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1. Introduction

The two-dimensional Navier–Stokes system

∂tu +
2∑

i=1

ui∂iu = ν∆u −∇ p + f,

div u = 0, u(0) = u0.

(1.1)

remains in the last decades in the spotlight of the theory of infinite dimensional
dissipative dynamical systems. Estimates for the degrees of freedom for this system
are now traditionally interpreted in terms of the dimension of the attractor (see [1],
[2], [10], [13], [21], [26], [27], [29]) and the number of determining finite dimensional
projections (see [5], [6], [8], [13], [14], [15], [26] and the references therein).
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The system is considered in a bounded domain Ω ⊂ R
2 with Dirichlet boundary

conditions u|∂Ω = 0 or in a periodic rectangular domain Ω = [0, L/α]×[0, L], where
0 < α ≤ 1. We denote by |Ω| the area of Ω. The stationary data are combined in
the dimensionless Grashof number G:

G =
‖f‖|Ω|

ν2
.

The best known estimates for the Hausdorff and fractal dimension of the global
attractor are as follows. For the Dirichlet boundary conditions [29]

dimH A ≤ dimF A ≤ cG, (1.2)

where c = c(Ω) is a dimensionless constant depending on the shape of Ω: c(λΩ) =
c(Ω), for every λ > 0. It was shown in [3] that c ≤ 1/(2π3/2).

For the periodic boundary conditions this estimate can be improved:

dimF A ≤ cG2/3(ln(1 + G))1/3, (1.3)

see [10], [11], [29], where c depends only on α, c = c(α) and c(α) . α−1/3, as
shown in [23].

The estimate (1.2) might be optimal, however, no lower bounds are known for
the dimension of the global attractor for the Navier–Stokes system with Dirichlet
boundary conditions.

The first lower bound for the periodic problem was obtained in [2] and was
based on the analysis of instabilities of the classical Kolmogorov flows [24], [30].
The bifurcation parameter here is the area of Ω, that is, the parameter α. More
precisely, setting L = 2π and

f = fKolm = {f1 = λ sin x2, f2 = 0}

in (1.1), the corresponding stationary solution uKolm = ν−1fKolm is unstable for
λ ≥ λ0 · ν2, where λ0 = λ0(α) is bounded as α → 0, more precisely, λ0 →

√
2, as

α → 0. Furthermore, the dimension of the unstable manifold dimMuKolm = 2⌊ 1
α⌋,

where ⌊x⌋ is the number of positive integers strictly less than x. Since MuKolm ⊂ A
(see [2]), it follows that

dimF A ≥ dimMuKolm = 2

⌊
1

α

⌋
,

and the dimension of the global attractor grows like 1/α, as α → 0. The viscosity
coefficient ν does not play a role here and the corresponding Grashof number
GKolm ∼ α−3/2 is independent of ν.

It has later been shown in [31] that the rate of growth 1/α of the dimension of
the global attractor is sharp, and the following explicit estimate for the dimension
of the attractor for the Kolmogorov flow problem was obtained in [17]

dimF A ≤ 1

α

(
15 +

6

π
G̃

)
, G̃ =

α1/2L2‖f‖
ν2

. (1.4)
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We also observe that even if the upper and lower bounds are both of the order
1/α, their dependence on ν is essentially different: the lower bound is independent
of ν, while the upper bound grows like ν−2, as ν → 0.

For the periodic boundary conditions with α = 1 (and L = 2π) it was shown
in [22] that the estimate (1.3) is logarithmically sharp. Namely, for the family of
right-hand sides

f = fs = {f1 = λs3 sin sx2, f2 = 0}
the corresponding stationary solution us = ν−1s−2fs is unstable for λ ≥ Λ0 · ν2,
and the dimension of the unstable manifold Mus is of the order s2: dimMus ≥c1s

2.
Since the corresponding Grashof number G = Gs = ‖fs‖|Ω‖/ν2 = c2s

3, it follows
that for the attractor A = As corresponding to the Kolmogorov right-hand side fs,
one has

dimF As ≥ c1s
2 = c3G

2/3.

The aspect ratio here is fixed: α = 1 and Λ0, c1, c2, c3 are absolute constants.
We also observe that the viscosity ν in this lower bound again does not play a
role and the bifurcation parameter is the parameter s, s → ∞, characterizing the
amplitude and spatial oscillations of the right-hand side f .

