilde{b}_{x}}, \quad \tilde{x} \ge \tilde{B}_{x}.$$
(34)

Будем искать решение $\tilde{p}_{\mathbf{J}_2}(\tilde{x})$ этого уравнения в простейшем виде:

$$\tilde{p}_{\mathbf{J}_{2}}\left(\tilde{x}\right) = \tilde{p}_{x} = const, \ \tilde{x} \ge \tilde{B}_{x}.$$

Подставив в (34), получим выражение для искомой константы:

$$\tilde{p}_x = 1 - e^{-\tilde{b}_x} \,. \tag{35}$$

Проверим, что найденное нами решение не нарушает условие нормировки

$$\int_{\tilde{B}_{x}}^{\tilde{B}_{x}+1} \rho_{\tilde{B}_{x}}(\tilde{x}) d\tilde{x} = 1.$$
(36)

Из (29) и (32) следует выражение для функции плотности распределения

$$\rho_{\tilde{B}_x}\left(\tilde{x}\right) = \frac{a_x}{\tilde{p}_x} e^{-\tilde{b}_x \tilde{x}}, \ \tilde{x} \in \left[\tilde{B}_x, \tilde{B}_x + 1\right)$$
(37)

Подставив его в (36), получим уравнение:

$$\int_{\tilde{B}_{x}}^{\tilde{B}_{x}+1} \rho_{\tilde{B}_{x}}\left(\tilde{x}\right) d\tilde{x} = \frac{\tilde{a}_{x}}{\tilde{p}_{x}} \frac{1}{-\tilde{b}_{x}} e^{-\tilde{b}_{x}\tilde{x}} \Big|_{\tilde{B}_{x}}^{\tilde{B}_{x}+1} = \frac{\tilde{a}_{x}}{\tilde{p}_{x}\tilde{b}_{x}} \left(1 - e^{-\tilde{b}_{x}}\right) e^{-\tilde{b}_{x}\tilde{B}_{x}} = 1$$

Преобразовав с учётом (30), получим необходимое условие для (36)

$$\tilde{p}_x = 1 - e^{-\tilde{b}_x}$$

Можно видеть, что (35) не противоречит данному условию.

Теперь, рассмотрим процесс роста пика в целом. В силу определённой свободы выбора границы \tilde{A}_x русла C₁, а также распределения начальных значений \tilde{x}_0 , положим, что все возможные начальные значения находятся в интервале $\left[\tilde{A}_x, \tilde{A}_x + 1\right)$. Отсюда, с учётом (31), (30) и (37), следует выражение для распределения начальных значений:

$$\rho_{\tilde{x}_{0}}\left(\tilde{x}\right) = \rho_{\tilde{A}_{x}}\left(\tilde{x}\right) = \tilde{\alpha}_{x}e^{-\tilde{b}_{x}\tilde{x}}, \ \tilde{x} \in \left[\tilde{A}_{x}, \tilde{A}_{x} + 1\right)$$

$$\tilde{\alpha}_{x} = \frac{\tilde{b}_{x}e^{\tilde{b}_{x}\tilde{A}_{x}}}{\tilde{p}_{x}} \qquad (38)$$

Записав для интервала $\left[\tilde{A}_{x}, \tilde{A}_{x}+1\right)$ последовательность уравнений, аналогичную (32)–(33), с ограничением $\tilde{x}+n < \tilde{B}_{x}$, и сравнив с (29), можно доопределить $\tilde{p}_{J_{2}}(\tilde{x})$ на интервале $\left[\tilde{A}_{x}, \tilde{B}_{x}\right)$ нулём. Окончательно, формально распространив область джокера J_{2} на всё русло C_{1} и выполнив обратное преобразование координат, имеем

$$p_{\mathbf{J}_{2}}(x) = \begin{cases} p_{x} \equiv \tilde{p}_{x} = 1 - e^{-\tilde{b}_{x}}, & x \le B_{x} \\ 0, & x \in (B_{x}, A_{x}] \end{cases}$$
(39)

Джокер J₁

Прежде всего, на джокер J_1 возлагается ответственность за моделирование фоновой динамики и за переход от фоновой динамики к росту пика. Сначала, рассмотрим данные задачи по отдельности.

