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Abstract

This paper studies the complexity of behavior of multi-agent systems. Behavior
properties are formulated using classical temporal logic languages and are checked
with respect to the transition system induced by the definition of the multi-agent
system. We establish various tight complexity bounds of the behavior properties
under natural structural and semantic restrictions on agent programs and actions.
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1 Introduction

The aim of this paper is to study the complexity of verification of behav-
ior (dynamic) properties of deterministic, nondeterministic and asynchronous
multi-agent systems 2 and continues our paper [10]. Although intelligent

1 This work was sponsored by the Russian Fundamental Studies Foundation
(Grants 04-01-00565, 01-01-00278 and 02-01-00652).
2 The results of this paper were announced without proofs in preliminary publica-
tions [9,11].
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agents have been the object of active study for at least two decades, research
in this specific field (see [29,31,4,1,32]) is relatively scarce.

The terms ‘Intelligent Agent’ (IA) and ‘Multi-Agent System’ (MAS) refer to
a promising and rather general metaphor of computing technology based on
Artificial Intelligence. The range of IA applications extends from operating
system interfaces, processing of satellite imaging data, web navigation to air
traffic control, business process management and electronic commerce. Due
to diversity of applications, and diversity of approaches, there is no unified
definition of the notion of an Intelligent Agent. We refer the reader to [29] and
several other publications [27,33,3,17,20,26] for a variety of interpretations of
what Intelligent Agents are. For particular agent architectures, the intelligence
capacity of an agent can vary from finite state control structures or IF-THEN
rules to logic programs, non-monotone belief based systems or deontic logics
(see [29] for a discussion and references).

Consider the following example.

Example 1 “Resource-allocation”
A resource allocation system RA consists of a manager-agent m that owns some
resource r, which it distributes on orders from four user-agents u1, u2, u3, u4. Given
a discrete timeline t = {t1, t2, . . .}, each user has its own strategy for ordering
resources:
1) u1 is the first to order a resource; then it repeats its order on receipt of the
resource;
2) u2 orders the time instant after u1 has ordered;
3) u3 orders the time instant after u1 has received the resource from m;
4) u4 orders every time instant.
The manager m maintains a list of orders and fulfills the first order on the list,
one order at a time. Only one order from each user-agent can be held on the list.
So if m receives an order from some agent ui before the previous order from it has
been fulfilled, the new order is ignored.

We see that the five agents in Example 1 are autonomous in the sense that all
of them can function continuously with or without stimuli from other agents.
Meanwhile, these stimuli are necessary in order that the user-agents achieve
their goals, i.e., obtain the resource r. To facilitate that, the agents commu-
nicate through messages, that allow them to find out when orders have been
placed or fulfilled. The intelligence of the four user agents is rather primitive:
just conditional actions. Meanwhile, agent m must be more intricate in order
to control correctly the incoming orders and the states of the queue.

The behavior of the agents in RA is deterministic whereas generally this
is not the case. In many applications agents have only partial knowledge of
their medium, which causes a nondeterministic behavior of the MAS. Let us
consider another example.
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Example 2 ”Recruiting Committee”.
An academic recruiting committee consists of 5 member agents mi, 0 ≤ i ≤ 4 (m0

being the lab chief) and the secretary agent s. The seventh agent c simulates at
each recruitment cycle the submission of a number of applications for a faculty
position. The applications are of the form cand(C, Profile, Merits, Grants), where
C is a unique id of a candidate (taken from a given finite set of strings); Profile
identifies the field of research of the candidate: lp (logic programming), ai (artificial
intelligence), cl (computational linguistics) or mm (multimedia); Merits is a rank
of the candidate’s scientific accomplishments and, finally, Grants is the sum of
the grants the candidate has obtained (variables Merits and Grants take values
from some finite sets of numbers). Agent c sends the secretary agent several such
applications.

The member agents can read, in addition to the applications, the information about
the faculty member selected in the preceding recruitment cycle: selected(C,Profile).
This fact combined with a special flag close and the applications form the shared
database GB of the committee. On receipt of the applications, the secretary an-
nounces the beginning of a new recruiting cycle and deletes flag close from GB.
Before the vote, the members may speak out on the candidates (through messages).
They then vote by sending their secret vote messages to the secretary: the selected
candidate or the abstention. On receiving all members’ votes, the secretary updates
the GB according to the tally: places the data of the candidate selected by the ma-
jority, if any (when no majority, no candidate is selected) and closes the session by
putting the flag close back into GB. The secretary then deletes the applications of
candidates who were not selected and enters the initial state of a new recruitment
cycle.

The five committee members have different vote tactics but all of them abstain when
their criteria do not ensure the uniqueness or the existence of their choice.

m0 (a.k.a. “the boss”) has the following research area preferences: lp > ai > mm >
cl. An area having been chosen, he selects a candidate with the largest sum of grants
and announces his choice to all committee members;
m1 always joins to m0;
m2 selects a candidate with the research area different from the area of the candidate
chosen by m0 who has the largest amount of grant money;
m3 votes for the candidate with the best scientific merits whose research area is
different from that of the candidate hired in the previous cycle;
m4 votes with the majority, if any; if there is no majority, then m4 joins to m2.
Agent c in this example is nondeterministic. One cannot know beforehand either the
exact number of the candidates or the specifics of their applications.

The MAS we consider in this paper conform in general to the IMPACT ar-
chitecture of Subrahmanian et al. introduced and described in detail in [29].
This architecture is very elaborate. It includes rather expressive agent spec-
ification means and control structures, e.g. adaptive action bases, logic pro-
grams articulating decision policies, constraints, belief-based meta-reasoning
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about other agents, reasoning with uncertainty, reasoning about time, com-
munication management, security related structures, interfacing, and some
other facilities. Such abundance of expressive means makes this architecture
well-adapted for practical applications. At the same time, it complicates the
formal study of the properties of the agents. The agent semantics in IMPACT
architecture is described in terms of transitions between the agent states and
is shown in [29] to be intractable in general. In order to arrive at a polyno-
mial time computable transition semantics, Subrahmanian et al. impose very
complex limitations on the agents features. As a result, the definition of such
“polynomial” agents becomes bulky.

In this paper, we impose other, easy-to-formulate limitations on IMPACT
agents, which lead to a polynomial time semantics. We focus on the agent
features that relate to actions, decision policies and communication. On the
other hand, we do not consider features related to the legacy code, security,
metaknowledge structures, temporal and uncertainty reasoning. Moreover, we
simplify the internal agent’s data structure to be a relational database (in
IMPACT a more general structure is allowed), and consider conventional logic
programs as a means of an agent action policy definition (IMPACT agent
programs include deontic modalities “permitted action”, “forbidden action”,
“action to be performed”, etc.). Even after these simplifications, the MAS
architecture remains very rich. We study behavior properties under various,
more or less restrictive constraints on MAS parameters and semantics.

As the examples above show, agents can be deterministic or non-deterministic.
But, when we consider the behavior of multi-agent systems, another aspect
also becomes to be important: how do the agents of the system interact? If
all the agents of the system are placed in a local network (in particular, in
a standalone computer), we can assume that messages from one computer to
another one go immediately, so, we say on a synchronous mode of interaction
and synchronous multi-agent systems. On other side, if the transfer of messages
from one computer to another one can take an indeterminate time (as in
Internet), we say on nondeterministic mode of interaction and asynchronous
multi-agent systems. It is clear that the behavior of an asynchronous MAS is
non-deterministic, even if the agents of the system are deterministic. In fact,
it will be shown that in a sense any synchronous non-deterministic MAS can
be embedded in an asynchronous MAS with only deterministic agents.

In any case the behavior of the MAS is described as a set of trajectories (paths)
in the state transition diagrams they induce: a single path in the (synchronous)
deterministic case, and multiple paths in the nondeterministic (synchronous
or asynchronous) case. This allows the use of classical temporal logics: PLTL,
CTL, CTL∗ [12], µ-calculus [21] and their first order variants to express the
behavior properties of these systems.
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The problem “MA-BEHAVIOR” of verifying that a temporal logic formula Φ
holds on the trajectories of a given MAS, considered in this paper is, basically,
a model checking problem. Model checking on abstract transition diagrams
has been extensively studied since the early 1980s (see [30,24,12,13,7]). There
is, however, a substantial difference between the classical problem statement
and the one studied in this paper. Traditionally, the complexity results are
established for transition diagrams that are explicitly presented or for some of
their fixed representations (e.g., by finite state automata, by OBDD).

We establish the complexity bounds with respect to MAS whose operational
semantics is presented in the form of transition systems. The novelty of this
approach is in the fact that the problem complexity is determined by vari-
ous structural and semantic constraints on MAS. MAS constitute a compact
representation of the corresponding transition system. For example, even for
a ground (i.e. variable-free) MAS A, the transition system T (A) describing
its trajectories may have the size exponential in |A|, because it may have
O(2|A|) states. So, sometimes, our lower bounds are more pessimistic than in
the classical case for the same classes of logics. As far as the upper bounds
are concerned, they are either more informative and precise (in the case of
polynomial time and space complexity), or they are simply translated from
the corresponding classical results taking into consideration the size and the
number of MAS states.

In our previous paper [10] we considered synchronous deterministic and non-
deterministic MAS under some strong constraints, such as the monotonicity
of intelligent components (logic programs) of the systems. For these classes
of MAS the MA-BEHAVIOR problem turned out to be decidable in deter-
ministic or nondeterministic polynomial time. In this paper we study the
MA-BEHAVIOR problem for more general classes of synchronous and asyn-
chronous MAS (under some weaker restrictions on their parameters). Natu-
rally, in these cases the complexity of the MA-BEHAVIOR problem increases
significantly and varies from polynomial space to double exponential time.

The remainder of this paper is structured as follows. In section 2, we describe
the IA and the synchronous MAS architectures, their one step and transition
system semantics, and specify several important classes of MAS corresponding
to natural constraints imposed on their structural features. Then in section
3, we give a brief overview of some classical temporal logic notions and facts
we use in the proofs. The two sections that follow study the problems of
verifying dynamic properties for synchronous MAS, deterministic (section 4)
and nondeterministic (section 5) cases. Then, in section 6 we introduce the
asynchronous version of MAS and study the complexity of their verification.
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2 Intelligent Agents and Multi-Agent Systems

In this section we present a simplified version of the IMPACT architecture
of [29], for the synchronous case. Since the asynchronous MAS appear only
in the last section, until that section we will use for brevity the simpler term
”MAS” instead of ”synchronous MAS”.

A (synchronous) multi-agent system (MAS) A is a finite set {a1, ..., an} of
intelligent agents. Each intelligent agent a has an internal database (DB) Ia,
which is a finite set of ground atoms in its extensional signature Pe

a
3 and

a finite message box MsgBoxa. Agents communicate through messages of
the form msg(Sender, Receiver, Msg), where Sender and Receiver are agent
names (the source and the destination), and Msg is a ground atom ( in the
message signature Pm

a ) sent by Sender to Receiver. The internal DB and
the current message box contents constitute the agent’s current local state
IMa = (Ia,MsgBoxa). To distinguish local properties of different agents of
the system A we assume that extensional signatures of different agents are
pairwise disjoint. Since the messages are not local the disjointness condition
is not assumed for the message signatures of agents.

The set of local states {IMa | a ∈ A} forms the current global state of the
MAS.

Each agent a is capable of performing a number of parameterized actions
constituting its action base ABa. Any (parameterized) action has the form
〈α(X1, . . . , Xl), ADDα(X1, . . . , Xl), DELα(X1, . . . , Xl), SENDα(X1, . . . , Xl)〉,
where α(l) is a predicate from the action signature Pact

a . We call α(X1, ..., Xl)
the parameterized name of the action. The sets ADDα(X1, . . . , Xl) and
DELα(X1, . . . , Xl) consist of atoms of the form p(t1, . . . , tk) where p is k-
ary predicate (for some k) in the signature Pe

a, t1, . . . , tk are terms which
can include only variables X1, . . . , Xl. These sets determine updates of the
internal DB (adding and deleting facts) when the corresponding action is
executed. The set SENDα(X1, . . . , Xl) consists similarly of atoms of the
form msg(a, b, p(t1, . . . , tk)) determining messages which will be sent to other
agents. In further, when we define concrete agents, for brevity we will often
use a short notation (b, p(t1, . . . , tk)) instead of msg(a, b, p(t1, . . . , tk)) in de-
scriptions of sets SENDα , where α is an action of an agent a,

Let c1, . . . , cl be constants. Let us denote by ADDα(c1, . . . , cl) the set of
facts obtained by substitution of c1, . . . , cl instead of X1, . . . , Xl into atoms of

3 We adopt a domain closure assumption: namely, some finite set Const(A) of
domain constants is connected with any MAS A, and all built-in predicates and
operations used by this MAS are defined on this set and computable in polynomial
time with respect to the size of the MAS.

6



ADDα(X1, . . . , Xl). The sets DELα(c1, . . . , cl) and SENDα(c1, . . . , cl) are de-
fined similarly. The ground atoms α(c1, . . . .cl) are called ground action names.