In this work we consider the system

∂tu +
2∑

i=1

ui∂iu = ν∆u − µu −∇ p + f,

div u = 0, u(0) = u0,

(1.5)

which is just (1.1) with additional damping term −µu on the right-hand side.
The term −µu, where µ is the Rayleigh friction coefficient or the Ekman pump-
ing/dissipation constant, models the bottom friction in two-dimensional oceanic
models or the Rayleigh friction in the planetary boundary layer for two-dimensional
atmospheric models. This system has important applications is geophysical hydro-
dynamics [12], [25], and basically is the viscous Stommel–Charney barotropic ocean
circulation model [7], [28]. The Coriolis term here is taken to be zero. It does not
play a crucial role in our analysis since it is anti-symmetric. Its effect on the upper
and lower bounds will considered elsewhere.

The system is considered in a periodic rectangular domain Ω = [0, L/α]× [0, L]
with arbitrary (but fixed) µ > 0 in the limit of the vanishing viscosity (ν → 0+)
and large domain (α → 0+).

In the case of a square-shaped domain Ω = [0, L]2 (α = 1) the following estimate
for the Hausdorff and fractal dimensions of the attractor of the system (1.5) was
obtained in [18]:

dimH A ≤ dimF A ≤
(

6

π3

)1/2
L2‖ rot f‖∞

µν
. (1.6)

It was also shown that for the right-hand side

f = fs = {f1 = const ν2s3 sin sx2, f2 = 0},



4 A. Ilyin and E. S. Titi JMFM

where L = 2π, the following lower bound holds:

dimF A ≥ const
L2‖ rot f‖∞

µν
,

which shows that the estimate (1.6) is sharp. Here the bifurcation parameter is
ν → 0+, while the integer s is no longer an independent parameter and is defined
by the formula s = (µ/ν)1/2 → ∞, as ν → 0+.

Turning to the estimates of the determining modes and nodes [14], [15] (and
other determining finite dimensional projections, see [5], [6]) we first recall that
the best to date estimates for them (in the case when they are explicitly defined)
for the periodic Navier–Stokes equations are as follows [13], [20]:

Nmodes, Nmodes ≤ c(α)G,

where it was shown in [19] that c(α) ∼ α−1/2, as α → 0+, so that for a large
elongated domain the numbers of the determining projections are proportional to
the square of area of the domain: Nmodes, Nmodes ∼ α−2.

On the other hand, for the damped Navier–Stokes system (1.5) the estimates
for the numbers of the determining modes and nodes obtained in [19] are as follows:

Nmodes ≤ c1

|Ω|‖ rot f‖∞
µν

, Nnodes ≤ c2

|Ω|‖ rot f‖∞
µν

,

for some explicitly given absolute constants c1 and c2. These estimates are pro-
portional to the area of the domain, which agrees with the physical intuition, and
they suggest that a similar estimate (of the order α−1) should hold for the Haus-
dorff and fractal dimension of the attractor, which as in the case α = 1 is inversely
proportional to ν, as ν → 0+.

The main result of this work is the following estimate for the Hausdorff and
fractal dimensions of the damped and driven Navier–Stokes system (1.5):

dimH A ≤ dimF A ≤ 12
L2‖ rot f‖∞

αµν
,

where it is shown by means of the generalized Kolmogorov flows that this estimate
is sharp as both ν → 0+ and α → 0+.

2. Dimension of the global attractor of the damped Navier–Stokes
system in a large elongated domain

We consider the damped and driven Navier–Stokes system (1.5) in a periodic
rectangular domain Ω = T 2

α = [0, L/α] × [0, L], where without loss of generality
we assume that 0 < α ≤ 1. We also assume that f and u have mean values zero.
We denote by |Ω| the area of Ω:

|Ω| =
L2

α
.



Damped-Driven Navier–Stokes System on Elongated Domains 5

Using the standard notation in the theory of the Navier–Stokes equations we
denote by H the closure in L2(Ω)2 of the set of trigonometric polynomials with
divergence and mean value zero. The norm ‖ · ‖ and scalar product (· , ·) in H
are those of L2(Ω). The corresponding orthogonal Leray–Helmholtz projection is
denoted by P , P : L2(Ω)2 → H. Applying P to the first equation in (1.5) we
obtain the functional evolution equation

∂tu + B(u, u) + νAu = −µu + f, u(0) = u0, (2.1)

where A = −P∆ is the Stokes operator and B(u, v) = P
(∑2

i=1 ui∂iv
)

is the
nonlinear term. We also set

b(v, u, w) = (B(v, u), w) =

∫

Ω

∑2

i,k=1
vk∂kuiwi dx. (2.2)