Пусть моделирование фоновой динамики заключается в случайном отображении отрезка $[D_{x,\min}, D_{x,\max}]$ на себя. Для простоты положим, что x_n на каждой итерации присваивается значение некоторой случайной величины, функция плотности распределения которой полностью находится в данном отрезке (то есть, значения x_n независимы в совокупности). С той же целью используем случайную величину Z с распределением (24). Итак, в межпиковой фазе

$$x_{n} = (D_{x,\max} - D_{x,\min}) \times Z + D_{x,\min}, \ n = 0, 1, \dots$$
(40)

Отметим, что для более точного моделирования фоновой динамики случайной возможно использование величины распределением С И автокорреляцией, совпадающими с наблюдаемыми распределением И автокорреляцией x_n в межпиковой фазе (рис. 6).

Рис. 6. Статистические характеристики фоновой динамики

Следующая задача джокера J_1 – обеспечение длительности межпиковой фазы в соответствии с экспоненциальным распределением (13). Пусть на каждой *n*-й итерации возможно прекращение межпиковой фазы джокером, с вероятностью, определяемой некоторой функцией $p_{J_1}(n)$. Чтобы найти эту функцию, рассмотрим пуассоновское приближение биномиального распределения

⁽а) — гистограмма x_n , (б) — функция автокорреляции x_n . Оба графика построены по данным одного межпикового интервала.

$$P_m(n) = \frac{(np)^m}{m!} e^{-np}, n \gg 1, p \ll 1,$$

где $P_m(n)$ – вероятность ровно *m* успехов в *n* испытаниях Бернулли, а *p* – вероятность успеха в отдельном испытании. Известно, что промежуток (количество испытаний) между успешными испытаниями распределён экспоненциально:

$$\rho_N(n) = p e^{-np}, \ p \ll 1.$$

Следовательно, взяв вероятность прекращения джокером межпиковой фазы на данной итерации $p = b_n$, мы получим искомый вид распределения межпиковых интервалов². Окончательно, доопределив функцию $p_{J_1}(n)$ нулём в начале межпиковой фазы, получим

$$p_{\mathbf{J}_{1}}(n) = \begin{cases} p_{n} = b_{n}, & n \ge B_{n} \\ 0, & n = 0, \dots, B_{n} - 1 \end{cases}$$
(41)

Теперь, рассмотрим переход от фоновой динамики к росту пика. В этот момент, джокер J_1 , вместо выполнения очередной итерации согласно (40), должен перевести изображающую точку в исток русла C_1 . Таким образом, имеет смысл возложить на J_1 обязанность формирования в истоке русла распределения начальных значений вида (38), необходимого для получения заданного распределения максимумов пиков.

Для этого требуется решить частную задачу поиска зависимости $\tilde{x}_0 = g_Z(Z)$, позволяющей получить распределение (38) на основе (24). Согласно (28), имеем уравнение

$$\rho_{\tilde{x}_{0}}(\tilde{x}) = \rho_{Z}(g_{Z}^{-1}(\tilde{x})) \left| \frac{d}{d\tilde{x}} g_{Z}^{-1}(\tilde{x}) \right| = \begin{cases} \left| \frac{d}{d\tilde{x}} g_{Z}^{-1}(\tilde{x}) \right|, & g_{Z}^{-1}(\tilde{x}) \in [0,1] \\ 0, & g_{Z}^{-1}(\tilde{x}) \notin [0,1] \end{cases}$$

Предположив, что выражение под знаком модуля положительно на всём интервале $\left[\tilde{A}_x, \tilde{A}_x + 1\right)$, перейдём к следующему уравнению:

$$\frac{d}{d\tilde{x}}g_{Z}^{-1}(\tilde{x}) = \tilde{\alpha}_{x}e^{-\tilde{b}_{x}\tilde{x}}$$
$$g_{Z}^{-1}(\tilde{x}) \in [0,1]$$
$$\tilde{x} \in [\tilde{A}_{x}, \tilde{A}_{x} + 1)$$

Проинтегрировав, получим

² Замечание. В на первый взгляд аналогичном случае джокера J_2 целевое распределение зависит не только от $p_{J_1}(x)$, но и от распределения начальных значений x_0 . Поэтому, данная схема, предположительно, не даст существенного уменьшения объёма выкладок.

$$g_Z^{-1}(\tilde{x}) = -\frac{\tilde{\alpha}_x}{\tilde{b}_x}e^{-\tilde{b}_x\tilde{x}} + C.$$

Можно видеть, что на интервале $\left[\tilde{A}_x, \tilde{A}_x + 1\right)$ полученная функция строго возрастает, что соответствует сделанному выше предположению относительно положительности выражения под знаком модуля (рис. 7).

