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Abstract. Probabilistic systems of interacting intelligent agents are con-
sidered. They have two sources of uncertainty: uncertainty of communi-
cation channels and uncertainty of actions. We show how such systems
can be polynomially transformed to finite state Markov chains. This al-
lows to transfer known results on verifying temporal properties of the
finite state Markov chains to the probabilistic multi-agent systems of
considered type.

1 Introduction

Last time there has been increasing interest in the area of software multi-agent
systems (MAS). The range of applications of MAS is very broad and extends
from operating system interfaces, processing of satellite imaging data and WEB
navigation to air traffic control, business process management and electronic
commerce. The states and interaction rules of agents in MAS may be very com-
plicate. This makes the behavior of MAS ( as well as of other concurrent software
systems) badly predictable and leads to necessity of developing formal means to
analyze this behavior.

There is a number of papers on this matter in the literature which deal
with different models of agents, multi-agent systems and specification languages
describing their behavior. In particular, in [17, 19] a behavior is considered for
abstract agents with no internal structure, in [3, 11] agents are specified by for-
mulas of some temporal logics. Another popular approach to describing agents
is based on ”Believe-Desire-Intention” model initiated in [14] (see also [4, 5, 20].
In our previous papers [8, 9] we considered verification complexity for MAS con-
structed on the base of IMPACT-architecture introduced in [16].

In all these papers it is assumed that all agents operate with a complete and
certain view of the world, and information transfer from one agent to another
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is lossless and takes some determined time. However, in many real-world ap-
plications, these assumptions are not satisfied, and agents have only a partial,
uncertain view of what is true in the world.

In [10] a model of probabilistic agents is proposed in which the main cause
of uncertainty in an agent is due to its state being uncertain. There may be also
other sources of uncertainty in MAS. Here we consider two of them: uncertainty
of communication channels between agents of the system and uncertainty of ac-
tions. Namely, we assume that times of delivering messages through channels
can be probabilistic, and some messages can be lost. Moreover, the actions can
have alternatives which are executed with some probabilities. However, we as-
sume that the choice of actions to execute at each step is deterministic, i.e. the
MAS considered here are not concurrent in the sense used by M.Vardi [18].

The main result of this paper is that each such probabilistic MAS can be
effectively transformed into a finite state Markov chain with polynomially com-
putable probabilities of transitions. There is a number of papers devoted to
research of complexity of verifying dynamic properties of finite state Markov
chains. Our transformation of MAS to Markov chains permits to apply results
of these papers to the problem of verifying behavior of different subclasses of
probabilistic MAS.

Let us mention some of these papers. The research of complexity of verifica-
tion problem for finite state Markov chains was initiated in the abovementioned
paper by Vardi. His results on the complexity of verification of linear temporal
logic (LTL) formulas on Markov chains and decision processes were improved
in [7]. Analogous results for probabilistic logics of branching time (PCTL and
PCTL*) were obtained in [12, 2].

The paper is organized as follows. Section 2 contains a syntactic definition of
our variant of probabilistic MAS. In Section 3 we describe operational semantics
of these MAS. In section 4 we present an algorithm of computing transition prob-
abilities for Markov chains corresponding to MAS. Section 5 contains the results
on the complexity of verification of probabilistic MAS obtained by applying the
results of [7, 12].

2 Probabilistic MAS

There are a lot of readings and definitions of intelligent agents and multi-agent
systems (see e.g. [15, 16, 21]). Here we consider the verification of behavior prop-
erties for MAS which basically conform to the so called IMPACT architecture
introduced and described in detail in the book [16].

A multi-agent system A contains a finite set {A1, ..., An} of interacting in-
telligent agents. Any agent A has an internal database (DB) IA consisting of a
finite set of ground atoms (i.e. expressions of the form p(c1, . . . , ck), where p is a
predicate symbol, c1, . . . , ck are constants; we suppose that the set of constants
used by any MAS is bounded) and a message box MsgBoxA. Current contents
of the internal DB and the message box of the agent A constitute its local state
IMA =< IA,MsgBoxA >.



The agents of MAS A interact by sending messages of the form
msg(Sender,Receiver, Msg) to other agents where Sender and
Receiver are agents (the source and the destination of the message), and Msg
is a ground atom transferred.

For any pair of agents A and B in A there is a communication channel CHAB ,
which receives messages sent to B by A. After some time these messages are
transferred to the message box of B. We consider the length of the transfer time
of the messages as a random variable identified by a discrete finite probability
distribution. pAB(t) denotes the probability that B receives a message sent to
B by A in exactly t ≥ 1 steps after its sending (so, a constant t0 is connected
with A such that pAB(t) = 0 for all A,B and t > t0).