The policy of the agent a for choosing actions from ABa to execute depends on
the current state IM t

a (the local state of a at current time t) and is determined
by a pair 〈LPa, Sela〉. Here LPa is a logical program which determines a set
Permt

a of ground action names permitted for execution at current time, and
obligation operator Sela selects a subset Oblta of Permt

a consisting of ground
action names which should be executed.

When Oblta is determined its execution by the agent a is defined as follows. Let
AddOblta be the union of all the sets ADDα(c1, . . . , cl) such that a ground name
α(c1, . . . , cl) from Obla,t is unified with a parameterized name α(X1, . . . , Xl).
The sets DelOblta and SendOblta are defined similarly. Then the next state
of the internal base of a is obtained from the current state by deleting all
the facts belonging to DelOblta, and then adding all the facts belonging to
AddOblta. Moreover, the contents of MsgBoxa at the next moment t + 1 is
defined as the set of all the messages msg(b, a,Msg) such that msg(b, a, Msg)
belongs to SendObltb, for all agents b of the system.

An action α is expanding if DELα is empty. Agent a is expanding if it has
only expanding actions.

To complete the definition of a and one-step semantics for it we should define
LPa, Sela and how do they determine the sets Permt

a and Oblta.

LPa is a logic program with the clauses of the form H ← L1, . . . , Ln, where
n ≥ 0, the head H = α(t1, ..., tl) is an action atom, i.e. α is an action pred-
icate 4 ; the literals Li in its body are either action literals, or (extensional)
internal DB literals, or atoms of the form msg(b, a, Msg) or their negations
¬msg(b, a, Msg), or built-in predicate calls q(t̄)

An agent’s program is positive if there are no negations in its clauses. An agent
with positive program is also called positive.

We suppose that the program clauses are safe in the sense that all variables
in the head H occur positively in the body L1, ..., Ln, and that for every t the
program
LP t

a = LPa ∪ {p ← | p ∈ I t
a} ∪ {msg(b, a, Msg) ← | msg(b, a, Msg) ∈

MsgBoxt
a} is stratified [2].

The set Permt
a of actions permitted for execution at time t is defined as the

set of ground action names contained in the minimal model M t
a of LP t

a. As

4 Auxiliary (intensional) predicates can be included in LPa as actions with empty
sets ADD, DEL and SEND.

7



is well known [2], this model is unique for the stratified logic programs and
is computed by a polynomial time fixpoint computation procedure from the
groundization gr(LP t

a) of the program LP t
a

5

We distinguish deterministic and nondeterministic agent obligation operators
Sel. Deterministic obligation operator Sel is a total function which for a given
set of ground action names A returns some its subset Sel(A) ⊆ A.

For instance, the total deterministic semantics defined by Seltd(A) = A be-
longs to this class. We can also imagine other types of deterministic obligation
operators, e.g. priority driven deterministic operator that establishes some par-
tial order ≺ on ground actions and is defined by Sel≺d(A) = {m ∈ A | ¬∃m′ ∈
A (m′ ≺ m)}.

Deterministic agents are those having a deterministic obligation operator. A
MAS is called deterministic if all its agents are deterministic.

Nondeterministic one-step semantics is a total binary relation Sel on the sub-
sets of the set of ground action names such that if Sel(A,A′) then A′ ⊆ A.

The simplest nondeterministic operator in this class is the unit choice op-
erator defined by Selun(A) = {{p} | p ∈ A} which just guesses a single
available action in A. Another example is the spontaneous operator defined
by Selsn(A) = {A′ | A′ ⊆ A}. It guesses any subset of available actions in A.
Nondeterministic agents are those with a nondeterministic obligation opera-
tor. A MAS is nondeterministic if it contains at least one nondeterministic
agent.

It is natural to assume that a larger set of available actions leads to a larger set
of chosen actions. Therefore, we assume that for every agent a its obligation
operator Sela is a monotonic operator: Sela(A) ⊆ Sela(A

′) for A ⊆ A′.

We will also assume that deterministic obligation operators are functions com-
putable in polynomial time, and nondeterministic obligation operators are
binary relations computable in polynomial time.

The one-step semantics of agent a ∈ A defines new local state of a and the
set of messages which a sends to the other agents as described above.

The one-step semantics of the MAS A is a one step transition relation ⇒A
on the set SA of global states of the form S =< (Ia1 ,MsgBoxa1), . . . ,
(Ian , MsgBoxan) > induced by one-step semantics of individual agents of A

5 I.e. from the set of all ground instances (with constants from Const(A)) of clauses
in LP t

a. It should be noted that the size of gr(LP t
a) can be exponential with respect

to the size of LP t
a.
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in a natural way. We note that the relation ⇒A is total.

The pair T (A) = (SA,⇒A) constitutes a Kripke structure or state transition
system (see, e.g. [7]). The behavior of MAS A in a global state S0 from SA is
determined by the set of paths in T (A) starting in S0. We will be interested
in the behavior of MAS in initial states with empty message boxes.

For a MAS A, and its initial global state S0 = < (I0
a1

,MsgBox0
a1

), ...,
(I0

an
, MsgBox0

an
) >, where MsgBox0

ai
= ∅, 1 ≤ i ≤ n, let TA(S0) de-

note the set of infinite trajectories (execution paths in T (A) ) of the form:
τ = (S0 ⇒A S1 ⇒A ...St ⇒A St+1 ⇒A ...).

For a deterministic MAS A, TA(S0) consists of a single trajectory starting in
S0. If A is nondeterministic, then we will consider TA(S0) as an infinite tree
of trajectories with the root node labeled by S0. The nodes of TA(S0) are la-
beled by the global states S ∈ SA accessible from S0 by the reflexive-transitive
closure of ⇒A . In what follows we do not distinct a node of TA(S0) and its
label.

This architecture covers systems of distributed autonomous parallel interact-
ing agents. There are many applications well-suited for this framework. One
example is distributed intelligent programs interacting in local networks. On
the other hand, this architecture does not fit asynchronous interactions over
the Internet. The nondeterministic semantics we propose here only partially
cover such kind of interactions. In the last part of the paper we introduce the
asynchronous version of MAS, and show that the main results obtained for
nondeterministic MAS can be transferred to the asynchronous MAS.

2.1 Classes of Mullti-Agent Systems

We distinguish between two main classes of MAS: deterministic and nondeter-
ministic. In both classes of MAS, we consider the following subclasses induced
by natural constraints imposed on agent components. A MAS A = {a1, ..., an}
is
- ground if each program LPai

is ground 6 ;
- k-dimensional if the arities of all action atoms and all message atoms are
bounded by k. This property fixes the maximal number of parameters involved
in the actions and in the messages of A ;
- expanding if all its agents are expanding ;
- positive if all its agents are positive;
- m-agent if n ≤ m.
- r-signal if there are at most r different ground message atoms (signals).

6 I.e., all its clauses are ground.
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The following simple proposition characterizes the complexity of the one step
semantics for MAS from these classes.

Proposition 1
(1) For each deterministic MAS A , the transition function S ⇒A S ′ is com-
putable in polynomial time w.r.t. |S|+ |A|+ |S ′| if A is ground or dimension-
bounded, and is computable in deterministic exponential time 7 in the general
nonground case.
(2) For each nondeterministic MAS A , the transition relation S ⇒A S ′ is
recognizable in nondeterministic polynomial time with respect to |S|+|A|+|S ′|
if A is ground or dimension bounded, and is recognizable in nondeterministic
exponential time in the general nonground case.

2.2 Implementation of Examples

In this section we show how Examples 1 and 2 from Introduction can be
implemented in terms of our MAS.

Example 3 “Resource-allocation” revisited
We specify the agents from Example 1 in the form of the following deterministic
MAS RA = {u1, u2, u3, u4,m}.

The states Iu1 of u1 can contain the facts put order and receipt1. The states Iui (i =
2, 3, 4) can contain the fact receipti stating that ui received a resource at the previous
step. In order to let m and other users know that ui asks for a resource, this agent
sends them the message order. When m fulfills an order of ui, it sends to ui the
message ok. Agent u1 sends to u3 the message ok in order to confirm the receipt of
a resource.

Each agent ui (i = 1, 2, 3, 4) has two actions: use resourcei : DELuse resourcei =
{receipti} and receivei : ADDreceivei = {receipti}, DELreceivei = SENDreceivei =
∅ for i = 2, 3, 4, and DELreceive1 = {put order}, SENDreceive1 = {(u3, ok)} for
i = 1. These actions are fired by the clauses:

use resourcei ← receipti. and
receivei ← msg(m,ui, ok).

Here are the other actions and program clauses of the agents.
Agent u1 has the action put : ADDput = {put order}, SENDput = {(m, order),
(u2, order)}; with the clause:

put ← ¬put order

Agent u2 has the action put : SENDput = {(m, order)} with the clause:
put ← msg(u1, u2, order)

Agent u3 has the action put : SENDput = {(m, order)} with the clause:

7 In fact, in polynomial time with respect to the size of the groundization of the
program.
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put ← msg(u1, u3, ok)
Agent u4 has the action put : SENDput = {(m, order)} with the clause:

put ← .

Agent m maintains the queue of orders, represented by facts first(A), next(A, B)
and last(A) contained in its internal state Im. It uses two auxiliary predicates:
empty queue which is true when the queue of orders is empty, and in queue(A)
which is true when the order of agent A is in the queue.
empty queue ← ¬first(u1),¬first(u2),¬first(u3),¬first(u4).
in queue(A) ← first(A).
in queue(A) ← in queue(B), next(B, A).
When m receives new orders it places them at the end of the list in the predefined
order u1 < u2 < u3 < u4.

For each i = 1, 2, 3 and each sequence β = j1, . . . , ji (1 ≤ j1 < . . . < ji ≤ 4) m has
an action insertβ(F, S, L,Xj1 , . . . , Xji) :
ADDinsertβ (F, S, L,Xj1 , . . . , Xji) = {first(S), next(L, Xj1), next(Xj1 , Xj2), . . . ,
next(Xji−1 , Xji), last(Xji);
DELinsertβ (F, S, L, Xj1 , . . . , Xji) = {first(F ), next(F, S), last(L)};
SENDinsertβ (F, S, L, Xj1 , . . . , Xji) = {(F, ok)}.
This action is fired by the rule:
insertβ(F, S, L, uj1 , . . . , uji) ← new order(uj1), . . . , new order(uji),
¬new order(uk1), . . . ,¬new order(u4−i), first(F ), next(F, S), last(L).
(here {k1, . . . , k4−i} = {1, 2, 3, 4} \ {j1, . . . , ji}).
new order(X) ← msg(X, m, order),¬in queue(X).

When the queue is empty m fires one of actions of the form insert1β(Xj1 , . . . , Xji) :
ADDinsert1β(Xj1

,...,Xji
) = {first(uj1), next(uj1 , uj2), . . . , next(uji−1 , uji), last(uji)};

DELinsert1β(Xj1
,...,Xji

) = SENDinsert1β(Xj1
,...,Xji

) = ∅. This action is fired by the
rule:
insert0β(uj1 , . . . , uji) ← empty queue, new order(uj1), . . . , new order(uji),
¬new order(uk1), . . . ,¬new order(u4−i)
(here again {k1, . . . , k4−i} = {1, 2, 3, 4}\{j1, . . . , ji}). (In the case i = 4 no negations
of the form ¬new order(ul) are included.)

All agents uses the total deterministic semantics defined by the obligation operator
Seltd(A) = A. In fact, it can be shown that |Permt

a| ≤ 1 for all t and a ∈ RA.

Example 4 ”Recruiting Committee” revisited .
We implement the agents from Example 2 in the form of the following spontaneous
nondeterministic MAS RC. This particular implementation does not use a shared
database GB explicitely. It can be simulated by a database of a special agent who
sends at each step the messages on all updates of GB to all agents in the system. In
RC it is the secretary agent s who keeps its database Is and provides the information
on candidates for all the committee members. So, we suppose that all committee
members have full access to this information and do not include the details of its
transmission.
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Messages: ( (C = 0) means “abstain”; C 6= 0 identifies a candidate )
preference messages the members exchange : pref(C);
from a member to the secretary : vote(C);
from the secretary to the candidates : begin recr;
from the secretary to the members : begin vote;

Agents.
Actions:
The action bases of the agents mi, 0 ≤ i ≤ 3 contain the single action acti(C) with
ADDacti(C) = DELacti(C) = ∅, SENDact0(C) = {(s, vote(C)), (mi, pref(C)) | i =
1, 2, 3, 4}, and SENDacti(C) = {(s, vote(C)), (m4, pref(C)) | j = 1, 2, 3}, i = 1, 2, 3.

m4 keeps the preferences of other agents in his personal DB in the facts
prefers(Member, Candidate). His action base contains two actions:
record(Mb, Cd) with ADDrecord(Mb, Cd) = {prefers(Mb, Cd)},
DELrecord(Mb, Cd) = SENDrecord(Mb, Cd) = ∅, and
act4(C) with ADDact4(C) = ∅, DELact4(C) = {prefers(Mb,Cd) | for all Mb, Cd, }
SENDact4(C) = {(s, vote(C)).