Чтобы найти константу интегрирования С, запишем граничные условия:

Рис. 7. Получение распределения начальных значений на основе равномерного распределения

① – функция плотности распределения (24) случайной величины Z.

@ – искомая зависимость (42) начального значения \tilde{x}_0 от случайной величины Z.

 (\mathfrak{T}) – заданная функция плотности распределения (38) начального значения $\tilde{x}_{_0}$.

Отметим, что одно из граничных условий избыточно, и, следовательно, может использоваться для проверки непротиворечивости решения. Имеем:

$$C = \frac{\tilde{\alpha}_x}{\tilde{b}_x} e^{-\tilde{b}_x \tilde{A}_x}.$$

Окончательно, выполнив обращение найденной функции, получим

$$\tilde{x}_0 = g_Z(Z) = -\frac{1}{\tilde{b}_x} \ln\left(-\frac{\tilde{b}_x}{\tilde{\alpha}_x}Z + e^{-\tilde{b}_x\tilde{A}_x}\right),$$

или, после обратного преобразования координат и подстановки определения $\tilde{\alpha}_x$ из (38),

$$x_{0} = x_{*} - \left(k_{x}^{+}\right)^{\tilde{A}_{x}} \left(1 - \tilde{p}_{x}Z\right)^{-\frac{\ln k_{x}^{+}}{\tilde{b}_{x}}}.$$
(42)

Теперь можно определить значение \hat{x}_* таким образом, чтобы воспроизвести динамику в начале фазы роста пика. Как было отмечено выше, получение точной оценки x_* затруднено, и задача заключается скорее в воспроизведении внешнего вида фронта пика. Поэтому, имеет смысл при определении оценки пользоваться наиболее грубыми и простыми методами.

Рассмотрим начало роста некоторого пика. Момент выхода x_n из области $\begin{bmatrix} D_{x,\min}, D_{x,\max} \end{bmatrix}$ обозначим $N_{\text{старт}}$:

$$x_{N_{\text{crapr}}-1} \ge D_{x,\min}$$

$$x_{N_{\text{crapr}}} < D_{x,\min}$$
(43)

Момент превышения абсолютной величиной x_n порогового значения x_{π} обозначим N_{π} :

$$\begin{aligned} x_n &| \le x_{\Pi}, \ N_{\text{старт}} \le n < N_{\Pi} \\ x_n &| > x_{\Pi}, \ n = N_{\Pi} \end{aligned}$$

$$\tag{44}$$

Число итераций между этими двумя моментами обозначим $N_{\phi pohr}$:

$$N_{\phi \text{poht}} \equiv N_{\Pi} - N_{\text{ctapt}} \,. \tag{45}$$

Среднее по всем наблюдаемым пикам значение $N_{\phi poht}$ обозначим $\langle N_{\phi poht} \rangle$. Воспользуемся обозначением $\langle N_{\phi poht,M} \rangle$ для модельной системы и $\langle N_{\phi poht,H} \rangle$ для наблюдаемой системы. Будем считать, что внешний вид фронта пика воспроизводится приемлемо, если

$$\left\langle N_{\rm poht,m} \right\rangle \approx \left\langle N_{\rm poht,h} \right\rangle.$$

Значение $\langle N_{\rm фронт} \rangle$ модельной системы можно грубо оценить, воспользовавшись аналогичным (16) равенством

$$x_{\Pi} - x_* = \left(\left\langle x_0 \right\rangle - x_* \right) \left(k_x^+ \right)^{\left\langle N_{\text{фронт,M}} \right\rangle}, \tag{46}$$