Equation (2.1) has a unique solution u(t) and the solution semigroup Stu0 →
u(t) is well defined. The semigroup St has a global attractor A which is a compact
strictly invariant set in H attracting under the action of St all bounded sets as
t → ∞. These facts are well known for the classical Navier–Stokes equations [2],
[10], [21], [26], [27], [29]; the case µ > 0 is similar. The solution semigroup St is
uniformly differentiable in H with differential L(t, u0) : ξ → U(t) ∈ H, where U(t)
is the solution of the variational equation

∂tU = −νAU − µU − B(U, u(t)) − B(u(t), U) =: L(t, u0)U, U(0) = ξ. (2.3)

Furthermore, the differential L(t, u0) depends continuously on the initial point
u0 ∈ A [2].

We estimate the Hausdorff and fractal dimension of the attractor A paying
special attention to the dependence of the estimates on α → 0+ and ν → 0+.

Following [9], [10], [29], we estimate the numbers q(m), that is, the sums of the
first m global Lyapunov exponents:

q(m) ≤ lim sup
t→∞

sup
u0∈A

sup
{vj}m

j=1
∈H∩H1

1

t

∫ t

0

m∑

j=1

(
L(τ, u0)vj , vj

)
dτ, (2.4)

where {vj}m
j=1 ∈ H ∩ H1 is an arbitrary L2-orthonormal system of dimension m:

∫

Ω

vi(x) · vj(x) dx = δij .

We first estimate the H1-norm of the solutions on the attractor. Taking the
scalar product of (2.1) with Au, using the identity (B(u, u), Au) = 0 (see, for
example, [10], [29]) and integrating by parts we obtain

∂t‖ rot u‖2 + 2ν‖Au‖2 + 2µ‖ rot u‖2

= 2(f,Au) = 2(rot f, rotu) ≤ ε‖ rot u‖2 + ε−1‖ rot f‖2.

Using the Poincaré inequality λ1‖ rot u‖2 ≤ ‖Au‖2, where λ1 is the first eigenvalue
of A, and setting ε = µ + νλ−1

1 we obtain

∂t‖ rot u‖2 + (µ + 2νλ−1
1 )‖ rot u‖2 ≤ (µ + 2νλ−1

1 )−1‖ rot f‖2,
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which gives, in view of the Gronwall inequality, that on the attractor u(t) ∈ A the
following estimate holds:

‖ rot u(t)‖2 ≤ ‖ rot f‖2

(µ + 2νλ−1
1 )2

<
‖ rot f‖2

µ2
. (2.5)

We now estimate the m-trace of the operator L in (2.4). Integrating by parts
and using the identity (B(u(t), vj), vj) = 0 (see [10], [29]) and the orthonormality
of the vjs, we obtain

m∑

j=1

(
L(t, u0)vj , vj

)
= −ν

m∑

j=1

‖ rot vj‖2 − µm −
m∑

j=1

b(vj , u(t), vj). (2.6)

We now introduce the orthogonal projections M and N (see [31])

Mw(x1) =
1

L

∫ L

0

w(x1, x2) dx2, N = Id − M. (2.7)

The spectral characterization of these projectors and the associated anisotropic
Lieb–Thirring inequalities will be given in §3 (see [17]). For the moment we observe
that if div w = 0, then div Nw = 0 and div Mw = 0. We represent u and vj in
the form u = Mu + Nu, vj = Mvj + Nvj . Since Mu and Mvj depend only on x1,

Mu1 = Mv1
j = 0 and

∫ L

0
Nu(x1, x2)dx2 = 0, it follows that

b(Mvj , u,Mvj) = 0, b(Mvj ,Mu,Nvj) = 0, b(Nvj ,Mu,Mvj) = 0.

For example, to see that the third equality holds we have

b(Nv,Mu,Mv) =

∫

Ω

Nv1∂1Mu2Mv2dx

=

∫ L/α

0

∂1Mu2(x1)Mv2(x1)

∫ L

0

Nv1(x1, x2)dx2dx1 = 0.

Therefore, for the trilinear form b, defined in (2.2), the following equality holds

b(vj , u, vj) = b(Nvj , u,Nvj) + b(Mvj ,Nu,Nvj) + b(Nvj ,Nu,Mvj).