Programs:

LPm0 :
actm0(0) ← msg(s,m0, begin vote),many best0.
actm0(C) ← msg(s,m0, begin vote), unique best0(C).
unique best0(C) ← best0(C),¬many best0.
many best0 ← best0(C), best0(C1), C 6= C1.
best0(C) ← ¬non best0(C).
non best0(C) ← cand(C,P, M, G), cand(C1, P1,M1, G1), P < P1.
non best0(C) ← cand(C,P, M, G), cand(C1, P, M1, G1), G < G1.

LPm1 :
actm1(C) ← msg(m0,m1, pref(C)).

Programs LPm2 and LPm3 have similar structure (i = 2, 3):
actmi(0) ← reci(P0),¬unique besti(C, P0).
actmi(C) ← reci(P0), unique besti(C, P0).
unique besti(C,P0) ← besti(C, P0),¬many besti(P0).
many besti(P0) ← besti(C, P0), besti(C1, P0), C 6= C1.
besti(C,P0) ← ¬non besti(C, P0).
non besti(C,P0) ← cand(C, P,M,G), cand(C1, P1,M1, G1),
criti(P, P0, P1, M, M1, G,G1). where
rec2(P0) ← msg(m0,m2, pref(C0)), cand(C0, P0, M0, G0).
rec3(P0) ← msg(s, m3, begin vote), selected(C0, P0).
crit2(P, P0, P1,M, M1, G,G1) ← P 6= P0, P1 6= P0, G < G1.
crit3(P, P0, P1,M, M1, G,G1) ← P 6= P0, P1 6= P0,M < M1.
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LPm4 :
record(Mb, Cd) ← msg(Mb, m4, pref(Cd)).
actm4(C) ← prefers(m0, C), prefers(m1, C), prefers(mi, C), C 6= 0. (i = 2, 3)
actm4(C) ← prefers(m2, C), prefers(m3, C), C 6= 0.
actm4(C) ← prefers(m0, 0), prefers(m2, 0), prefers(m3, C).
actm4(C) ← prefers(m0, 0), prefers(m3, 0), prefers(m2, C).
actm4(C) ← prefers(m0, 0), prefers(m2, C2), prefers(m3, C3),

C2 6= C3, C2 6= 0, C3 6= 0.
actm4(C) ← prefers(m0, C), prefers(m2, C2), prefers(m3, C3),

C2 6= C3, C 6= 0.
The program of c determines facts representing a set of all potential applications.
Due to spontaneous choice, some subset of them is submitted through a single ADD-
action for the new recruitment cycle.

We do not present the details of the secretary implementation. Its program is straight-
forward and determines the following 8-step recruitment cycle: (1) s deletes close
from Is and announces begin rec to c; (2) c sends to s the information on can-
didates; (3) s puts it into Is and sends begin vote to the members; (4) m0 and
m2 make their choice and send it to s and other agents; (5) m1, m2 and m3 make
their choice and send it to s and m4, s puts the votes of m0 and m2 into Is; (6)
m4 makes his choice and sends it to s, s puts the votes of m1 and m3 into Is; (7) s
puts the vote of m4 into Is; (8) s evaluates the result of recruitment, clears Is and
puts into Is the facts selected(C,P ) and close.

The crucial point about the examples above is that the behavior of the systems
RA andRC should satisfy some important properties, e.g. the behavior ofRA
in example 1 should be fair in the sense that each user-agent is repeatedly
served by m (i.e. served sometimes in the future after its order has been
fulfilled). At the same time, system RC has the following two properties:
no consecutive lp =df “if an lp-candidate had been selected in a recruitment
cycle and in the next cycle there exists a unique non-lp-candidate who is best in
both Merits and Grants among non-lp-candidates, then the non-lp-candidate
will be selected in the next cycle.”
worst selected lp =df “it is possible that the candidate worst in Merits and
Grants will be selected in each cycle.”
These properties should be verified with respect to all runs of RA and RC.

3 Complexity Classes and Logics

3.1 Complexity Classes

We assume that the reader is familiar with the basic notions of computa-
tional complexity such as deterministic, nondeterministic and alternating Tur-
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ing machines (DTM, NTM, ATM), their time and space complexity measures
and polynomial time reducibility (see [6,23]). We use standard notation for
complexity classes P, NP, PSPACE, EXPTIME, EXPSPACE and NEXP-
TIME. By EXPEXPTIME and NEXPEXPTIME we denote the classes of
problems decidable by deterministic and nondeterministic Turing machines in
time 22pol(n)

for some polynomial pol(n).

For a deterministic complexity class K, AK denotes the corresponding com-
plexity class for alternating Turing machines. It is well known that APSPACE
= EXPTIME and AEXPSPACE = EXPEXPTIME (see [6]).

3.2 Logics for MAS Behavior Properties

We follow the tradition of using temporal logic languages of discrete time
[12,19] for expressing the properties of trajectories. In particular, in order to
describe properties of deterministic MAS we will use a first order extension
FLTL of the propositional linear time logic PLTL (see [12]), and in order
to describe properties of nondeterministic MAS we use a first order extension
µFO of the temporal µ-calculus [21] and some of its more efficiently decidable
fragments.

The syntax and semantics of all these extensions are quite similar to those of
their propositional variants.

FLTL contains linear temporal operators X (”next”) and U (”weak until”) 8 .

Its formulas are defined by the rules:
(s1) Any closed formula of the first order logic is a formula of FLTL (we refer
to these formulas as to basic state formulas).
(s2) If φ1 and φ2 are formulas, then ¬φ1, φ1 ∧ φ2 and φ1 ∨ φ2, φ1Uφ2 are
formulas.

While useful as the means of specifying temporal relations between events,
temporal logics are not strong enough to express the properties of trajectories
branching through unlimited recursion. One such property is, for instance, the
existence of a winning strategy in antagonistic games. µ-calculus introduced
in [21] is an expressive branching time logic very well suited for expressing
such properties. We use a simplified single transition version of this language.
The formulas of the first order µ-calculus µFO are defined by the following
rules.

8 Other usual operators V (”unless”), G (”always”) and F (”sometime”) can be
defined via U
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(1) Atomic proposition variables P,Q, ..., and basic state sentences in the
signature ΣA are formulas.
(2) If φ and ψ are formulas, then EX φ, ¬φ, φ ∧ ψ are formulas.
(3) If φ(P) is a formula in which the propositional variable P has only positive
occurrences (is in the scope of an even number of negations), then µP.φ(P)
is a formula.
Intuitively, EX φ (AX φ) means ”φ is true at some (any) global state one-step
reachable from the current global state”, and µP.φ(P) (νP.φ(P)) stands for
the least (greatest) fixpoint of φ(P), considering φ(P) as a transformer of the
set of states where P is true to the set of states where φ(P) is true.

The other connectives are introduced as abbreviations in the usual way: AX φ
abbreviates ¬EX ¬φ, νP.φ(P) abbreviates ¬µP.¬φ(¬P), etc.

In addition, the usual branching time operators AG (”in all states of all
trajectories”), EG (”in all states of a trajectory”) and their duals EF,AF
from the well-known logic CTL can be easily expressed in µ-calculus. For
example, EGφ is equivalent to νP.(φ ∧ EXP).

We see that FLTL and µFO differ from their propositional counterparts only
by the use of first order (basic state) formulas in the place of propositional
variables.

Usually, the semantics of temporal formulas is defined with respect to some
Kripke-like structures. In this paper, we define the validity of a temporal
formula on the MAS A trajectory tree T = TA(S0) with the root node S0.
Given a formula φ, T , S |= φ denotes the fact that φ is valid in state S of T .

The |= relation for both FLTL and µFO is defined inductively in the same
way it is defined for their propositional counterparts: only the base cases differ.
Namely, let S =< (Ia1 ,MsgBoxa1), ..., (Ian ,MsgBoxan) > be a global MAS

state of T , and φ be a basic state formula. Then T , S |= φ iff
n⋃

i=1
Iai

|=FO φ

9 (|=FO corresponds to the standard first order validity).

An essential syntactic complexity parameter of formulas of µ-calculus is their
alternation depth [13] which, roughly speaking, measures the number of con-
secutive alternations of nested operators µ and ν. We let µk denote µ-calculus
restricted to formulas of alternation depth at most k. It is well known that
CTL is easily translated into µ1 (see the translation of EG above).

Some of our results concern logics ∃LTL and ∀LTL with formulas of the form
E(φ),A(φ), where φ ∈ FLTL. Here E and A indicate that the linear time
formula φ is valid in some trajectory and respectively in all trajectories of

9 We assume that there are no name conflicts between different agents.
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MAS.

The problem “MA-BEHAVIOR” we consider in this paper applies to both
deterministic and nondeterministic MAS. Given a system A , its initial global
state S0 and a formula Φ of a temporal logic language expressing a property
of trajectories, the MA-BEHAVIOR problem A, S0, Φ has a positive solution
if Φ holds on the tree TA(S0) of trajectories of A starting in S0 (denoted
TA(S0), S0 |= Φ). We see that it is a model checking problem, though applied
to MAS in the role of a transition systems specification.

Example 5 (Example 3 continued)
For the MAS RA above, the formula G F receipti is valid on the trajectory gener-
ated by RA (it says ”every agent receives the resource infinitely often”). Meanwhile,
the following two formulas are not valid on this trajectory: F (receipt1 ∧ X receipt1)
(there are two consecutive moments when u1 receives a resource) and G (first(U)∧
next(U, ui) → X X ¬receipti).

Example 6 (Example 4 continued)
The properties no consecutive lp and worst selected lp of the MAS RC above
can be easily expressed in the temporal logics we use. E.g. no consecutive lp is
expressed by the following CTL-formula:

AG (best ∧ ¬close ∧ (AX close) ∧ ∃ C selected(C, lp) →
(AX )8 ∃ C1, P (selected(C1, P ) ∧ P 6= lp)),

where (AX )8 denotes AX eight times 10 , and best is a 1st order formula saying
that “there is a unique non-lp candidate best in both Merits and Grants”:

∃ C,P, M, G (cand(C, P,M,G) ∧ P 6= lp ∧
∀ C ′, P ′,M ′, G′ (cand(C ′, P ′,M ′, G′)∧C 6= C ′∧P ′ 6= lp → M > M ′∧G > G′).

One can verify that T(RC)(S0), S0 |= no consecutive lp holds in any initial state
S0.
The property worst selected lp is expressed by the following µ-formula:

close → νR. (Q ∧ ∃ C selected(C, lp) ∧EX8 R),
where Q is a 1st order formula that says: “there is an ai-candidate scientifically
best, an mm-candidate financially best and an lp-candidate which is the worst in
both parameters” (similar to best).
One can also verify that if at least one person submits an application and somebody
was already selected in the initial state S0, then T(RC)(S0), S0 |= worst selected lp.

In the case where basic state formulas are always quantifier (and object
variable)-free we do not distinguish these logics from their propositional coun-
terparts and use the same names, because their model checking and satisfia-
bility problems have the same complexity modulo polynomial time.

4 Behavior of deterministic MAS

In this section we consider the complexity of the MA-BEHAVIOR problem
for deterministic MAS. At first we present a general algorithm DetCheck that

10 We recall that 8 is the length of one recruitment cycle.
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checks validity of formulas of FLTL against deterministic MAS. This algorithm
was used in [10] to obtain deterministic and nondeterministic polynomial time
complexity algorithms for the MA-BEHAVIOR problem for the determinis-
tic and nondeterministic monotonic MAS with restrictions on some structural
parameters. Here in subsections 4.2 and 4.3 we apply the algorithm DetCheck
to get algorithms for the more general classes of ground and nonground deter-
ministic MAS with complexity varying from polynomial space to exponential
space. For the sake of completeness we also include below the polynomial time
results from [10] without proofs.

4.1 Checking validity for determininstic MAS

The set of global states of any MAS A is finite. So when A is deterministic,
the trajectory τ(A, S0) is periodic. Hence, even though τ(A, S0) is infinite, it
can be folded into a finite structure. A straightforward algorithm for checking
an FLTL-formula on this structure would require an explicit representation
of this structure, and consequently, the space at least equal to the total size
of its global states. However, in our situation, there exists a more intelligent
way of model-checking which checks the structure by parts. It allows us to
obtain significantly better upper bounds for the MA-BEHAVIOR problem. We
note that the idea of constructing the trajectory structure by parts resembles
that of the ”on-the-fly” algorithms for model checking of transition systems
(see [7]). In these algorithms the structure is constructed incrementally, i.e.
states of the structure are added to it only when they are needed. This allows
sometimes to use less space and/or time for refutation of the formula being
verified. Our algorithm is not incremental: at each moment only a relatively
small part of the structure is stored in the memory. It leads to significant
economy of the space needed. Model checking literature discusses some other
optimization approaches, such as symbolic model checking, abstraction, use
of symmetry. Here we do not consider applying any of these optimizations to
the MA-BEHAVIOR problem.