где $\langle x_0 \rangle$ обозначает математическое ожидание начального значения. Чтобы найти последнее, выполним обратное (26) преобразования координат для распределения начальных значений (38). Согласно (28), имеем

$$\rho_{x_0}(x) = \frac{1 - b_x}{\left(\left(k_x^+\right)^{1 - b_x} - 1\right)\left(x_* - A_x^-\right)^{1 - b_x}} (x_* - x)^{-b_x}, \ x \in \left(k_x^+ A_x, A_x^-\right].$$

Отсюда,

$$\langle x_0 \rangle = \int_{k_x^+ A_x}^{A_x} \rho_{x_0}(x) dx = x_* - c_0(x_* - A_x),$$
 (47)

где

$$c_{0} = \frac{1 - b_{x}}{2 - b_{x}} \frac{\left(k_{x}^{+}\right)^{2 - b_{x}} - 1}{\left(k_{x}^{+}\right)^{1 - b_{x}} - 1}.$$
(48)

Приравняв $\langle N_{\text{фронт, H}} \rangle$ и $\langle N_{\text{фронт, M}} \rangle$, подставив (25) и (47) в (46) и решив уравнение относительно x_* , получим оценку

$$\widehat{x}_{*} = \frac{c_{0} \left(k_{x}^{+}\right)^{\langle N_{\phi \text{pohr},\text{H}} \rangle} D_{x,\min} - x_{\text{H}}}{c_{0} \left(k_{x}^{+}\right)^{\langle N_{\phi \text{pohr},\text{H}} \rangle} - 1}$$
(49)

Наконец, ещё одна потенциальная обязанность джокера J_1 – прекращение спада пика согласно уравнению русла C_2 . Фаза спада считается законченной, когда изображающая точка достигает области фоновой динамики. По этой причине, а также с учётом написанного выше, имеет смысл объявить отрезок $[D_{x,\min}, D_{x,\max}]$ областью джокера J_1 . Таким образом, двигаясь в соответствии с уравнением русла C_2 , изображающая точка покинет русло и перейдёт в область джокера, после чего произойдёт активизация последнего.

Рис. 8. Система русел и джокеров

Прямой штриховкой обозначены совпадающие области русел C_1 и C_2 и джокера J_2 . Косой штриховкой обозначена область джокера J_1 .

Символом А отмечены значения переменной состояния в процессе роста пика.

Символом **П** отмечена точка срабатывания джокера **J**₂.

Символом ▼ отмечены значения переменной состояния в процессе спада пика.

Цифрами обозначены: **1** – срабатывание джокера J_1 : случайное перемещение изображающей точки в соответствии с уравнением (40), **2** – срабатывание джокера J_1 : перевод изображающей точки в исток русла C_1 , **3** – движение в русле C_1 в соответствии с его уравнением (16), **4** – срабатывание джокера J_2 : перевод изображающей точки в русло C_2 , **5** – движение в русле C_2 в соответствии с его уравнением (18), **6** – изображающая точка вновь попадает в область джокера J_1 , движение в соответствии с уравнением с уравнением русла C_2 прекращается.

Построение системы русел и джокеров

Окончательно, цикл работы системы русел и джокеров выглядит следующим образом. В межпиковом интервале в области джокера J_1 выполняются итерации случайного отображения (40) в течение времени, определяемого вероятностью начала выброса (41). Выброс начинается с задания в истоке русла C_1 джокером J_1 начального значения согласно (42). После этого выполняются итерации соответствующего руслу C_1 отображения (16). При этом, вероятность прекращения роста определяется джокером J_2 согласно (39). В момент прекращения роста русло C_1 перестаёт считаться действующим, активизируется русло C_2 , и начинают выполняться итерации соответствующего до тех пор, пока изображающая точка не достигнет области джокера J_1 , после чего начинается новый межпиковый интервал (рис. 8).

В соответствии с постановкой задачи, исходные данные для построения системы представляют собой временной ряд x_n (предполагается, что данных достаточно для получения всех необходимых статистических оценок).

Ниже приводится предлагаемый порядок построения системы русел и джокеров.