We assume that random variables for different messages are independent,
and

∑∞
t=1 pAB(t) ≤ 1. The difference 1 −

∑∞
t=1 pAB(t) defines the probability

that the message will be lost in the channel. If pAB(1) = 1 then any message
sent to B by A will be received by the destination in the next time instant. If
pAB(1) = 1 for all agents of MAS we have synchronous variant of multi-agent
systems. Such systems were considered in [8, 9]. If pAB(1) = 0.5, pAB(2) = 0.4
and pAB(t) = 0 when t > 2, then the half of messages sent to B by A will be
received in the next time, 4/10 of them will be on the path 2 steps, and average
1/10 of them will be lost in the channel.

The current state of CHAB contains all the messages sent to B by A which
are not received by B; they are marked by time they are in the channel. For
the current state of the channel we use the same notation as for the channel,
i.e. CHAB = {(Msg, t)| the message Msg is in this channel during t steps of
execution}. For brevity we use also notations CHij and pij for CHAiAj and
pAiAj , respectively.

Each agent A is capable of performing a number of parameterized actions
constituting its action base ACTA. Any (parameterized) action has a name of
the form a(X1, . . . , Xm) and a set of alternatives: a1 =< ADD1

a(X1, . . . , Xm),
DEL1

a(X1, . . . , Xm), SEND1
a(X1, . . . , Xm) >, . . . , ak =< ADDk

a(X1, . . . , Xm),
DELk

a(X1, . . . , Xm), SENDk
a(X1, . . . , Xm) >. A probabilistic distribution pa(j),

1 ≤ j ≤ k, is defined on these alternatives for a such that
∑k

j=1 pa(j) = 1. The
sets ADDj

a(X1, . . . , Xm) and DELj
a(X1, . . . , Xm) consist of atoms of the form

p(t1, . . . , tr), where p is r-ary predicate (for some r) in the signature of the inter-
nal DB, t1, . . . , tr are variables X1, . . . , Xm or constants. These sets determine
updates of the internal DB (adding and deleting facts) when the corresponding
action is executed. The set SENDj

a(X1,. . . ,Xm) consists similarly of atoms of
the form msg(A,B, p(t1, . . . , tr)), determining messages which will be sent by A
to other agents. Let c1, . . . , cm be constants. Let us denote by ADDj

a(c1, . . . , cm)
the set of facts obtained by substitution of c1, . . . , cm instead of X1, . . . , Xm

into atoms of ADDj
a(X1, . . . , Xm). The sets DELj

a(c1, . . . , cm) and SENDj
a(c1,

. . . , cm) are defined similarly. The ground atoms a(c1, . . . , cm) are called ground
action names (or simply, ground actions).

For example, let an agent Accountant works with a BD Salary. Then a
parameterized action of salary changing can include two alternatives: the first



one is to make the proposed changing, and the second - to reject them. Then
these alternatives can be described in the following way:

salary − changing1(Name, Position, OldSum,NewSum) :
ADD1 ={salary(Name, Position, NewSum)},
DEL1 ={salary(Name, Position, OldSum)},
SEND1 = {(Boss, salary changed(Name, NewSum))},
salary − changing2(Name, Position, OldSum,NewSum) :
ADD2 = ∅, DEL2 = ∅,
SEND2 = {(Boss, salary not changed(Name))}.
Let p1 = 0.8 and p2 = 0.2.

The policy of the agent A for choosing actions to execute depends on the
current local state of A and is determined by a pair < LPA, SelA >. Here
LPA is a logical program which determines a set Perm(= PermA,t) of ground
action names permitted for execution at current time. The obligation operator
SelA selects from Perm a ground action a(c1, . . . , cq). We assume that SelA
is a polynomially computable function. Then one of alternatives for the action
a(c1, . . . , cq) (say, aj) should be chosen with probability pa(j) to be currently
executed.

This execution goes in the following way:
1) the next state of the internal base of A is obtained from the current state
by deleting all the facts belonging to DELj

a(c1, . . . , cq), and then adding all the
facts belonging to ADDj

a(c1, . . . , cq);
2) simultaneously with changing internal DB the executing of the alternative aj

leads to changes of states of the communication channels. Namely, to any channel
CHAB , B 6= A, pairs of the form (Ms, 0) are added such that msg(A,B, Ms) ∈
SENDj

a(c1, . . . , cq) .