For a periodic trajectory τ = S0, S1, ..., St, ..., let k and N be the smallest
numbers such that St = St+N for all t ≥ k. In our model checking algorithm,
we use three auxiliary functions. The first one, move(t,i), given a time point t
and a shift i, returns the time point j < k + N that Sj = St+i :

move(t,i)= IF t + i < k + N THEN t + i ELSE ((t + i− k)modN) + k.

The second function, F τ , serves as the oracle. It returns the state F τ (t) = St

of trajectory τ at any time point t. The third function, FO Check(S, Φ), is
boolean-valued. Given a global state S and a closed first-order formula Φ, it
returns TRUE iff S |= Φ.

17



Let τ = τ(A, S0) be a periodic trajectory with parameters k and N , Φ be
a FLTL formula, and t be a time point. We set smax(τ) = max{|St| | 0 ≤
t ≤ k + N} and we denote by s(F τ ) and t(F τ ) the maximal space and time
required for computing F τ (t) for 0 ≤ t ≤ k + N. We also denote by sFO(τ, n)
and tFO(τ, n) the maximal space and time required to check whether St |= Ψ
for 0 ≤ t ≤ k + N and any first-order formula Ψ of length n.

The following recursive algorithm checks the property τ, St |= Φ 11 .
Algorithm DetCheck(τ,k,N,Φ, t)

(1) t := move(t, 0); p := 0;
(2) r := 0; r′ := 0; R := 0;
(3) SELECT CASE of Φ
(4) CASE Φ is a basic state formula
(5) St := F τ (t);
(6) return FO Check(St, Φ);
(7) CASE Φ = Φ1 ⊕ Φ2 ( ⊕ ∈ {∧,∨})
(8) b1 := DetCheck(τ, k, N,Φ1, t);
(9) b2 := DetCheck(τ, k, N,Φ2, t),
(10) return b1 ⊕ b2;
(11) CASE Φ = ¬Φ1

(12) return ¬ DetCheck(τ, k,N,Φ1, t);
(13) CASE Φ = X(Φ1)
(14) t1 := move(t, 1);
(15) return DetCheck(τ, k, N,Φ1, t1);
(16) CASE Φ = Φ1UΦ2

(17) IF t < k THEN R := k + N − t
(18) ELSE R := N END IF
(19) FOR i = 0 TO R− 1 DO
(20) r := move(t, i); p := i;
(21) IF DetCheck(τ, k,N, (¬Φ1 ∨ Φ2), r)
(22) THEN EXIT FOR END IF
(23) END DO
(24) IF p = R− 1 OR DetCheck(τ, k, N, (Φ1 ∧ Φ2), r)
(25) THEN return TRUE
(26) ELSE return FALSE
(27) END IF ;
(28) END SELECT

Lemma 1 For given numbers k, N and t and an FLTL-formula Φ, the algo-
rithm DetCheck checks whether τ t |= Φ for a periodic trajectory τ with
parameters k and N, using F τ and FO Check as oracles. Its computation

11 For a deterministic MAS A , the tree TA(S0) consists of a single trajectory
τ = τA(S0). At any time point t, there is a one-to-one correspondence between
the state St of τ and the trajectory suffix τ t = St, St+1, . . . . Therefore, for the
uniformity purposes, we use the notation τ, St |= Φ for path formulas Φ as well as
for state formulas.
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takes space O(|t|+ |Φ| log(k + N) + smax(τ) + s(F τ ) + sFO(τ, |Φ|)), and time
pol(|t|+ |Φ|(k + N)(t(F τ ) + tFO(τ, |Φ|)) for some polynomial pol.

The oracle F τ in the lemma can be efficiently computed along the trajectories
τ generated by MAS.

Lemma 2 There is a polynomial pol and an algorithm, which for a MAS-
system A , an initial state S0 and a time point t ≥ 0, computes the state St

of the trajectory τ(A, S0) in space pol(|A|+ max{|Sr| | 0 ≤ r ≤ t}).

Proof. Immediately from Proposition 1.

The next assertion shows that the trajectories of the MAS are periodic. It
provides some bounds on the parameters of these trajectories.

Lemma 3 For any MAS A and initial state S0, the trajectory τ(A, S0)
is periodic with parameters k(A, S0) and N(A, S0). If A is ground, then
k(A, S0)+N(A, S0) ≤ 2pol(|A|+|S0|). In the general case, k(A, S0)+N(A, S0) ≤
22pol(|A|+|S0|)

.

From Lemmas 1, 2 and 3, we obtain upper complexity bounds of verification
of the properties of MAS behavior, expressible in FLTL.

Using the Proposition 1 and Lemmas 1, 2 we can obtain by an analysis of
the program DetCheck the following proposition which gives some upper com-
plexity bounds of verification of the properties of deterministic MAS behavior,
expressible in FLTL (details of this analysis can be found in [10]).

Proposition 2 Let a MAS A and an initial state S0 be given. Then for some
polynomial pol, the model checking of a FLTL-formula Φ over the trajectory
τ(A, S0) can be accomplished within the space 2pol(|Φ|+|A|) in the general case,
and the space pol(|Φ|+ |A|) in the ground case.

4.2 Ground deterministic MAS

If we suppose that MAS are ground, then by Proposition 2, it follows that
the MA-BEHAVIOR problem MAS belongs to PSPACE. In this subsection
we point out two interesting cases decidable in deterministic polynomial time.

Theorem 1 (1) The MA-BEHAVIOR problem is decidable in polynomial
time in the class of ground, expanding and positive MAS for the behavior
properties Φ ∈ PLTL.
(2) The MA-BEHAVIOR problem is decidable in polynomial time in the class
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of ground, expanding, and r-signal m-agent systems A such that m2 ∗ r =
O(log |A|), for the behavior properties Φ ∈ PLTL.

A proof of this theorem is given in [10]. It uses the following monotonicity
lemma used also below.

Lemma 4 Let A be an expanding and positive MAS (not necessarily ground),
S0 be its initial state, and τ = τ(A, S0) = S0, S1, . . . St, St+1, . . . be its tra-
jectory. Then for any time point t and two consecutive global states St =<
(I t

a1
,MsgBoxt

a1
), ..., (I t

an
,MsgBoxt

an
) > and St+1 =< (I t+1

a1
,MsgBoxt+1

a1
),

..., (I t+1
an

,MsgBoxt+1
an

) > of τ, the following inclusions hold for every 1 ≤ i ≤ n:
I t
ai
⊆ I t+1

ai
and MsgBoxt

ai
⊆ MsgBoxt+1

ai
.

Weakening the constraints imposed on the MAS by Theorem 1 will cause a
substantial increase of complexity of the MA-BEHAVIOR problem. As we
show in the next theorem, the problem becomes PSPACE-complete (which
is the maximal complexity in the ground case) if only the number of agents
or only the number of signals is bounded. An important consequence of this
theorem is that distributivity of agents is really important: ground expanding
MAS cannot be simulated in polynomial time by a single agent in this class.

Theorem 2 (1) The MA-BEHAVIOR problem is PSPACE-complete for
ground and expanding m-agent systems and the behavior properties Φ ∈ PLTL
for any fixed m ≥ 2.
(2) The MA-BEHAVIOR problem is PSPACE-complete for ground, expanding
and r-signal MAS and the behavior properties Φ ∈ PLTL for any fixed r ≥ 1.
(3) The MA-BEHAVIOR problem is PSPACE-complete for the class of ground
MAS and the properties of MAS behavior, expressible in FLTL.

Proof. (1) Lower bound. We show that any problem in PSPACE can be
reduced in polynomial time to MA-BEHAVIOR problem for a ground and
expanding 2-agent system. Let us fix a DTM M with workspace bounded by
some polynomial p(n), n being the length of an input word x = ai1ai2 ...ain .
We set N = p(n) . Let A = {a0, a1, . . . , ar} be the tape alphabet (a0 = ∧
being the empty cell symbol) and Q = {q0, . . . , qg} be the state set of M,
in which q0 is the initial state, qg−1 = “no” is the rejecting state, and
qg =“yes” is the accepting state. PM will denote the program of M consisting
of instructions of the form qjai → quavS, where S ∈ {−1, 0, 1} are the
head shifts. We assume that after M reaches one of its final states “yes”
or “no”, it remains in this state forever. For any given M and x, we will
construct an expanding 2-agent system A = {A1, A2}, its initial state S0, and
a PLTL-formula Φ such that

(*) x is accepted by M ⇐⇒ τ(A, S0), S0 |= Φ.
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The simulation idea is that the two agents of A will exchange messages encod-
ing instantaneous descriptions (I-descriptions) of M 12 . An agent receiving
an I-description computes and returns the next I-description.

We fix the message signature Pm = Q ∪ {hj | 1 ≤ j ≤ N} ∪ {aj,k | 1 ≤ j ≤
N, 0 ≤ k ≤ r}. These predicates describe the current state, the head position,
and the symbols in the tape cells. The DB signature Pe

A1
consists of two facts

{first, yes} and Pe
A2

= ∅. For each message p ∈ Pm, the action bases ABA1

and ABA2 include an action with the same name p which does not change
DB-state and sends p to the partner. Besides this, ABA1 includes two special
actions: start and end. Action start adds the fact started to IA1 and sends to
A2 the starting I-description of M :
SENDstart = {(A2, h1), (A2, q0), (A2, a1,i1), (A2, a2,i2), . . . , (A2, an,in),

(A2, an+1,0), . . . , (A2, aN,0)}.
Action end adds to IA1 the fact yes.

The program LPA of agent A ∈ {A1, A2} includes the following clauses (A′

denotes the partner of A i.e. A′ = A2, if A = A1 and A′ = A1 otherwise):
aj,k ← ¬msg(A′, A, hj),msg(A′, A, aj,k)

for all 1 ≤ j ≤ N, 0 ≤ k ≤ r.
For each instruction qiak → quavS ∈ PM and any 1 ≤ j ≤ N, the program
LPA includes the set of clauses:

qu ← msg(A′, A, hj),msg(A′, A, aj,k),msg(A′, A, qi)
hj+S ← msg(A′, A, hj),msg(A′, A, aj,k),msg(A′, A, qi)
aj,v ← msg(A′, A, hj),msg(A′, A, aj,k),msg(A′, A, qi).

Besides these, the program LPA1 includes two clauses:
start ← ¬started
end ← msg(A′, A, qg).

Both agents Ai, i = 1, 2, here 13 use the total obligation operator SeltdAi
.

The property to check is expressed by the formula Φ = F yesA1 stating that
the fact yes will appear eventually in IA1 . The in initial state S0 of A is empty:
IA1 = IA2 = ∅. Let τ = τ(A, S0) = S0, S1, . . . , St, . . . be the trajectory of A
starting in this initial state. Let σ = C1, C2, . . . , Ct, . . . be the sequence of I-
descriptions representing the computation ofM on the input x ( C1 represents
the initial I-description in which the head in the state q0 observes the first tape
cell and the symbols of x are contained in the first n cells of the tape). The
following assertion establishes the relationship between these two sequences.

Lemma 5 At any moment t > 0, the set of messages in MsgBoxt
Ai

, i = (t

12 An I-description at a moment t is a word coding the global computation state at
this moment: the current control state, the head position and the symbols written
in tape cells.
13 As well as all other agents in this section on deterministic MAS
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mod 2) + 1, completely determines the I-description Ct, i.e. :
(A′, aj,k) ∈ MsgBoxt

Ai
⇔ at the moment t, the cell j contains ak,

(A′, hj) ∈ MsgBoxt
Ai
⇔ at the moment t, M observes the cell j,

(A′, qj) ∈ MsgBoxt
Ai
⇔ at the moment t, M is in the state qj.

This lemma can be proven by a straightforward induction on t.

Now, the assertion (*) easily follows from lemma 5. Indeed,
x is accepted by M ⇔ there is an odd t such that at the step t M is in the
state qg ⇔ (A2, qg) ∈ MsgBoxt

A1
⇔ at the even step t + 1, the action end

is fired and inserts yes into I t+1
A1

⇔ τ(A, S0), S0 |= Φ.

It is easy to see that A, S0 and Φ can be constructed from x in time polynomial
in |x| ( M is fixed for all x). Therefore, MA-BEHAVIOR problem for ground
and expanding 2-agent systems is PSPACE-hard.

(2) Lower bound. In this case, we first prove that any problem in PSPACE
is reducible in polynomial time to MA-BEHAVIOR problem for ground, ex-
panding and r-signal MAS for some fixed r. Then we show how to reduce the
number r of signals to 1.

Let C be a PSPACE-complete problem and M be a DTM which recognizes
C and works in space bounded by some polynomial p(n), n being the input
word’s length x = ai1ai2 ...ain . We set N = p(n) . We use the notation
of the case (1) of the theorem for the alphabets of M. As in the case (1),
we construct from given M and x an expanding r-signal MAS A, its initial
state S0 and a PLTL-formula Φ such that

(**) x is accepted by M ⇔ τ(A, S0), S0 |= Φ.