- 1. Вычисляется медиана x_{M} временного ряда $\{|x_{n}|\}$ и пороговое значение x_{Π} .
- 2. Определяются границы областей русел и джокеров.
 - 2.1.По формуле (20) вычисляется оценка $D_{x,\max}$ (используется весь имеющийся временной ряд, либо данные по одному или нескольким межпиковым интервалам).
 - 2.2.По надпороговым значениям x_n выделяются два следующих непосредственно друг за другом пика.
 - 2.3.Выделяются соответствующие надпороговым значениям моменты N₀ и N₃ в фазах спада первого пика и роста второго, соответственно.
 - 2.4.По формуле (22), с использованием значений x_n , начиная с $n = N_0$, определяется момент N_1 начала межпикового интервала.
 - 2.5.По формуле (23), с использованием значений x_n, начиная с n = N₃, в сторону уменьшения n, определяется момент N₂ конца межпикового интервала.
 - 2.6.По формуле (21) вычисляется оценка $D_{x,\min}$. Это же значение, согласно (25), является правой границей области русел A_x .
 - 2.7.Возможен повтор данной процедуры для остальных межпиковых интервалов, с целью уточнения оценок.
- 3. Вычисляются оценки \hat{a}_n , \hat{b}_n и \hat{B}_n .
 - 3.1.Строится гистограмма длительностей межпиковых интервалов в полулогарифмических координатах (n, ln ρ).
 - 3.2.Для построенной гистограммы прокладывается аппроксимирующая прямая.

- 3.3.Вычисляются оценки \hat{a}_n и \hat{b}_n путём подстановки коэффициентов аппроксимирующей прямой в формулу, аналогичную (11).
- 3.4.Вычисляется оценка \hat{B}_n путём подстановки полученных оценок \hat{a}_n и \hat{b}_n в (14).
- 4. Вычисляются оценки \hat{a}_x , \hat{b}_x и \hat{B}_x .
 - 4.1.Строится гистограмма максимумов пиков x_{max} в логарифмических координатах $(\ln(-x), \ln \rho)$.
 - 4.2.Для построенной гистограммы прокладывается аппроксимирующая прямая.
 - 4.3.Вычисляются оценки \hat{a}_x и \hat{b}_x путём подстановки коэффициентов аппроксимирующей прямой в (11).
 - 4.4.Вычисляется оценка \hat{B}_x путём подстановки полученных оценок \hat{a}_x и \hat{b}_x в (12).
- 5. Вычисляются оценки \hat{k}_{x}^{+} и \hat{k}_{x}^{-} .
 - 5.1.Для одного из пиков строится график в полулогарифмических координатах $(n, \ln(-x_n))$.
 - 5.2. Прокладывается аппроксимирующая прямая по точкам в области больших |x| (порядка $|\hat{B}_x|$), относящимся к фазе роста пика.
 - 5.3.Вычисляется оценка \hat{k}_x^+ путём подстановки углового коэффициента аппроксимирующей прямой в (17).
 - 5.4.Прокладывается аппроксимирующая прямая по точкам в области больших |x|, относящимся к фазе спада пика.
 - 5.5.Вычисляется оценка \hat{k}_x^- путём подстановки углового коэффициента аппроксимирующей прямой в формулу (17).
 - 5.6.Возможен повтор данной процедуры для других пиков, с целью уточнения оценок.
- 6. Вычисляется оценка \hat{x}_* .
 - 6.1.Выполняется подстановка оценки $\hat{D}_{x,\min}$ в правило (43). Согласно данному правилу, на основе значений x_n начиная с момента $n = N_2$ конца одного из межпиковых интервалов, определяется значение $N_{\text{старт}}$.
 - 6.2. Определяется значение $N_{\rm n}$ по правилу (44) и вычисляется значение $N_{\rm фронт}$ по формуле (45).
 - 6.3. Аналогичным образом, определяются значения $N_{\text{фронт}}$ для остальных пиков. Вычисляется среднее значение $\langle N_{\text{фронт, н}} \rangle$.
 - 6.4.Вычисляется значение c_0 путём подстановки оценок \hat{b}_x и \hat{k}_x^+ в формулу (48).