In view of Proposition 2.1 below
m∑

j=1

b(vj , u, vj) ≤ 2−1/2‖ rot u‖‖ρNv‖ + 21/2‖ rot Nu‖‖ρMv‖1/2‖ρNv‖1/2, (2.8)

where

ρMv(x) =
m∑

j=1

|Mvj(x)|2, ρNv(x) =
m∑

j=1

|Nvj(x)|2. (2.9)

For the first term using inequality (3.6) in the Theorem 3.1 below we find

2−1/2‖ rot u‖‖ρNv‖ ≤ cN

2ν
‖ rot u‖2 +

ν

4cN

‖ρNv‖2 ≤ cN

2ν
‖ rot u‖2 +

ν

4

m∑

j=1

‖ rot Nvj‖2.

(2.10)
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Similarly, for the second term

21/2‖ rot Nu‖‖ρMv‖1/2‖ρNv‖1/2 ≤ 21/2‖ rot u‖‖ρMv‖1/2‖ρNv‖1/2

≤ 21/2‖ rot u‖c1/4

N

( m∑

j=1

‖ rot Nvj‖2

)1/4
c
1/4

M

L1/4
m1/8

( m∑

j=1

‖ rot Mvj‖2

)1/8

≤
√

cMcN

2ν
‖ rot u‖2 + ν

( m∑

j=1

‖ rot Nvj‖2

)1/2
m1/4

L1/2

( m∑

j=1

‖ rot Mvj‖2

)1/4

≤
√

cMcN

2ν
‖ rot u‖2 +

ν

4

m∑

j=1

‖ rot Nvj‖2 +
νm1/2

L

( m∑

j=1

‖ rot Mvj‖2

)1/2

≤
√

cMcN

2ν
‖ rot u‖2 +

ν

4

m∑

j=1

‖ rot Nvj‖2 +
ν

2

m∑

j=1

‖ rot Mvj‖2 +
νm

2L2
.

(2.11)

It follows from (2.8)–(2.11) that

m∑

j=1

b(vj , u, vj) ≤
(cN +

√
cMcN)

2ν
‖ rot u‖2 +

ν

2

m∑

j=1

‖ rot vj‖2 +
νm

2L2
. (2.12)

Hence returning to (2.6) and setting cN = cM = 6 (see (3.6), (3.7)) we obtain

m∑

j=1

(
L(t, u0)vj , vj

)
≤ −ν

2

m∑

j=1

‖ rot vj‖2 +
6

ν
‖ rot u‖2 +

(
ν

2L2
− µ

)
m. (2.13)

We now estimate the first term. By the orthogonality MH ⊥ NH and by the or-
thonormality of {vj}m

j=1 we have for ρ(x) =
∑m

j=1 |vj(x)|2 and ρMv(x) and ρNv(x)
defined in (2.9)

m =

∫

Ω

ρ(x)dx =

∫

Ω

m∑

j=1

|Mvj(x) + Nvj(x)|2dx =

∫

Ω

ρMv(x)dx +

∫

Ω

ρNv(x)dx.

Hence

m2 ≤ 2

(∫

Ω

ρMv(x) dx

)2

+ 2

(∫

Ω

ρNv(x) dx

)2

≤ 2L2

α
(‖ρNv‖2 + ‖ρMv‖2),

and by (3.6) and (3.7)

αm2

2L2
≤ cN

m∑

j=1

‖ rot Nvj‖2 +
cM

L
m1/2

( m∑

j=1

‖ rot Mvj‖2

)1/2

≤ cN

m∑

j=1

‖ rot Nvj‖2 + cN

m∑

j=1

‖ rot Mvj‖2 +
c2
Mm

4cNL2

= cN

m∑

j=1

‖ rot vj‖2 +
c2
Mm

4cNL2
.
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Hence setting again cN = cM = 6 we find

m∑

j=1

‖ rot vj‖2 ≥ αm2

2cNL2
− c2

M

c2
N

m

4L2
=

αm2

12L2
− m

4L2
. (2.14)

Using in (2.13) the estimate for the solutions on the attractor (2.5) and (2.14) we
obtain

q(m) ≤ − ν

24

m2

|Ω| +

(
5ν

8L2
− µ

)
m +

6

ν

‖ rot f‖2

µ2
. (2.15)

By the elementary estimate m∗ < a + c for the positive root m∗ of the quadratic
equation m2 − am − c2 = 0 we obtain that the Hausdorff dimension (see [29], [9])
and the fractal dimension (see [3]) of A satisfy dimH A ≤ dimF A ≤ m∗, that is,

dimH A ≤ dimF A ≤ 1

α
(15 − 24L2µ/ν)+ + 12

|Ω|1/2‖ rot f‖
µν

, (2.16)

where x+ = max{x, 0}.
Thus, we have proved the following theorem.