A consists of N + 1 agents: c1, . . . , cN , s. The first N agents ck (cell-agents)
simulate the corresponding tape cells k of M. The information about the
symbol contained in the cell k will be held in MsgBoxck

. This time, the
supervisor-agent s will receive messages from the cell-agents, compute the
next I-description and return it to the corresponding agents.

The DB-states of cell-agents are always empty. The DB signature Pe
s includes

two facts {started, yes}. We fix the message signature Pm = A ∪ Q ∪ {h}.
Intuitively, message ai received by ck from s means that the symbol ai is
written into cell k, message qj received by ck from s means that the current
state of M is qj, and message h received by ck from s means that the head
of M observes it. When a cell-agent receives some messages from s, it simply
returns them to s at the next step. So the action base ABck

consists of actions
{ai| 0 ≤ i ≤ r} ∪ {qj| 1 ≤ j ≤ g} ∪ h, and each action ac ∈ ABck

puts the
message (k, ac) into the message box of s.
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Program LPck
of each ck, 1 ≤ k ≤ N, includes (r + 1) clauses of the form:

ai ← msg(s, ck, ai),¬msg(s, ck, h), ( 0 ≤ i ≤ r),
(g + 1) clauses of the form:

qj ← msg(s, ck, qj), (0 ≤ j ≤ g),
and the clause

h ← msg(s, ck, h).

For each ai ∈ A, we supply the supervisor action base ABs by N actions
s(k, ai), 1 ≤ k ≤ N, each sending message ai to the corresponding agent ck.
For each instruction qjai → quavS ∈ PM, the supervisor action base ABs

includes N actions as(k, j, i), 1 ≤ k ≤ N. Action as(k, j, i) sends message
av to ck and messages qu and h to ck+S. If j = g, then this action also adds
to Is the fact yes. Besides these, ABs also includes action start adding to Is

the fact started and sending to cell-agents the facts determining the starting
I-description of M :
SEND(start) = {(c1, h), (c1, q0), (c1, ai1), (c2, ai2), . . . , (cn, ain),

(cn+1, a0), . . . , (cN , a0)}.

Program LPs has the clauses:
start ← ¬started,
s(k, ai) ← msg(ck, s, ai),¬msg(ck, s, h)

for all 1 ≤ k ≤ N, ai ∈ A, and
as(k, j, i) ← msg(ck, s, ai),msg(ck, s, qj),msg(ck, s, h)

for all 1 ≤ k ≤ N, 0 ≤ j ≤ g, 0 ≤ i ≤ r.

As in case (1), the property to verify is expressed by the formula Φ = F yess

stating the fact that yes will appear eventually in Is. Let all the agents’ DB-
states in the initial global state S0 of A be empty. Let τ = τ(A, S0) =
S0, S1, . . . , St, . . . be a trajectory of A starting in this empty initial state.
Let σ = C1, C2, . . . , Ct, . . . be the sequence of I-descriptions constituting the
computation of M on input x (in the starting I-description C1, the current
state is q0, the head observes the first tape cell, the symbols of x are contained
in the first n cells of the tape). The relationship between these two sequences
is expressed by the following assertion.

Lemma 6 At any moment t > 0, the set of messages in MsgBox2t
s com-

pletely determines the I-description Ct, i.e.
(ck, ai) ∈ MsgBox2t

s ⇔ at the moment t, the cell k contains ai,
(ck, h) ∈ MsgBox2t

s ⇔ at the moment t, the head of M observes the cell k,
(ck, qj) ∈ MsgBox2t

s ⇔ at the moment t, M is in the state qj.

This lemma can be proven by a straightforward induction on t. The induction
condition should be extended as follows:
At any moment t > 0, the set of messages in MsgBox2t−1

ck
, 1 ≤ k ≤ N,

completely determines the I-description Ct.
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Lemma 6 implies the assertion (**) just as the assertion (*) follows from
lemma 5 in case (1). It is easy to check that the number of rules in programs of
all agents of A equals 2N(g+1)(r+1)+N(r+1)+1. Since N = p(|x|), the size
of A is bounded by some polynomial in |x|. It is also evident that A, S0 and Φ
can be constructed from x in time polynomial in |x|. Let f = |Pm| = g+r+3.
Then our construction shows that the MA-BEHAVIOR problem for ground,
expanding and f -signal MAS is PSPACE-hard.

Now we outline the construction for a given A of a MAS A′ which uses
only one message 1 and is in a sense equivalent to A. Each cell-agent ck

of A is replaced by f agents (one for each signal): {ck(ai) |0 ≤ i ≤ r}
∪{ck(qj) | 0 ≤ j ≤ g} ∪ {ck(h)}. Each of these agents ck(m) has only one
action act sending the message 1 to s. Program LPck(m) consists of a single
clause:

act ← msg(s, ck(m), 1).

The supervisor s has the following actions:
Action s(k, ai), 1 ≤ k ≤ N, sending message 1 to agent ck(ai).
Action as(k, j, i) simulating the instruction qjai → quavS ∈ PM sends
message 1 to ck(av), to ck+S(qu) and to ck+S(h). If j = g, then it also adds yes
to Is.
Action start adds to Is the fact started and sends the message 1 to the agents
c1(h), c1(q0), c1(ai1), c2(ai2), . . . , cn(ain), cn+1(a0), . . . , cN(a0).

Program LP ′
s has the following clauses:

start ← ¬started,
s(k, ai) ← msg(ck(ai), s, 1),¬msg(ck(h), s, 1),

(1 ≤ k ≤ N, ai ∈ A),
as(k, j, i) ← msg(ck(ai), s, 1),msg(ck(qj), s, 1),msg(ck(h), s, 1),

(1 ≤ k ≤ N, 0 ≤ j ≤ g, 0 ≤ i ≤ r).

Let all the individual agents’ DB-states be empty in the initial global state S ′0

of A′. Then, as one can easily verify, τ(A, S0), S0 |= Φ ⇔ τ(A′, S ′0), S ′0 |= Φ.
Therefore, the MA-BEHAVIOR problem for ground, expanding and 1-signal
MAS is PSPACE-hard.

(3) The upper bound directly follows from proposition 2, and the lower bound
follows from assertions (1) or (2) of the theorem. 2.

4.3 Nonground deterministic MAS

In this subsection, we lift the constraint of groundness and study the deter-
ministic MAS whose programs may have rules with variables. We start by
establishing the complexity of the MA-BEHAVIOR problem for the systems
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with bounded arity of the predicates.

Theorem 3 (1) The MA-BEHAVIOR problem is decidable in polynomial
time in the class of expanding, positive k-dimensional MAS, for behavior prop-
erties Φ ∈ PLTL and for any fixed k.
(2) The MA-BEHAVIOR problem is PSPACE-complete for k-dimensional
MAS for any fixed k and for the properties of MAS behavior, expressible in
FLTL.

Proof. (1) Let A be an expanding, positive and k-dimensional MAS, S0 be
its initial state, τ = τ(A, S0) = S0, S1, . . . St, St+1, . . . be its trajectory, nact

be the total number of possible ground actions and ng be the total number
of possible ground atoms in DB-states and in message boxes of agents in A.
By lemma 4, the inclusions I t

a ⊆ I t+1
a and MsgBoxt

a ⊆ MsgBoxt+1
a hold for

each a ∈ A and all moments t. Therefore, if St 6= St+1, then there is a ground
action α such that α ∈ Actta \Actt−1

a for at least one agent a ∈ A. Hence, the
sum of parameters k(τ) + N(τ) does not exceed nact and the polynomial time
bound of the theorem follows directly from lemma 1 and the following simple
assertion.

Lemma 7 Let nact be the total number of possible ground actions and ng be
the total number of possible ground atoms in DB-states and in message boxes
of agents in A. Then for all k, there is a polynomial pol such that for any
k-dimensional MAS A and a starting global state S0, nact ≤ pol(|S0|+ |A|),
ng ≤ pol(|S0|+ |A|) and sτ

max ≤ n pol(|S0|+ |A|), where τ = τ(A, S0) and n
is the number of agents in A.

(2) Let A be a k-dimensional MAS, S0 be some its initial state, and τ =
τ(A, S0) = S0, S1, . . . St, St+1, . . . be its trajectory. From lemma 7 it follows
that k(τ) + N(τ) ≤ 2pol(|S0|+|A|) for some polynomial pol. Then by lemma 1,
we get a polynomial space upper bound for algorithm DetCheck. The lower
bound follows from theorem 2, since ground MAS are in fact, 0-dimensional
agents systems. 2

Theorem 4 The MA-BEHAVIOR problem is EXPTIME-complete for ex-
panding and positive MAS and the properties of MAS behavior, expressible
in PLTL.

Proof. Upper bound. Let A be an expanding and positive MAS, S0 be
its initial state, and τ = τ(A, S0) = S0, S1, . . . St, St+1, . . . be its trajectory.
As in the proof of theorem 3, k(τ) + N(τ) ≤ nact and nact ≤ 2pol(|S0|+|A|)

for some polynomial pol. The size of any state St ∈ τ is also bounded by
2pol(|S0|+|A|). By our convention, all basic state subformulas of the PLTL-
formula Φ are ground. Therefore, the time tFO(τ, |Φ|) needed to check the
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first order subformulas of Φ on any state St ∈ τ is bounded by pol1(|St|).
Now, by lemmas 1 and 2, we see that algorithm DetCheck has in this case
the time bound pol(|Φ|(k+N)(t(F τ )+ tFO(τ, |Φ|)) ≤ 2pol′(|Φ|+|S0|+|A|) for some
polynomial pol′.

Lower bound. We will prove that even an expanding and positive 1-agent
system can simulate any DTM running in exponential time. Let us fix a DTM
M which works in time bounded by 2p(n) for some polynomial p(n), n
being the length of an input word x = ai1ai2 ...ain . We set N = p(n) .

We use in our construction the notation and the agreements in the proof of
theorem 2 (1).

Given M and x, we construct an expanding and positive 1-agent system
A = {A}, its initial state S0 and a PLTL-formula Φ such that

(*) x is accepted by M ⇐⇒ τ(A, S0), S0 |= Φ.

Let X, Y , T , S, . . . denote lists of N boolean variables (X1, . . . , XN), (Y1, . . . ,
YN), (T1, . . . , TN), (S1, . . . , SN) . . . . Let m denote the list of boolean constants
0, 1 used as the binary representation of an integer m, 0 ≤ m ≤ 2N − 1.

We fix the DB signature Pe
A = {qj(T )|qj ∈ Q} ∪{h(T , S), step(T ), yes} ∪

{ai(T , S) | 0 ≤ i ≤ r}. Intuitively, the atom qj(t) describes the state of M
at the moment t, the atom step(t) defines the current step t, the atom h(t, s)
states that the head observes the cell s at the step t, the atom ai(t, s) states
that symbol ai is written in the cell s at the step t, and the atom yes states
that M accepts the input.

For each p ∈ Pe
A, the action base ABA contains an action with the same name

p adding to DB-state IA the fact p. It contains also the action end adding to
IA the fact yes.

The Program LPA of agent A is positive. It defines two auxiliary predicates
computing elementary arithmetic functions over the domain [0, 2N − 1] :
next(X, Y ) ⇔ Y = X + 1,
shift(C, X, Y ) ⇔ Y = X + C, where C ∈ {−1, 0, 1}.

E.g., the function next is defined by the clauses:
next(X1, ..., XN−1, 0, X1, ...XN−1, 1).
next(X1, ..XN−2, 0, 1, X1, ...XN−2, 1, 0).
. . .
next(X1, ..Xj, 0, 1, ..1, X1, ...Xj, 1, 0, ..., 0).
. . .
next(1, ....1, 1, ..., 1).
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Besides this, it uses the facts right(T , S) and left(T , S) marking respectively
the next and the preceding positions with respect to the head position at the
moment T. The following two clauses of LPA serve to recursively derive
intensional facts marking the positions to the right (respectively to the left)
of a position marked at a moment T :

right(T , S) ← next(T , S).
right(T , S) ← right(T , S1), next(S1, S).
left(T , S) ← next(S, T ).
left(T , S) ← left(T , S1), next(S, S1).

The next group of clauses determines the initial DB state IA of A :

q0(0). ai1(0̄, 1̄). a0(0, S) ← right(n̄, S̄)
h(0, 1). . . . step(0). ain(0̄, n̄).

It is easy to see that the state I1
A represents exactly the starting I-description

of M on the input x. The following clause of LPA simulates the step counter:

step(T ) ← step(T 1), next(T 1, T ).

For each instruction qiak → quavC of M, the program LPA contains five
clauses simulating it:

qu(T ) ← next(T , T 1), qi(T 1), h(T 1, S), ak(T 1, S)
h(T , S1) ← next(T , T 1), h(T 1, S), ak(T 1, S), shift(C, S, S1)
av(T , S) ← next(T , T 1), h(T 1, S), ak(T 1, S)
right(T , S1) ← next(T , T 1), h(T 1, S), next(S, S1)
left(T , S1) ← next(T , T 1), h(T 1, S), next(S1, S)

The clauses:

ak(T , S) ← next(T , T 1), right(T , S), ak(T 1, S)
ak(T , S) ← next(T , T 1), left(T , S), ak(T 1, S)
(0 ≤ k ≤ r)
serve to derive intensional facts stating that the symbol ak is left unchanged
in the cells to the right and to the left of a given position S.