- 6.5.Вычисляется оценка \hat{x}_* путём подстановки значений c_0 , $\langle N_{\rm фронт, H} \rangle$ и $x_{\rm m}$ и оценок $\hat{D}_{x,{\rm min}}$ и \hat{k}_x^+ в формулу (49).
- 7. Вычисляются коэффициенты \tilde{A}_x , $\hat{\tilde{B}}_x$, $\hat{\tilde{a}}_x$, $\hat{\tilde{b}}_x$ и вероятность $\hat{\tilde{p}}_x$.
 - 7.1. $\tilde{A}_x \ u \ \tilde{B}_x nym$ ём подстановки $x = A_x \ u \ x = \hat{B}_x \ e \ (26).$
 - 7.2. $\hat{\tilde{a}}_x$ и $\hat{\tilde{b}_x}$ путём подстановки \hat{a}_x , \hat{b}_x и \hat{k}_x^+ в (29).
 - 7.3. $\hat{\tilde{p}}_x$ путём подстановки оценки \tilde{b}_x в (35).
- 8. Окончательно определяются уравнения схемы русел и джокеров.
 - 8.1.Уравнение (16) русла C_1 путём подстановки \hat{x}_* и \hat{k}_*^+ .
 - 8.2.Уравнение (18) русла C_2 путём подстановки \hat{k}_x^- .
 - 8.3. Функция отображения (40) джокера J_1 путём подстановки $\hat{D}_{x,\min}$ и $\hat{D}_{x,\max}$.
 - 8.4. Функция вероятности прекращения межпиковой фазы (41) джокера \mathbf{J}_1 путём подстановки \hat{b}_n и \hat{B}_n .
 - 8.5. Функция формирования джокером **J**₁ начального значения для роста пика (42) путём подстановки \hat{k}_x^+ , \tilde{A}_x , $\hat{\tilde{p}}_x$ и $\hat{\tilde{b}}_x$.

Функция вероятности срабатывания джокера J_2 (39) — путём подстановки A_x и \hat{B}_x .

Результаты моделирования, сравнение

Для проверки предложенной модели использовался временной ряд x_n , порождаемый системой (4) с набором параметров (6) на протяжении 5×10^7 итераций. За время наблюдения произошёл 8221 выброс.

На основе собранной статистики были получены следующие оценки: $\hat{D}_{x,\text{max}} = 1,06$, $\hat{D}_{x,\text{min}} = -1,17$, $\hat{a}_n = 4,33 \times 10^{-4}$, $\hat{b}_n = 2,5 \times 10^{-4}$, $\hat{B}_n = 2199$, $\hat{a}_x = 9,36 \times 10^{-2}$, $\hat{b}_x = 1,04$, $\hat{B}_x = -2,47 \times 10^9$, $\hat{k}_x^+ = 4,0$, $\hat{k}_x^- = 0,1$, $\hat{x}_* = -1,16$. Вероятностные параметры джокеров **J**₁ и **J**₂ составили $p_n = 2,5 \times 10^{-4}$ и $p_x = 5,35 \times 10^{-2}$, соответственно.

Общий вид динамики модельной системы $J_1-C_1-J_2-C_2$ показан на рис. 9 (ср. рис. 2).

(a) – фоновая динамика и одиночный пик в системе J_1 – C_1 – J_2 – C_2 , полулогарифмический масштаб.

(б) – фронт пика, подробно. Сплошная линия соответствует системе $J_1-C_1-J_2-C_2$, пунктирная линия – наблюдаемой системе. Штрих-пунктирной линией показан уровень $x = \hat{D}_{x,\min}$, штриховой – уровень $x = x_{\Pi}$.

Гистограммы абсолютных величин максимумов пиков и длительностей межпиковых интервалов в системах (4) и $J_1-C_1-J_2-C_2$ показаны на рис. 10. Можно видеть, что модельная система соответствует наблюдаемой (исходной) системе по выбранным для сравнения статистическим характеристикам.

Рис. 10. Сравнение статистических характеристик исходной и модельной систем (а) – гистограммы максимумов пиков, логарифмический масштаб. (б) – гистограммы длительностей межпиковых интервалов, полулогарифмический масштаб. Сплошная линия соответствует системе J₁–C₁–J₂–C₂, пунктирная линия – наблюдаемой системе.

Заключение

В настоящей работе рассмотрен пример построения модели системы с жёсткой турбулентностью в условиях неполноты доступной информации. Задача решена с применением метода русел и джокеров, заключающегося в

-32 -

совместном использовании динамических и вероятностных методов моделирования.