F.e., let the Accountant agent has to execute the following set of actions Obl =
{salary-changing(smith, engineer, 3500, 5000),
salary-changing(jones, programmer, 4500, 6000)}.
For each of these two actions one of two alternative salary-changing1 or salary-
changing2 will be chosen with probabilities 0.8 and 0.2, respectively. E.g. with
probability 0.64 two first alternatives will execute. In this case after executing
the facts

salary(smith, engineer, 3500), salary(jones, programmer,4500)
will be deleted from the internal DB, and the facts
salary(smith, engineer, 5000) and salary(jones, programmer, 6000)
will be added to it.
Moreover, two pairs will be placed into the channel CHaccountant boss:

(salary changed(smith, 5000), 0), and (salary changed(jones,6000),0)}.
To complete the definition of A and one-step semantics for it we should define

LPA, and how it does determine the current value of the set Perm.

As LPA we consider logic programs with the clauses of the form

H :- L1,...,Ln where n ≥ 0, the head H is an action atom, the literals Li are
either action literals, or (extensional) internal DB literals, or atoms of the form



msg(Sender,A, Msg) or their negations not msg(Sender, A, Msg), or calls of
some built-in polynomially computable predicates.

We suppose that the program clauses are safe in the sense that all variables in
the head H occur positively in the body L1,...,Ln, and, moreover, the program
LPA is stratified [1]. Then for any local state state= < IA, MsgBoxA > the
program

LPA,state = LPA ∪ IA ∪ MsgBoxA,

determining the set of actions which can be currently executed, is also stratified.
It is well known (see [1]) that stratified logic programs have a unique mini-

mal model. Let MA,state denote such model for LPA,state. The standard fixpoint
computation procedure constructs this model in polynomial time with respect
to the size of groundization gr(LPA,state) of LPA,state (remember that we sup-
pose polynomial computability of all built-in predicates). Note that the size of
gr(LPA,state) can be exponential with respect to the size of LPA,state.

Then the set Perm of actions permitted for current execution is defined as
the set of ground action names contained in MA,state . Let Sem denote the
function defining Perm from LPA,state.

As selection operators SelA we permit arbitrary functions which for a given
set AS of ground action names return in polynomial time some subset Sel(AS) of
AS. A trivial example for this is the identity function. More interesting examples
are connected with defining some priority relations on actions.

3 The probabilistic MAS behavior

The global state S of the system A includes local states of its agents and states
of all channels:

S =< I1, . . . , In;CH1,2, CH2,1, . . . , CHn−1,n, CHn,n−1 >.
Let SA denote the set of all the global states of A. Then the one-step seman-

tics of A defines a transition relation S ⇒A S′, and probabilities pi,j(t) induce
probabilities p(S, S′) of these transitions.

The transition S ⇒A S′ starts with changes in channels and message boxes.
Namely, the time counters of all the messages in channels are increased by 1,
then into message box MsgBoxj of any agent Aj the facts msg(Ai, Aj ,Msg) are
placed with probability pi,j(t), for any Msg and i such that (Msg, t) ∈ CHi,j .
The pairs (Msg, t0) can be considered as lost and are deleted from CHi,j . After
this any agent Ai ∈ A determines the set PermAi

= Sem(LPAi,state) of actions
permitted to be currently executed, and a ground action ai(c1, . . . , cq) to be
executed is selected from Permi by using the selection function SelAi . After
this an alternative aj

i for ai is chosen with probability pai
(j), all the facts in

DELj
ai

(c1, . . . , cq) are deleted from Ii, and all the facts in ADDj
ai

(c1, . . . , cq)) are
added to it. Moreover, the communication channels CHi,m are complemented by
entries (ms, 0) such that messages msg(Ai, Am,ms) are in SENDj

ai
(c1, . . . , cq)).

The message boxes of all the agents are emptied (in fact this does not restrict
generality since all needed data can be transferred before from message boxes
into internal DBs).



So, the transition S ⇒A S’ is computed by the following probabilistic algo-
rithm:

A-step ( Input: S ; Output: S′ )
(1)FOR EACH Ai, Aj ∈ A (i 6= j) DO
(2) FOR EACH (Msg, t) ∈ CHi,j DO
(3) BEGIN CHi,j := (CHi,j \{(Msg, t)});
(4) IF t ≤ t0 THEN CHi,j := (CHi,j ∪ {(Msg, t + 1)} END;
(5)FOR EACH Ai, Aj ∈ A(i 6= j) DO
(6) FOR EACH (Msg, t) ∈ CHi,j DO with probability pi,j(t)
(7) BEGIN CHi,j := (CHi,j \{(Msg, t)});
(8) MsgBoxj := MsgBoxj ∪ {msg(Ai, Aj ,Msg)}
(9) END;
(10) FOR EACH Ai ∈ A DO
(11) BEGIN Permi := Sem(LPAi,state);
(12) Let SelAi