Finally, the clause:
end ← qg(T )
fires action end when the fact qg appears in the current DB state.

We choose the formula Φ = F yesA as the property to verify. This formula
states that the fact yes will appear eventually in IA.

Let τ = τ(A, S0) = S0, S1, . . . , St, . . . be the trajectory of A starting in the
empty initial state S0 = ∅. Let σ = C1, C2, . . . , Ct, . . . be the sequence of
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I-descriptions coding the computation of M on input x. In particular, this
means that C1 represents the initial I-description, where the current state is
the starting state q0, the head observes the first tape cell, the symbols of x
are written in the first n consecutive cells, the resting cells containing a0. The
following assertion establishes the relationship between these two sequences.

Lemma 8 (1) max{t′|step(t′) ∈ I t
A} = t for all t > 0.

(2) For any t > 0, the subset of facts of I t
A with the time mark t completely

determines the I-description Ct, i.e. :
ak(t, s) ∈ I t

A ⇔ the tape cell s contains the symbol ak at the moment t,
h(t, s) ∈ I t

A ⇔ the head observes the tape cell s at the moment t, and
qi(t) ∈ I t

A ⇔ M is in the state qi at the moment t.

This lemma can be proven by a straightforward induction on t.

Now, the assertion (*) easily follows from lemma 8. Indeed, x is accepted
by M ⇔ there is a step t ≤ 2N − 1, where M reaches the accepting
state qg. By lemma 8, qg(t) ∈ I t

A. Therefore, the action end is fired at the
step t + 1, which adds yes to I t+1

A . Hence, τ(A, S0), S0 |= Φ. Conversely, if
τ(A, S0), S0 |= Φ then lemma 8 implies that M starting with x reaches at
some step the accepting state qg.

It is easy to see that the size of A is bounded by some polynomial in |x| and
that A, S0 and Φ can be constructed from x and M in time polynomial in |x|.
Therefore, by (*), it follows that the MA-BEHAVIOR problem for expanding
and positive MAS is EXPTIME-hard. 2

In fact, our proof shows that the MA-BEHAVIOR problem is intractable even
in a very narrow class of MAS.

Corollary. The MA-BEHAVIOR problem is EXPTIME-hard in the class of
expanding, positive, and 0-signal 1-agent systems and behavior properties in
PLTL.

So it is no wonder that in the general case the problem is still more hard.

Theorem 5 The MA-BEHAVIOR problem is EXPSPACE-complete in the
class of deterministic MAS and the properties of MAS behavior, expressible in
FLTL.

Proof. Upper bound follows immediately from proposition 2.
Lower bound. We will show that deterministic MAS can simulate DTM running
in EXPSPACE. Let us fix a DTM M working in space bounded by 2p(n) for
some polynomial p(n), n being the length of an input word x = ai1ai2 ...ain .
We set N = p(n).

28



In order to construct a MAS A simulating M, we combine the ideas of lower
bound proofs in theorems 2 (1) and 4. The constructed MAS A = {A1, A2}
has two almost identical agents A1 and A2. They send each other in turn
the I-descriptions of M. The first agent a1 has the DB signature Pe

A1
=

{started, yes} and the DB signature Pe
A2

of the other is empty. We fix the
message signature Pm = {qj | qj ∈ Q} ∪{h(S), yes} ∪ {ai(S) | 0 ≤ i ≤ r}.

As in the proof of theorem 2 (1), for each p ∈ Pm, the action bases ABA1 and
ABA2 have an action named p, which does not change DB-states and sends p
to the partner. AB1 has also action start adding the fact started to IA1 , and
action end adding the fact yes to IA1 .

Both programs LPAi
(i = 1, 2) define auxiliary predicates next, shift, right

and left as in the proof of theorem 4. The following clauses of A1 serve to send
the starting I-description of M to A2:

q0 ← ¬started ai1(1̄) ← ¬started a0(S) ← right(n, S),¬started
h(1) ← ¬started . . .
start ← ¬started ain(n̄) ← ¬started

The last clause prevents from sending the starting I-description repeatedly. It
is easy to see that on receiving these messages, the message box MsgBox1

A2

completely determines the starting I-description of M on input x.

In both programs LPA (A ∈ A), each instruction qiak → quavC of M is
simulated by the clauses:

qu ← msg(A′, A, h(S)),msg(A′, A, ak(S)),msg(A′, A, qi)
h(S1) ← msg(A′, A, h(S)),msg(A′, A, ak(S)), msg(A′, A, qi), shift(C, S, S1)
av(S) ← msg(A′, A, h(S)),msg(A′, A, ak(S)),msg(A′, A, qi)

The following clauses serve for informing the partner about cells left un-
changed:

ak(S1) ← msg(A′, A, h(S)), right(S, S1),msg(A′, A, ak(S1)) (0 ≤ k ≤ r).
ak(S1) ← msg(A′, A, h(S)), left(S1, S),msg(A′, A, ak(S1)) (0 ≤ k ≤ r).

Finally, using the clause:

end ← msg(A2, A1, qg)

the agent A1 fires action end on receipt of the message stating that M has
passed to the accepting state qg.

As before, we choose the formula Φ = F yesA1 as the property to check. It
states that the fact yes will appear eventually in IA1 .
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Let τ = τ(A, S0) = S0, S1, . . . , St, . . . be the trajectory of A starting in the
empty state S0 : IA1 = IA2 = ∅. Let σ = C1, C2, . . . , Ct, . . . be the sequence
of I-descriptions coding the computation of M on input x. The following
assertion establishes the relationship between the two sequences.

Lemma 9 At each moment t > 0, the set of messages in MsgBoxt
Ai

, i = (t
mod 2) + 1), completely determines the I-description Ct, i.e.:
(A′, ak(s)) ∈ MsgBoxt

Ai
⇔ the tape cell s contains symbol ak at the moment

t,
(A′, h(s)) ∈ MsgBoxt

Ai
⇔ the head observes the tape cell s at the moment t,

and
(A′, qi) ∈ MsgBoxt

Ai
⇔ M is in the state qi at the moment t.

This lemma can be proven by a straightforward induction on t. Lemma 8
immediately implies that M accepts x iff τ(A, S0), S0 |= Φ.

It is easy to check that the size of A is bounded by some polynomial in |x| and
that A, S0 and Φ can be constructed from x and M in time polynomial in |x|.
So MA-BEHAVIOR problem is EXPSPACE-hard in the class of deterministic
MAS.

5 Behavior of nondeterministic MAS

We start with a simple observation which will serve to adapt some well known
model checking complexity results (e.g., see [13]) to upper complexity bounds
for the MA-BEHAVIOR problem. Clearly, there is a simple algorithm T which,
given a MAS A and its global state S0, constructs a transition system T (A, S0)
(in time polynomial in |T (A, S0)|) such that:
1) the set of states of T (A, S0) coincides with the set of global states of A,
2) the set of trajectories of A starting in S0 coincides with the set of trajectories
of T (A, S0).

This remark relates the model checking complexity results with upper com-
plexity bounds of MA-BEHAVIOR problem for some classes of MAS. In par-
ticular, we will use the following simple assertion.

Proposition 3
If |T (A, S0)| < f(|A|) for any system A in a class of MAS, and the model
checking of a formula φ of a logic L on a transition system TS is executable
with complexity g(|TS|, |φ|), then the complexity of MA-BEHAVIOR problem
for this class of MAS and the logic L is bounded by g(f(|A|), |φ|).
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5.1 Ground nondeterministic MAS

As for deterministic MAS above, we start with the ground case.

Theorem 6 The MA-BEHAVIOR problem for the class of ground, expanding,
and r-signal m-agent systems A such that m2 ∗ r = O(log |A|) and behavior
properties Φ ∈ ∃LTL(∀LTL) is NP-complete (respectively coNP-complete).

A proof of this theorem is contained in [10]. It uses the following technical
lemma used also below.

Lemma 10 There is a polynomial p(n) such that TA(S0) |= E Ψ iff there is
a trajectory τ = S0, . . . , St, . . . ∈ TA(S0) and a step T ≤ p(|A| + |Ψ|) such
that τ, S0 |= Ψ and I t

a = IT
a for all t > T and every a ∈ A.

The next theorem shows that the complexity of MA-BEHAVIOR problem
increases substantially if we weaken requirements to MAS. If in the class of
expanding systems, we restrict only the number of agents or only the number of
signals, then the problem becomes APSPACE-complete as it is in the general
ground case. APSPACE denotes the set of problems decidable in polynomial
space by ATM [6].

Theorem 7 (1) The MA-BEHAVIOR problem is APSPACE (EXPTIME)-
complete for nondeterministic ground and expanding m-agent systems and the
behavior properties Φ in µFO

1 (for each fixed m ≥ 2).
(2) The MA-BEHAVIOR problem is APSPACE (EXPTIME)-complete for
ground, expanding and r-signal MAS and the behavior properties Φ in µFO

1

(for each fixed r ≥ 1).
(3) In both cases there exists a constant c > 1 such that the MA-BEHAVIOR
problems are not decidable with deterministic time complexity cn/logn.
(4) The MA-BEHAVIOR problem for ground MAS is:

(i) EXPTIME-complete for behavior properties Φ in µFO
r (for any fixed

r);
(ii) in NEXPTIME ∩ coNEXPTIME for behavior properties Φ in µFO.

Proof. (1) Lower bound. The proof is a modified version of the proof of
theorem 2 (1). Namely, we show that any problem in ASPACE can be reduced
in polynomial time to the MA-BEHAVIOR problem for a nondeterministic
ground and expanding 2-agent system.

Let us fix an ATM M working in space bounded by some polynomial p(n),
n being the length of an input word x = ai1ai2 ...ain . We set N = p(n).
Without loss of generality, we can suppose that:

- the set Q = {q0, . . . , qg} of states of M is decomposed into two disjoint
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subsets Q = Qu∪Qe of respectively universal and existential states, the start-
ing state q0 is universal, the accepting state qg−1 = “yes” and the rejecting
state qg = “no” are both existential,

- the set of instructions of M is also decomposed into two disjoint subsets
M = Mu ∪Me, each instruction qjai → quavS ∈ Mu having qj ∈ Qu

and qu ∈ Qe and each instruction qjai → quavS ∈ Me having qj ∈ Qe and
qu ∈ Qu;

- each computation of M reaches either the success state “yes” or the
failure state “no”, and neither of these states is in left hand sides of instruc-
tions.

Let A = {a0, a1, . . . , ar} be the tape alphabet (a0 = ∧ being the empty
cell symbol). From M and x, we will construct a ground expanding 2-agent
system A = A(M, x) = {Au, Ae}, its initial state S0 and a µ1-formula Φ such
that

(*) x is accepted by M ⇐⇒ TA(S0), S0 |= Φ.

We follow the idea of the construction of theorem 2: the two agents in A send
each other in turn I-descriptions of M. When an agent receives the current
I-description it computes the next I-description and sends it to its partner.
The agent Au will simulate the instructions of Mu and Ae those of Me.

We fix the message signature: Pm = Q∪ {hk | 1 ≤ k ≤ N} ∪ {ak,j | 1 ≤ k ≤
N, 0 ≤ j ≤ r}. These predicates describe the state, the head position, and the
symbols written in the tape cells. The DB signatures of PAu and PAe consist
of 0-ary predicates started and success.

Both action bases ABAu and ABAe contain Pm, each action p ∈ Pm just
sending p to the partner without changing the DB-state. Let M contain L
instructions with left hand side qjai, and the instruction qjai → quavS
has the number l, 1 ≤ l ≤ L. Let vi,j,k,l , 1 ≤ k ≤ N, denote the action
which sends to the partner agent the messages ak,v, hk+S, qu, and adds the fact
success to the DB-state if u = g−1. Then the action vi,j,k,l belongs to ABAu

if qj ∈ Qu and to ABAe , otherwise.

Besides this, ABAu has a special action start which adds the fact started to
IAu and sends to Ae the starting I-description of M :
SEND(start) = {(Ae, h1), (Ae, q0), (Ae, a1,i1), (Ae, a2,i2), . . . , (Ae, an,in),

(Ae, an+1,0), . . . , (Ae, aN,0)}.

Both programs LPAu and LPAe contain the clauses :

(i) ak,j ← ¬msg(A′, A, hk),msg(A′, A, ak,j)
for all 1 ≤ k ≤ N and 0 ≤ j ≤ r (A′ = Ae, if A = Au and A′ = Au otherwise).
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Furthermore, for all 1 ≤ k ≤ N, if there are L instructions in M with left
hand side qjai, then for each 1 ≤ l ≤ L the clause:

(iiu) vi,j,k,l ← msg(Ae, Au, hk),msg(Ae, Auak,i),msg(Ae, Au, qj)

belongs to LPAu if qj ∈ Qu, and the clause

(iie) vi,j,k,l ← msg(Au, Ae, hk),msg(Au, Ae, ak,i),msg(Au, Ae, qj)

belongs to LPAe otherwise.