Theorem 2.1. The Hausdorff and fractal dimensions of the global attractor A of

the damped and driven Navier–Stokes system (1.5) satisfies the estimate

dimH A ≤ dimF A ≤ 15

α
+ 12

|Ω|1/2‖ rot f‖
µν

, (2.17)

In particular, if ν is sufficiently small such that ν ≤ (8/5)L2µ, then

dimH A ≤ dimF A ≤ 12
|Ω|1/2‖ rot f‖

µν
. (2.18)

Remark 2.1. Since ‖ rot f‖ ≤ |Ω|1/2‖ rot f‖∞, we can write the estimate (2.18)
in the form

dimH A ≤ dimF A ≤ 12
|Ω|‖ rot f‖∞

µν
= 12

L2‖ rot f‖∞
αµν

(2.19)

depending linearly on the area of the domain Ω.

Proposition 2.1 (see [17]). If div u(x) = 0, then:
∣∣∣∣
∑2

k,i=1
vk(x)∂kui(x)vi(x)

∣∣∣∣ ≤ 1√
2
|∇u(x)||v(x)|2,

∣∣∣∣
∑2

k,i=1

(
vk(x)∂kui(x)wi(x) + wk(x)∂kui(x)vi(x)

)∣∣∣∣ ≤
√

2|∇u(x)||v(x)||w(x)|,
(2.20)

where v and w are arbitrary vector functions and |∇u| =
(∑2

k,i=1(∂kui)2
)1/2

.
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Proof. Setting D = (∇u + ∇u∗)/2, where

∇u =

(
∂ 1u

1 ∂1u
2

∂2u
1 ∂2u

2

)
, ∇u∗ =

(
∂1u

1 ∂2u
1

∂1u
2 ∂2u

2

)
,

we have ∣∣∣∣
∑2

k,i=1
vk∂kuivi

∣∣∣∣ = |∇u v · v| = |Dv · v| ≤ λ|v|2.

Here λ = ‖D‖ is the maximum (in absolute value) eigenvalue of D. Since div u = 0,
the trace of the 2×2 matrix D is zero and the eigenvalues of D are λ > 0 and −λ,
where

λ2 = (∂1u
1)2 +

1

4
(∂1u

2 + ∂2u
1)2 ≤ 1

2
|∇u|2,

which proves the first inequality in (2.20). The left-hand side of the second in-
equality in (2.20) is equal to 2|Dv · w| ≤ 2λ|v||w|, hence the proof is complete. ¤

Lower bound. In this section we derive a lower bound for the global dimension
of the attractor which is sharp both for ν → 0+ and α → 0+, while µ > 0 is
arbitrary and fixed.

We go over to the scalar vorticity equation. We introduce the stream function ψ,
so that u = ∇⊥ψ = {−∂2ψ, ∂1ψ}. Substituting this into (1.5) and applying the
operator rot we obtain for ϕ = ∆ψ the equation

∂tϕ − ν∆ϕ + µϕ + J(∆−1ϕ,ϕ) = F = rot f, (2.21)

where the Jacobian

J(a, b) = ∇⊥a · ∇b = ∂1a∂2b − ∂2a∂1b. (2.22)

Since the global attractor is the maximal strictly invariant compact set, it
contains all the stationary solutions and their unstable manifolds along which the
solutions tend to the stationary points as t → −∞ [2].

We use the following well-known family of Kolmogorov flows as stationary
solutions [2], [18] [22], [24], [30].

We set L = 2π and consider (1.5) in the periodic domain [0, 2π/α]× [0, 2π]. As
in [18], for a large integer parameter s we consider a family of right-hand sides f :

f = fs =

{
f1 = 1√

2π
ν2λs2 sin sx2,

f2 = 0,
(2.23)

where λ = λ(s) ia a parameter to be defined later. Then

rot fs = Fs = − 1√
2π

ν2λs3 cos sx2, (2.24)

so that

‖ rot fs‖ =
ν2λs3

√
α

, ‖ rot fs‖∞ =
1√
2π

ν2λs3. (2.25)
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We consider the stationary solution (2.21) with right-hand side (2.24):

−ν∆ϕ + µϕ + J(∆−1ϕ,ϕ) = − 1√
2π

ν2λs3 cos sx2 (2.26)

and look for its solution in the form

ϕ = ϕs = − 1√
2π

νλsK cos sx2, K = K(s, µ, ν). (2.27)