Исходные данные представляют собой один из трёх временных рядов, порождаемых трёхмерным отображением Ершова (4). Характерной особенностью наблюдаемого временного ряда является наличие длительных промежутков хаотической динамики, чередующихся с сильными выбросами (экспоненциальный рост, сменяющийся экспоненциальным спадом). В качестве главного показателя соответствия системы русел и джокеров исходной системе выбрано сходство распределений максимумов пиков и длительностей межпиковых интервалов порождаемых временных рядов.

Предложена схема, включающая два русла, C_1 и C_2 , и два джокера, J_1 и J_2 . Уравнения русел описывают экспоненциальный рост и спад. Области русел совпадают, поэтому оговаривается, какое из русел в данный момент считается действующим.

Джокер J_1 отвечает за моделирование фоновой динамики и за переключение между различными типами динамики. Фоновая динамика моделируется путём случайного отображения области джокера на себя (используется равномерно распределённая случайная величина). Выброс начинается в результате перевода джокером изображающей точки в исток русла C_1 (после этого русло C_1 считается действующим). Спад заканчивается после достижения изображающей точкой, следующей в русле C_2 , области джокера J_1 . Область джокера смежна с областью русел.

Джокер J_2 представляет собой вероятностное правило определения момента перехода от роста к спаду, то есть, в результате его срабатывания русло C_1 перестаёт, а русло C_2 начинает считаться действующим. Для формирования требуемого вида распределения максимумов пиков оказалось достаточно задаться постоянной вероятностью срабатывания джокера на каждой итерации. Область джокера совпадает с областью русел.

Следует подчеркнуть две особенности предложенной схемы. Во-первых, она предусматривает совпадение областей русел и джокеров, и в этом смысле представляет собой дальнейшее развитие схемы, предложенной в [8]. Вовторых, в отличие от предлагавшихся ранее схем, наибольшую часть времени изображающая точка проводит не в области русел, а в области джокера.

Направление дальнейших исследований включает доработку джокера J_1 с целью более точного моделирования фоновой динамики – воспроизведение распределения значений наблюдаемой величины и её функции автокорреляции. Также возможно рассмотрение более сложной задачи, когда для наблюдения доступны две переменные из трёх, *x* и *y*. В данной ситуации требуется не только обеспечение заданного вида распределения для каждой переменной, но и соблюдение соотношения между параметрами распределений. Также возникает необходимость учёта распределения запаздывания выбросов по переменной *y* относительно выбросов по переменной *x* и, возможно, функции кросс-корреляции переменных в межпиковой фазе.

Литература

- 1. Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Berlin: Springer-Verlag, 1984.
- 2. Т.С. Ахромеева, С.П. Курдюмов, Г.Г. Малинецкий, А.А. Самарский. Нестационарные структуры и диффузионный хаос. М.: Наука, 1992.
- 3. Г.Г. Малинецкий, А.Б. Потапов. Современные проблемы нелинейной динамики. М.: УРСС, 2002.
- 4. Г.Г. Малинецкий, А.Б. Потапов, А.В. Подлазов. Нелинейная динамика: подходы, результаты, надежды. М.: УРСС, 2006.
- 5. Г.Г. Малинецкий, А.Б. Потапов. Джокеры, русла или поиски третьей парадигмы. «Знание Сила», № 3/1998.
- 6. Л.В. Белайчук, Г.Г. Малинецкий. Проделки джокеров на одномерных отображениях. Препринт Института прикладной математики им. М.В. Келдыша РАН, 1997, № 24.
- 7. Г.Г. Малинецкий, А.Б. Потапов. Русла и джокеры: о новых методах прогноза поведения сложных систем. Препринт Института прикладной математики им. М.В. Келдыша РАН, 1998, № 32.
- 8. М.-Г.М. Зульпукаров, Г.Г. Малинецкий, А.В. Подлазов. Метод русел и джокеров на примере исследования системы Розенцвейга–Макартура. Препринт Института прикладной математики им. М.В. Келдыша РАН, 2006, № 21
- 9. Д. Гарел, О. Гарел. Колебательные химические реакции. М.: Мир, 1986.