Besides this, the program LPAu has the clause

(iii) start ← ¬started.

The agents Au, Ae have the same nondeterministic obligation operator Sel,
which keeps all permitted actions of the form ak,j and guesses a unique action
vi,j,k,l.

We choose the formula Φ = AX µ Z.( success ∨ EX AX Z) as the property
to check. For a tree T, this formula states that it contains a finite ∀∃-subtree
ST 14 whose leaves are labeled by the fact “success”.

We choose the empty starting state S0 of A : IAu = IAe = ∅ and consider the
trajectory tree T = TA(S0). It is easy to see that the following equivalence
holds:

x is accepted by M ⇐⇒ T has a finite ∀∃-subtree, whose leaves are odd-level
nodes and contain the fact “success”.

This equivalence is proven by a straightforward induction on computation
steps (i.e. level numbers). It directly implies the property (*) for the con-
structed MAS A, its starting state S0 and formula Φ. M being fixed for
all x, it is easy to see that A, S0 and Φ can be constructed from x in time
polynomial in |x|. Therefore, MA-BEHAVIOR problem for nondeterministic
ground, expanding and 2-agent systems is APSPACE-hard and consequently,
EXPTIME-hard [6].

(2)Lower bound. The proof is by a modification of the proof of theorem 2 (2)
similar to that we have used immediately above.

(3) The proof follows an argument in [16]. It is easily shown that using the
usual binary coding of numbers, the size of descriptions of MAS A(M,x) in

14 I.e., a subtree ST which 1) contains the root of T, 2) for all its even level nodes,
contains all their daughters in T , and 3) for all its non-leaf odd level nodes,contains
at least one of their daughters in T.
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(1) and (2) can be bounded by O(n ∗ log n). Then the required assertion is
obtained by using an ATM M recognizing in space O(n) a set recognizable
by a DTM in time 3n but not in time 2n.

(4) Upper bound. It is well known (e.g., see [13,5]) that propositional µ-calculus
model checking has time complexity upper bound O((|TS| ∗ |φ|))ad(φ)) for
formulas φ with alternation depth ad(φ) on transition systems TS. On the
other hand, this problem belongs to NP ∩ co-NP. These results are easily
extended to first-order µ-calculus and finite transition systems with ground
atom labels. A ground MAS A having no more than 2|A| states, the upper
bound follows from proposition 3. 2

5.2 Nonground nondeterministic MAS

In this general case, we establish the complexity bounds of the MA-BEHAVIOR
problem for expanding MAS communicating through a bounded number of
messages, or else MAS using predicates of bounded arity.

Theorem 8 (1) The MA-BEHAVIOR problem is NEXPTIME-complete
(coNEXPTIME-complete) in the class of expanding r-signal MAS (for any
r > 0) and the behavior properties Φ expressed in ∃LTL (respectively, in
∀LTL).
(2) The MA-BEHAVIOR problem is APSPACE (EXPTIME)-complete for k-
dimensional MAS (for any fixed k > 0) and the behavior properties Φ in
µFO.

Proof. (1) Upper bound. The existence of a nondeterministic exponential
time algorithm resolving the MA-BEHAVIOR problem for ground, expanding
and r-signal MAS is based on the following upper bound on the length of
trajectories in TA(S0), similar to the one established in lemma 10.

Lemma 11 There is a polynomial p(n) such that for any ground, expanding
and r-signal MAS A , a state S0 and a formula Ψ ∈ PLTL, TA(S0) |=
E Ψ iff there is a trajectory ρ = S0, . . . , St, . . . ∈ TA(S0) and a step T ≤
2p(|A|+|Ψ|+|S0|) such that ρ, S0 |= Ψ and I t

a = IT
a for all t > T and for each

agent a ∈ A.

Sketch of the proof. If not to say about the presence of variables in the clauses
of agents’ programs and of the condition m2 ∗ r = O(log |A|) (m being the
number of agents in A ), we are in the conditions of lemma 10. Due to
the use of variables, the size and the number of states grow: the number
of atoms in DB-states of agents of A is now bounded by 2pol(|A|+|S0|) for
some polynomial pol. In particular, it means that the condition m2 ∗ r =
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O(log |A|) is of no importance in this context. Since A is expanding, in
any trajectory of TA(S0), the number of steps where at least some agent’s
DB-state changes (i.e. increases) is bounded by 2pol(|A|+|S0|). The number of
different message box states of an agent is bounded by 2mr. So the total
number of global states of message boxes does not exceed 2m2r ≤ 2r|A|2 . Hence,
for any trajectory ρ ∈ TA(S0) = S0, . . . and any step i, if all agents’ DB-
states in Si, Si+1, . . . , Si+M are the same for M ≥ 2r|A|2 , then there exist two
steps l and r, i ≤ l < r ≤ i + M such that Sl = Sr. Applying assertion
5 in the proof of theorem 6, we bound the length M of such stable state
subsequences by 2r|A|2+|Ψ|. Therefore, the stabilization step T in ρ can be
bound by 2p(|A|+|Ψ|+|S0|) for some polynomial p. 2

Now, the only difference between the nondeterministic algorithm NdetCh1
checking that TA(S0) |= E Ψ and the algorithm NdetCh above is that NdetCh1
guesses in TA(S0) a finite trajectory ρ of exponential length and then checks
whether ρ, S0 |= Ψ on this trajectory. So it is a nondeterministic exponential
time algorithm.

Lower bound is established using the construction in the lower bound proof
of theorem 4. The difference is that in the place of a DTM one should use a
NTM running in exponential time and choose the nondeterministic unit-choice
one-step semantics guessing at each step a single instruction to execute.

(2) Upper bound. Due to the condition of k-dimensionality, the size of the
set of global states of A is bounded by 2pol(|S0|+|A|) for some polynomial pol.
Then, using proposition 3, we can follow the corresponding reasoning in point
(4) in the proof of theorem 7 (4).
Lower bound trivially follows from theorem 7(1), since ground MAS are in
fact, 0-dimensional MAS. 2

It seems that if to delete the condition ”expanding” in the assertion (1) of
Theorem 8 then the complexity of the problem will essentially increase, but
this is open now.

If in the proof of the lower bound in theorem 4 we simulate an ATM in place
of a DTM, we obtain the following result.

Theorem 9 The MA-BEHAVIOR problem is AEXPTIME-hard for nonde-
terministic expanding and positive MAS and the behavior properties in ∃LTL.

We think that the corresponding tight upper bound holds too, but this problem
is left open.

In the general case of nondeterministic nonground MAS, the problem is much
more hard.
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Theorem 10 The MA-BEHAVIOR problem in the class of nondeterministic
MAS
1) is AEXPSPACE (EXPEXPTIME)-complete for the behavior properties ex-
pressed in µFO

r (for any fixed r);
2) is in NEXPEXPTIME ∩ co-NEXPEXPTIME for the behavior properties
expressed in µFO.

Proof. Upper bounds follow by proposition 3 from the above mentioned results
on model checking complexity for µ-calculus, because the size of a global state
ofA is estimated in the general case by the size of its groundization, i.e. 2pol(|A|)

for some polynomial pol.

Lower bound. It suffices to prove that nondeterministic MAS can simulate an
ATM running in exponential space. Let us fix an ATM M running in space
bounded by 2p(n) for some polynomial p(n), n being the length of an input
word x = ai1ai2 ...ain . We set N = p(n) . We assume that M satisfies the
restrictions used in the proof of theorem 7: no repetitions of I-descriptions and
the universal states occur at the even steps (respectively, the existential states
occur at the odd steps).

We construct a 2-agent system A = {A1, A2} simulating the machine M
in a way very similar to that used in theorem 5. The only new thing to
do is to define a nondeterministic one-step semantics of the agents. In order
to simplify this semantics, we associate with each set Ii,j of instructions of
M having the same left hand side qiaj, the set of all actions of the form
{v(i, j, s1, s2, s3, s4, l)|1 ≤ l ≤ L}, where L is the cardinality of Ii,j and si

are 0 − 1-tuples of length N. For the instruction number l in Ii,j of the form
qiaj → qmanC, the ground action v(i, j, s1, s2, s3, s4, l) sends to the partner
agent the messages: qm, h(s1), an(s2), right(s3), left(s4).

The instructions in Ii,j are simulated in the programs of both agents by the
rules:

v(i, j, S1, S, S1, S2, l) ← msg(A′, A, h(S)),msg(A′, A, ak(S)),
msg(A′, A, qi), shift(C, S, S1), next(S, S1), next(S2, S),

for all l, 1 ≤ l ≤ L.

The agents have the same nondeterministic obligation operator Sel which
guesses a unique possible ground action of the form v(i, j, s1, s2, s3, s4, l) and
keeps all the other actions at each step.

We choose the formula µZ.(yes ∨ AX (yes ∨ EX Z)) as the property to
check. It states that the tree of trajectories of A has a finite ∀∃-subtree
whose leaf-states contain the fact yes.
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Clearly, M accepts x iff TA(S0), S0 |= Φ.

It is easy to see that the size of A is bounded by a polynomial in |x| and that
the MAS A, the state S0, and the formula Φ can be constructed in time poly-
nomial in |x|. So the MA-BEHAVIOR problem for the class of deterministic
MAS is AEXPSPACE-hard. 2

Remark. (1) Theorems 8, 9 and 10 can also be complemented by an assertion
similar to that of theorem 7 (3), which gives absolute lower bounds of time
complexity of the corresponding MA-BEHAVIOR problems.

(2) The upper complexity bounds established for the properties expressed in
µ hold for CTL too, since it is polynomially translatable into µ-calculus.

6 Behavior of asynchronous MAS

In this section we consider a version of asynchronous MAS. An asynchronous
MAS A = {a1, ..., an; PA} consists of a finite set {a1, ..., an} of intelligent
agents and a special post agent PA. The agent PA is used to simulate a
communication network of the system which can deliver messages to their
receivers asynchronously.

The agent ai sends messages to the other agents in the system through the
agent PA and receives messages from PA into its message box MsgBoxai

. An
internal state IPA of PA includes all the messages which were received by PA
and not yet sent in this time.

For the asynchronous MAS A its one-step semantics is a one step transition re-
lation⇒A on the set SA of global states of the form S =< (Ia1 ,MsgBoxa1), . . . ,
(Ian , MsgBoxan), IPA > induced by one-step semantics of individual agents
ai, i = 1, . . . , n, of A and the behavior of PA.

The transition St ⇒A St+1 starts by calculating the sets Permt
a of actions

permitted for execution for all agents a ∈ A. Next, each agent’s selection
operator Sela creates action set Oblta = Sela(Permt

a). The message boxes of
all agents in A are emptied thereafter. Then each agent’s internal DB state
I t
a is replaced by I t+1

a by deleting of DelOblta and adding AddOblta. and for
each agent a all messages SendOblta sent by a are placed into I t

PA. Then PA
sends to every agent a some messages contained in I t

PA which were sent to a
by other agents (puts them into message box MsgBoxt+1

a ) and deletes these
messages from I t

PA forming I t+1
PA .
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It follows from the definition that the transfer of a message from one agent
to another can take an indeterminate amount of time (in particular, it can be
lost). This reflects the asynchronous mode of agents’ interaction.

For verifying asynchronous MAS it is important to take into account the in-
ternal state of PA which consists of message atoms msg(ai, aj, p). But such
a message can also occur in the message box of aj. So, in order to correctly
refer to truth values of such messages we should distinguish in formulas oc-
currences of these message atoms which have to be evaluated in PA and in
message boxes of ai. For this we take the following notation: msgj(ai, aj, p) will
denote the atom to be evaluated in the message box of aj, and msg(ai, aj, p)
denotes the atom evaluated in PA.

The most of the complexity results obtained in previous sections for MA-
BEHAVIOR problem for synchronous non-deterministic systems can be trans-
ferred to asynchronous systems using similar arguments. But this is not very
interesting, and we give here only two general theorems on mutual reducibility
of MA-BEHAVIOR problem for synchronous and asynchronous MAS. Some
of the above mentioned complexity results follow for asynchronous MAS from
these theorems, although not for all classes of MAS considered for synchronous
systems (it is caused by the generality of constructions used in the proof of
the theorems).

The following theorem is proved by some simulation of nondeterministic MAS
by asynchronous MAS.

Theorem 11 Let dynamic properties to verify be formulated in the language
µFO

r . Then MA-BEHAVIOR problem for nondeterministic MAS with obliga-
tion operator Selun is polynomial-time reducible to the MA-BEHAVIOR prob-
lem for asynchronous MAS with deterministic agents.