Since ϕs depends only on x2, it follows that J(∆−1ϕs, ϕs) ≡ 0 and it is straight
forward to see that for

K(s, µ, ν) =
s2

s2 + µ/ν
, (2.28)

ϕs defined in (2.27) is a solution of (2.26).
We consider the spectral problem for the equation linearized about the station-

ary solution ϕs

Lϕs
ϕ = J(∆−1ϕs, ϕ) + J(∆−1ϕ,ϕs) − ν∆ϕ + µϕ = −σϕ. (2.29)

The dimension of the unstable subspace with Reσ > 0 is a lower bound for the
dimension of the global attractor A.

Substituting the Fourier representation of ϕ

ϕ =

√
α√
2π

∑

k∈Z
2
+

(ak cos k′x + bk sin k′x), k ∈ Z
2
+ = {k = (k1, k2), k1 ≥ 0, |k| > 0},

k′ = {k1α, k2}, k′x = k1αx1 + k2x2

into (2.29) and taking into the account the equality J(a, b) = −J(b, a) we obtain

λKs√
2π

∑

k∈Z
2
+

(
1

s2
− 1

k′2

)
J( cos sx2, ak cos k′x + bk sin k′x)

+
∑

k∈Z
2
+

(k′2 + σ̂ + µ/ν)(ak cos k′x + bk sin k′x) = 0,
(2.30)

where σ̂ = σ/ν. We further act as in [18], where the case α = 1 has been consid-
ered, and use the formulas

J(cos sx2, cos(αk1x1 + k2x2)) = −αk1s sin sx2 sin(αk1x1 + k2x2)

=
αk1s

2

(
cos(αk1x1 + (k2 + s)x2) − cos(αk1x1 + (k2 − s)x2)

)
,

J(cos sx2, sin(αk1x1 + k2x2)) = αk1s sin sx2 cos(αk1x1 + k2x2)

=
αk1s

2

(
sin(αk1x1 + (k2 + s)x2) − sin(αk1x1 + (k2 − s)x2)

)
.

Substituting these formulas into (2.30) and setting equal the coefficients of cos k′x
we find the equation for the coefficients ak1 k2

(the equation for bk1 k2
is exactly



Damped-Driven Navier–Stokes System on Elongated Domains 11

the same):

− λKαk1

2
√

2π

(
α2k2

1 + (k2 + s)2 − s2

α2k2
1 + (k2 + s)2

)
ak1 k2+s

+
λKαk1

2
√

2π

(
α2k2

1 + (k2 − s)2 − s2

α2k2
1 + (k2 − s)2

)
ak1 k2−s

+ (α2k2
1 + k2

2 + σ̂ + µ/ν)ak1 k2
= 0.

(2.31)

We set

ak1 k2

(
α2k2

1 + k2
2 − s2

α2k2
1 + k2

2

)
=: ck1 k2

and
k1 = t, k2 = sn + r, and ct sn+r = en,

t = 1, 2, . . . , r ∈ Z, rmin < r < rmax,

where rmin, rmax satisfy rmax − rmin < s and will be indicated later. As a result,
for each t and r we obtain the following recurrence relation:

dnen + en−1 − en+1 = 0, n = 0,±1,±2, . . . , (2.32)

where

dn =
2
√

2π(t′2 + (sn + r)2) (t′2 + (sn + r)2 + σ̃)

(t′2 + (sn + r)2 − s2)Λt′
, σ̃ = σ̂ + µ/ν = σ/ν + µ/ν,

(2.33)
where t′ = αt and where we set

Λ = λK = λ(s)K(s, µ, ν) = λ(s) · s2

s2 + µ/ν
. (2.34)

We observe that up to the change t′ → t the recurrence relation (2.32), (2.33)
coincides with the corresponding relation in [18] with α = 1.

We look for non-trivial solutions {en} of the recurrence relations (2.32), (2.33)
tending to zero as n → ±∞. Each such solution with

Re σ̃ >
µ

ν
(2.35)

provides an unstable eigenmode ϕ of the spectral problem (2.29) with eigenvalue σ,
Re σ > 0.