(Permi) be ai(c1, . . . , cq);
(13) Let a1

i , . . . , a
k
i be all the alternatives of ai;

(14) Let us choose an alternative aj
i , 1 ≤ j ≤ k, for ai

with probability pai
(j);

(15) I ′i := ((Ii \DELj
ai

(c1, . . . , cq))
∪ADDj

ai
(c1, . . . , cq));

(16) FOR EACH (m 6= i) DO
(17) CH ′

i,m := (CHi,m

∪ {(ms, 0)|msg(Ai, Am,ms) ∈ SENDj
ai

(c1, . . . , cq)});
(18) MsgBoxi := ∅;
(19) END;
(20) RETURN S′.
This definition of semantics for MAS permits to connect a finite Markov

chain MC(A) with any MAS A. The states of MC(A) are global states from
SA, and probabilities pA(S, S′) of transitions from S to S‘ can be computed by
the algorithm described in the next section. The behavior of A for an initial
global state S0 is described by a tree tA(S0) of possible trajectories of this chain
with root labelled by S0. Nodes of this tree are labelled by global states of A,
and from any node on the level t labelled by S goes an edge labelled by pA(S, S′)
to a node labelled by S′ if pA(S, S′) > 0.

Note that the cardinality of the set of states of the Markov chain MC(A) is
exponential with respect to the size of A in the worse case, if A is ground, and
even double exponential if A is non-ground.

4 Probabilistic MAS as Finite Markov Chains

We note that all the stochastics in the program A-step is concentrated in lines 6-
9 and 14, which determine as messages transfer to message boxes with accord to
probabilities pi,j(t) and which alternative of the action ai is chosen. We assume
that all the probabilistic choices in these lines are independent.



The following effective procedure permits to compute the probability pA(S, S′)
of transition S ⇒A S′:

Algorithm Prob(S, S’)
(1) FOR EACH Ai, Aj ∈ A (i 6= j) DO
(2) BEGIN M [i, j] := {(m, t)|((m, t) ∈ CHi,j) &

((m, t + 1) /∈ CH ′
i,j)};

(3) pi,j :=
∏
{pi,j(t)|((m, t) ∈ M [i, j]};

(4) END;
(5) FOR EACH Aj ∈ A DO
(6) BEGIN MsgBoxj := ∅;
(7) FOR EACH Ai ∈ A(i 6= j) DO
(8) MsgBoxj := MsgBoxj

∪ {msg(Ai, Aj ,m)|∃t((m, t) ∈ M [i, j])}
(9) END;
(10)FOR EACH Ai∈ A DO
(11) BEGIN Permi := Sem(LPAi,state);
(12) Let SelAi(Permi) be ai(c1, . . . , cq);
(13) Let a1

i , . . . , a
k
i be all the alternatives of ai;

(14) pi :=
∑

j{pai
(j)|I ′i = ((Ii \DELj

ai
(c1, . . . , cq))

∪ADDj
ai

(c1, . . . , cq)) and (
∧

m6=i{ms|(ms, 0) ∈ CH ′
i,m}

= {ms|msg(Ai, Am,ms) ∈ SENDj
ai

(c1, . . . , cq))}};
(15) END;
(16) pA(S, S′) :=

∏
{pi,j |1 ≤ i, j ≤ n; j 6= i} ∗

∏n
i=1 pi;

(17) RETURN pA(S, S′).

Note that M [i, j] in the line 2 is the set of entries of the channel CHi,j which
are put into MsgBoxAj

. Then pi,j in the line 3 is the probability of the event:
the set of messages from Ai to Aj included into MsgBoxAj

is equal to M [i, j].
Moreover, pi in the line 14 is the probability to obtain a new internal state I ′i
from Ii after applying the action ai(c1, . . . , cq).

Theorem 1 The algorithm Prob(S, S’) computes probability
p(S, S′) of transition S ⇒A S′ in time polynomial on sum of sizes of MAS A
and states S and S′ , i.e. on |A| + |S| + |S′| ( we include into the size |A| of
MAS the sizes of all signatures, of the set of constants, of the agent descriptions
with their action bases and groundizations of agents‘ programs and of probabilty
disributions for action alternatives and communication channels).

5 Complexity of Veryfying Dynamic Properties of MAS

Traditionally behavior properties of discrete dynamic systems are specified in
some variants of temporal logics, see e.g [6]. There are two basic types of such
logics: of linear time and of branching time. Normally, states of Markov chains
are considered as non-structured. So, dynamic properties of such Markov chains



can be adequately represented by formulas of propositional versions of these
logics. States of MAS have a structure of finite models. Hence it is natural to
extend logics for specifying their dynamic properties by introducing first-order
features (as in [8, 9]. Namely, the extension is that ordinary closed first-order for-
mulas in signature of internal databases of agents (called basic state formulas)
can be used in formulas instead of propositional variables. Then the possibillity
of transferring results on complexity of verifying finite Markov chains to proba-
bilistic MAS stems from the well-known fact that the basic state formulas can
be verified on finite models of states in polynomial space (or even in poynomial
time for formulas of bounded quantifier depth)..

The problem of verification of dynamic properties for logics of linear and
branching time are formulated in a somewhat different way.
- Linear time: for a given probabilistic MAS A, its initial state S0 and formula F
of FLTL describing a property of trajectories to find the measure (probability)
pA(S0, F ) of the set of trajectories of the tree tA(S0) which satisfy F . If this
probability is equal to 1 we say that the pair (A, S0) satisfies F .
- Branching time: A main role in branching time logics play formulas expressing
properties of states (not trajectories). The measure of satisfiability of such for-
mulas does not express stochastic properties of behavior of the system. Because
of this it was proposed in [12]: to replace in formulas quantifiers on trajectories
by probability bounds. E.g. formula [Gf ]>p means that the measure of trajecto-
ries starting in the current state with all their states satisfying f is greater than
p. The logic obtained is called PCTL.

Now we can state some of numerous results on complexity of verifying dy-
namic properties of MAS which can be obtained by transferring corresponding
results from Markov chains.

- Linear time In this case we can apply Theorem 3.1.2.1 of the paper [7]. This
theorem states existence of two algorithms: 1) testing if a given finite Markov
chain M satisfies a formula F of PLTL in time O(|M |2|F |), or in space polynomial
in |F | and polylogarithmic in |M |, and 2) computing the probability pM (F ) of
satisfaction F on M in time exponential in |F} and polynomial in |M |.

To apply this theorem we need only to use Theorem 1 and the remark from
the end of the section 3 on estimates of the size of MC(A) with respect to the
size of A. We give here only few of corollaries.

Theorem 2 (1) There exists an algorithm which checks satisfiability of a for-
mula F from FLTL in a state S of a ground probabilistic MAS A in polynomial
space on |A| and |F |.

(2)There exists an algorithm which computes probability pA(S0, F ) for any
ground probabilistic MAS A and formula F in time exponential both in |A| and
|F |.

(3) There exists an algorithm which computes probability pA(S0, F ) for any
(non-ground) probabilistic MAS A and formula F in time exponential in |F | and
double exponential in |A|.

- Branching time: In [12] an algorithm is constructed which decides whether
a formula F of PCTL is satisfied in a Markov chain M . The time complexity



of this algorithm is O(|M |3 ∗ |F |. From this we obtain (using the first-order
extension FPCTL instead of PCTL)

Theorem 3 (1) There exists an algorithm which checks satisfiability of a for-
mula F from FPCTL in a state S of a ground probabilistic MAS A in exponential
time on |A| and linear time on |F |.

(2)There exists an algorithm which checks satisfiability of a formula F from
FPCTL in a state S of a (non-ground) probabilistic MAS A in time double
exponential on |A| and linear on |F |.

We note that the estimates for |MC(A)| above were given for worse case.
However, in many cases these estimates can be drastically decreased (from ex-
ponential to polynomial or from double exponential to exponential). E.g., if
arities of predicates in internal DBs, action bases and messages are bounded,
then the cardinality of set of global states for nonground MAS is bounded by
some exponential of a polynomial. So, in the assertion (3) of Theorem 2 words
”double exponential in |A|” can be replaced by ”exponential of a polynomial of
|A|”. Moreover, it may happen under constructing MC(A) that many global
states of A are not reachable or not acceptable. This can also lead to a serious
decreasing of complexity of problem of verification.

6 Conclusion

In this paper we showed how probabilistic multi-agent systems can be trans-
formed to finite state Markov chains. This permitted to obtain some results on
complexity of verifying dynamic properties of MAS by applying corresponding
results for finite Markov chains known from the literature. Note that we con-
sidered here only MAS with deterministic selection of actions. Of course, it is
also interesting to consider verification problem for MAS with non-deterministic
selection of actions. It seems that in this case results on verifying concurrent
Markov chains (Markov decision processes) [18, 7, 13] can be applied.
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