Lemma 2.1. Let a pair of integers t, r satisfy the following conditions

t′2 + r2 < s2/3, t′2 + (−s + r)2 > s2, t′2 + (s + r)2 > s2, t′ ≥ δs,

t′ = αt, rmin < r < rmax, rmin = −s

6
, rmax =

s

6
, 0 < δ < 1/

√
3,

(2.36)

where a sufficiently large integer s > 0 is fixed. Then for any Λ > 0 there exists

a unique real σ̃ = σ̃(Λ) for which the recurrence relation (2.32), (2.33) has a non-

trivial solution, and, in addition, σ̃(Λ) is monotonely increasing as Λ → ∞ and
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satisfies the two-sided inequality

c1(t
′, r, s)Λ ≤ σ̃(Λ) ≤ c2(t

′, r, s)Λ. (2.37)

A unique Λµ/ν = Λµ/ν(s) solving the equation

σ̃(Λµ/ν) = µ/ν

satisfies the estimate

c1(δ)s < Λµ/ν(s) < c2(δ)
s2 + µ/ν

s
. (2.38)

The lemma is proved in [18] for α = 1. The proof in [18] works without any
changes in the case α < 1 by a formal change t → t′ (see also [23]).

We denote by A(δ) the region in (t′, r)-plane defined by conditions (2.36).
Clearly, |A(δ)| = a(δ) · s2, where |A(δ)| in the area of A(δ) and a(δ) is monotonely
decreasing and a(1/

√
3) = 0. We denote by d(s) the number of points (t, r) with

integer coordinates such that the corresponding point (t′, r) ∈ A(δ). Obviously,

d(s) := #{(t, r) : (t′, r) ∈ Z
2 ∩ A(δ)} ⋍

|A(δ)|
α

= a(δ) · s2

α
as s → ∞, (2.39)

Next, taking into account that the analysis of the recurrence relation for bk1 k2

is exactly the same, we see from Lemma 2.1 that for each (t, r) such that (t′, r) ∈
Z

2 ∩ A(δ) and the parameter Λ (see (2.34)) chosen as follows (see (2.38))

Λ = Λµ/ν = c2(δ)
s2 + µ/ν

s
(2.40)

there exists a unique real eigenvalue σ̃ > µ/ν of multiplicity two. Therefore
there exits a positive eigenvalue σ > 0 of the original spectral problem (2.29) of
multiplicity two. Hence the dimension of the unstable manifold near the stationary
solution ϕs is at least 2d(s). As a result, we find that

dimA ≥ 2d(s) ⋍ 2a(δ) · s2

α
. (2.41)

The integer parameter s has so far been arbitrary. We now set

s2 =
µ

ν
.

(Strictly speaking we have to require that µ/ν is a complete square. But we already
have the relation “⋍” in (2.41).) Then

dimA & 2a(δ)
1

α

µ

ν
. (2.42)

We now recall the definition of Λ (2.34):

Λ = λ(s) · s2

s2 + µ/ν
.
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Setting s2 = µ/ν here and in (2.40) we obtain the equation for λ, from which

λ(s) = λ((µ/ν)1/2) = 4c2(δ) · s = 4c2(δ) ·
√

µ

ν
. (2.43)

We calculate

G1 =
|Ω|1/2‖ rot f‖

νµ
and G2 =

|Ω|‖ rot f‖∞
νµ

,

for f = fs and s = (µ/ν)1/2. By (2.25) and (2.43) we obtain

‖ rot fs‖ =
ν2λ(s)s3

√
α

= 4c2(δ)
µ2

√
α

, ‖ rot fs‖∞ =
1√
2π

ν2λ(s)s3 =
2
√

2

π
c2(δ)µ

2.

(2.44)
Hence

G1 = 8πc2(δ)
µ

αν
and G2 = 8π

√
2c2(δ)

µ

αν
. (2.45)

Expressing the estimate (2.42) in terms of G1 and G2 (2.45) and optimizing with
respect to δ ∈ (0, 1/

√
3) we obtain

dimA & const1G1,

dimA & const2G2,
(2.46)

where const1 = (4π)−1 max0<δ<1/
√

3 a(δ)c2(δ)
−1 and const2 = const1/

√
2 are ab-

solute constants.
Combining the results so obtained with Theorem 2.1 we have the following

theorem.

Theorem 2.2. The dimension of the global attractor A of the equation (1.5) with

Kolmogorov right-hand side (2.23) satisfies the following two-sided estimate, which

is sharp as both ν → 0+ and α → 0+:

const1
|Ω|1/2‖ rot f‖

νµ
. dimH A ≤ dimF A ≤ 12

|Ω|1/2‖ rot f‖
νµ

,

const2
|Ω|‖ rot f‖∞

νµ
. dimH A ≤ dimF A ≤ 12

|Ω|‖ rot f‖∞
νµ

,

(2.47)

where |Ω| = L2/α.

3. Two-dimensional anisotropic Lieb–Thirring inequalities

We consider in this section the Lieb–Thirring inequalities on the two-dimensional
torus Ω = T 2

α = (0, L/α) × (0, L), 0 < α ≤ 1, elongated in the direction of x1.
Without loss of generality we set L = 2π.

To give the spectral characterization of the orthogonal projections M and N
used in §2 (see (2.7)) we consider the spectrum σ = {λj}∞j=1 of the problem

−∆wj = λjwj (3.1)
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in H = L2(T
2
α) ∩ {

∫
fdx = 0}:

σ = {α2k2
1 + k2

2, k = (k1, k2) ∈ Z
2
0}, Z

2
0 = Z

2 \ 0. (3.2)

We represent σ in the form

σ = σN ∪ σM,

where
σN = {α2k2

1 + k2
2, k2 6= 0, k = (k1, k2) ∈ Z

2
0},

σM = {α2k2
1, k1 ∈ Z0}, Z0 = Z \ 0.

(3.3)

The corresponding spectral projections are denoted by N and M. The the Hilbert
space H is the orthogonal sum of the two invariant (with respect to ∆) subspaces:

H = NH ⊕ MH.

We observe that functions in MH depend only on x1. Furthermore, the action of
M amounts to taking the mean value over the ‘short’ coordinate x2 [31]:

Mϕ(x1) =
1

L

∫ L

0

ϕ(x1, x2)dx2, N = Id − M.

Consider an L2-orthonormal family of functions {fj}m
j=1:

(fi, fj) =

∫
fifjdx = δij .

Then the corresponding families {ϕj}m
j=1 and {ψj}m

j=1, fj = ϕj + ψj , where ϕ =
Mf , ψ = Nf , are suborthonormal in L2 in the sense of the following definition [16].

Definition 3.1. A family {φj}m
j=1 is called suborthonormal if for any ξ ∈ R

m

m∑

i,j=1

ξiξj(φi, φj) ≤
m∑

j=1

ξ2
j . (3.4)

In fact, for example, for {ϕj}m
j=1 = {Mfj}m

j=1 by the orthonormality of {fj}m
j=1

and orthogonality (ϕi, ψj) = 0 we have

|ξ|2 =
m∑

i,j=1

ξiξj(fi, fj) =
m∑

i,j=1

ξiξj(ϕi, ϕj) +
m∑

i,j=1

ξiξj(ψi, ψj)

=
m∑

i,j=1

ξiξj(ϕi, ϕj) +
∥∥∑m

j=1
ξjψj

∥∥2
,

which gives that {ϕj}m
j=1 satisfies (3.4).

The following theorem (see [17]) collects the Lieb–Thirring inequalities used
in §2. It is important for us that for function in NH the constants in the corre-
sponding inequalities are bounded by absolute constants as α → 0.
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Theorem 3.1. Let the families of scalar functions {ϕj}m
j=1 and vector functions

{vj}m
j=1 be suborthonormal in L2(T

2
α), have mean value zero and div vj = 0. Then

for

ρv(x) =

m∑

j=1

|vj(x)|2, ρϕ(x) =

m∑

j=1

ϕj(x)2.

the following inequalities hold:

∫

Ω

ρϕ(x)2dx ≤ cLT

α

m∑

j=1

‖∇ϕj‖2,

∫

Ω

ρv(x)2dx ≤ cLT

α

m∑

j=1

‖ rot vj‖2, cLT ≤ 6

π
.

(3.5)
If, in addition, vj = Nvj, ϕj = Nϕj, then for ρNv(x) =

∑m
j=1 |Nvj(x)|2 and

ρNϕ(x) =
∑m

j=1 Nϕj(x)2 the following inequalities hold:

∫

Ω

ρNϕ(x)2dx ≤ cN

m∑

j=1

‖∇Nvj‖2,

∫

Ω

ρNv(x)2dx ≤ cN

m∑

j=1

‖ rot Nvj‖2, cN ≤ 12

π
.

(3.6)
Finally, if vj = Mvj, div vj = 0, then ρMv(x) =

∑m
j=1 |Mvj(x)|2 satisfies

∫

Ω

ρMv(x)2dx ≤ cM

L

m∑

j=1

‖ rot Mvj‖, cM ≤ 6. (3.7)
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