Proof. For simplicity we give the proof for ground case only. The nonground
case is somewhat more complicate, but similar. Let A = {a1, a2, . . . , an} be a
nondeterministic MAS such that each agent a ∈ A uses the obligation operator
Selun to choose a set of executable actions. Let S0 be an initial global state
of A. We construct from A, S0 and a µ-formula Φ an asynchronous MAS B,
its initial state R0 and a µ-formula Ψ such that A, S0 |= Φ ⇔ B, R0 |= Ψ.

We suppose that the agent ai has a set Acti = {αi1, . . . , αimi
} of ground action

atoms.

The asynchronous MAS B consists of agents a′1, . . . , a
′
n, two additional agents

b and c and a postage agent PA. At each step the agent c sends to every a′i
three messages ”1”, ”2” and ”3” ( we will be interested in trajectories along
which a′i will receive these messages in cyclic order 1-2-3).
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For any action α ∈ Acti the agent a′i contains a new message atom α and a
new duplicate action α′ with the lists ADDα′ = DELα′ = ∅ and SENDα′ =
{(a′i, b, α)}. Program Pa′i includes

(i) all clauses of Pai
in which every occurence of each action atom α is changed

to α′, and to each body the atom msg(c, a′i, 1) is added;

(ii) a clause
α ← msg(b, a′i, α

′),msg(c, a′i, 3)
for each α ∈ Acti.

Agent b for all a′i and α ∈ Acti includes action αai with the lists ADDαai =
DELαai = ∅ and SENDαai = {(b, ai, α)}. Program Pb for all a′i and α ∈ Acti
includes a clause
αai ← msg(ai, b, α).

Some trajectories of B simulate trajectories of A, one step S ⇒A S ′ of A in
three steps.

At the first of these steps each a′i defines the set Permai
= Permai

(S) of ac-
tions permitted in the state S and transfers the set of messages {msg(ai, b, α)|
α ∈ Permai

} to the agent b. At the second step b sends {msg(b, ai, α)|α ∈
Permai

} to a′i, and one of these messages is transfered to a′i.

At the third step a′i executes the action received from b (i.e. changes its internal
database and transfers to all agents a′j all the messages which should be sent
to them by it), and PA resends to a′i the rest of Perma′i and these messages
will be ”lost” at the next step.

The initial state R(0) of B is defined as follows: I
(0)
a′i

= I(0)
ai

, Msgbox
(0)
a′i

=

Msgbox(0)
ai
∪ {msg(c, ai, 1)}, I(0)

c = I
(0)
b = I

(0)
PA = Msgbox

(0)
b = Msgbox(0)

c = ∅.

The formula Ψ = Ψ(Φ,A) is obtained from Φ by inductively replacing all the
subformulas of the form ∃XΘ by the formula ∃X(f1 ∧ ∃X(f2 ∧ ∃X(f3 ∧Θ))),
where f1, f2, f3 have the forms

∧n
i=1(

∧mi
j=1 ¬msg(a′i, b, αij) ∧msgi(c, a′i, 2) ∧ ¬msgi(c, a′i, 1) ∧ ¬msgi(c, a′i, 3)),

∧n
i=1(

∨mi
j=1 msgi(b, a′i, αij) ∧ ∧mi

k,l=1;k 6=l(¬msgi(b, a′i, αik) ∨ ¬msgi(b, a′i, αil))∧
msgi(c, a′i, 3) ∧ ¬msg(c, a′i, 1) ∧ ¬msgi(c, a′i, 2)),

∧n
i=1(

∧n
j=1(

∧
q(r)∈Pm

ai
∀Z1, ..., Zr(¬msg(a′i, a

′
j, q

(r)(Z1, ..., Zr))∧
msgi(c, a′i, 1) ∧ ¬msgi(c, a′i, 2)∧)¬msgi(c, a′i, 3)),

respectively.
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The formula f1 has the meaning ”any agent a′i has received the message 2
from c, and PA does not contain any action messages sent to the agent b” (i.e.
all the action messages sent by agents ai are transferred to b immediately: all
these messages are from Permai

).

The formula f2 has the meaning ”any agent a′i has received the message 3
from c and exactly one action message αij” from b (in fact, the message αij

belongs to the set Permai
which was sent to b by ai in the previous step).

The formula f3 has the meaning ”any agent a′i has received the message 1
from c, and for all i, j PA does not contain any information messages sent by
ai to aj” (i.e. all the information messages sent by agents ai are transferred
to their receivers immediately).

It is clear that the system B, the state R(0) and the formula Ψ are constructed
in polynomial time with respect to sizes of A, S(0) and Φ.

Let us define a similarity relation between global states of A and B. Namely,
a global state R =< (Ia′1 ,MsgBoxa′1), . . . , (Ia′n ,MsgBoxa′n), (Ib,MsgBoxb),
(Ic,MsgBoxc), IPA > of B is similar to a global state S =< (Ia1 ,MsgBoxa1),
. . . , (Ian ,MsgBoxan) > of A iff Ia′i = Iai

, and MsgBoxai
is obtained from

MsgBoxa′i by deleting all the messages received from the agents b anf c, for
all i.

It is obvious that R(0) is similar to S(0).

Let us define a mapping G of the set of nodes of TA(S(0)) to the set of nodes
of TB(R(0)) as follows. G(S(0)) = R(0). Let G(S) = R be defined for a node S
from TA(S(0)) such that msg(c, a′i, 1) is in MsgBoxa′i . Let S ′ be a successor of
S. Then G(S ′) = R′, where R′ is obtained by the three steps of B simulating
the step S ⇒A S ′ as was described above.

It is clear that G(S) is similar to S for each S from TA(S(0)).

Further we will use the notation G(A) for the set {G(S)|S ∈ TA(S(0))}. Let
setA(Φ) = {S|TA(S(0)), S |= Φ} , and setB(Ψ) = {R|TB(R(0)), R |= Ψ}.

The proof of the theorem is completed now by proving the following

Lemma 12 For any formula Φ of µFO the equality setB(Ψ(Φ,A)) ∩ G(A)
= {G(S)|S ∈ setA(Φ)} holds.

The lemma is proved by induction on the structure of Φ.

First, we prove the following proposition.
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(#) If the assertion of the lemma holds for formulas Θ and Θ′ then it holds
for formulas ¬Θ, Θ ∧Θ′, Θ ∨Θ′,∃XΘ, ∀XΘ.

For boolean connectives it is obvious.

For formulas of the form ∃XΘ the proposition follows from the assertion

(*) For any node S of TA(S(0)) the following is true:

TA(S(0)), S |= ∃XΘ iff TB(R(0)), G(S) |= Ψ(∃XΘ,A)

Suppose Φ is ∃XΘ, and TA(S(0)), S |= Φ. Then, by definition of ∃X,
TA(S(0)), S ′ |= Θ , for some S ′ such that S ⇒A S ′. Then, by the induction
hypothesis, TB(R(0)), G(S ′) |= Ψ(Θ,A). By the definition above, Ψ(Φ,A)
=∃X(f1 ∧ ∃X(f2 ∧ ∃X(f3 ∧Ψ(Θ,A)))). We note that, by the definition of G,
there exists a path G(S) = R ⇒B R1 ⇒B R2 ⇒B R3 = G(S ′) in TB(R(0)).
It is clear that TB(R(0)), Ri |= fi, i = 1, 2, 3. It follows that TB(R(0)), G(S) |=
Ψ(Φ,A).

Conversely, suppose that TB(R(0)), G(S) |= Ψ(Φ,A). Then there exists a path
G(S) = R ⇒B R1 ⇒B R2 ⇒B R3 such that 1) TB(R(0)), Ri |= fi, i = 1, 2, 3,
and 2) TB(R(0)), R3 |= Ψ(Θ,A). It follows from 1) that each agent a′i in R2

executes some action αij ∈ Permai
(S). Then each ai ∈ A can execute the

same action in state S, because its obligation operator Selun
ai

can choose any
action from Permai

(S). After this the system A goes to state S ′ such that
G(S ′) = R3. Then by the induction hypothesis TA(S(0)), S ′ |= Θ and therefore
TA(S(0)), S |= ∃XΘ.

The assertion (*) is proved.

If Φ is ∀XΘ the proof follows from the equivalence ∀XΘ with ¬∃X¬Θ.

The proposition (#) is proved.

If Φ is basic then the assertion of the lemma follows from the similarity of S
and G(S). Hence, from the proposition (#) we deduce that the lemma holds
for any formula Φ in µFO

0 (i.e. not containing the operators µ and ν ).

If Φ has the form µZ.Θ(Z) or νZ.Θ(Z) then the lemma is proved by a straigh-
forward but cumbersome induction on the computation of fixpoints for these
formulas. As an example we consider here only the following simple case.

Let Φ have the form µZ.Θ(Z) where Θ(Z) does not contain µ and ν.

Then Ψ(Φ,A) = µZ.Ψ(Θ(Z),A). By definition of µ we have setA(Φ) =⋃∞
i=0 setA(Θi(false)), and setB(Ψ(Φ,A)) =

⋃∞
i=0 setB((Ψ(Θ,A))i(false)), Then

we have Ψ(Θi(false),A) = (Ψ(Θ,A))i(false), and setB((Ψ(Θ,A))i(false))∩
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G(A) = {G(S)|S ∈ setA(Θi(false))}. It follows that setB(Ψ(Φ,A))∩G(A) =
{G(S)|S ∈ setA(Φ)}.

If Φ has the form νZ.Θ(Z) where Θ(Z) does not contain µ and ν then the
proof is similar.

In the following theorem asynchronous MAS are simulated by nondeterministic
MAS.

Theorem 12 Let dynamic properties to verify be formulated in the language
µFO

r . Then MA-BEHAVIOR problem for asynchronous nondeterministic MAS
is polynomial-time reducible to the MA-BEHAVIOR problem for (synchronous)
nondeterministic MAS.

Proof.

Let A = {a1, ..., an; PA} be a nondeterministic asynchronous MAS, and Φ be
a formula to verify. We construct from A a nondeterministic MAS B =
{a′1, . . . , a′n, pa} which simulates A . Nondeterministic agent pa will simulate
the work of PA by saving some part of messages in its data base and then
sending some of them to receivers.

For each message predicate q ∈ Pm
ai

we put into Pm
a′i

a predicate qij for all j 6= i.

The heads α of clauses of the logical components of the agents a′i are the same
as of the agents ai, but each message of the form msg(ai, aj, q) in the list
SENDα of action α is changed to msg(a′i, pa, qij). In the bodies of all clauses
of Pai

each atom of the form msg(aj, ai, q) is changed to msg(pa, a′i, qji), and
a new atom msg(pa, a′i, 1) is added to the body of each clause.

The action base ABpa of the nondeterministic post agent pa includes for each

q
(k)
ij three actions save(qij), resend(qij) and send(qij) with the following lists:

ADDsave(qij
= {qij(X1, . . . , Xk)}, DELsave(qij

= SENDsave(qij
= ∅,

ADDresend(qij
= DELresend(qij

= ∅, SENDresend(qij
=

{msg(pa, aj, qij(X1, . . . , Xk)}, ADDsend(qij
= ∅,

DEL(send(qij) = {qij(X1, . . . , Xk)}, SENDsend(qij
=

{msg(pa, aj, qij(X1, . . . , Xk)}.

ABpa also includes two actions addone and delone to count odd and even steps:
ADDadd one = {1}, DELadd one = ∅, SENDadd one =
{msg(pa, a′i, 1)|i = 1, . . . , n}. ADDdel one = ∅, DELdel one = {1},
SENDdel one = ∅.

To fire these actions program Ppa of pa includes two clauses:
add one ← ¬1.
del one ← 1.
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For each q
(k)
ij program Ppa includes three clauses:

save(qij)(X1, . . . , Xk) ← msg(ai, pa, qij(X1, . . . , Xk).
resend(qij)(X1, . . . , Xk) ← msg(ai, pa, qij(X1, . . . , Xk).
send(qij)(X1, . . . , Xk) ← qij(X1, . . . , Xk).

The obligation operator Selpa chooses from Permpa any subset of actions of the
form send(qij)(t1, . . . , tk), and Selpa selects one and only one atom from each
pair of action atoms of the form {save(qij)(t1, . . . , tk), resend(qij)(t1, . . . , tk)} ⊆
Permpa.

Satisfiability of Φ in τ(A, S0) can be reduced to satisfiability of a formula Ψ of
µFO

r in τ(B, S0). Ψ is constructed as in the previous theorem, but in a simpler
way.

It is clear that the reduction is polynomial-time computable.

In particular, these theorems have the following corollaries.

Corollary 1 . MA-BEHAVIOR problem for ground asynchronous MAS with
deterministic agents
1) is EXPTIME-hard for verifying formulas from µFO

r , for any fixed r ≥ 1,
and
2) is in EXPTIME for verifying formulas from all µFO.

Corollary 2 . MA-BEHAVIOR problem for non-ground asynchronous MAS
with deterministic agents
1) is EXPEXPTIME-hard for verifying formulas from µFO

r , for any fixed
r ≥ 1, and
2) is in EXPEXPTIME for verifying formulas from all µFO.

7 Conclusion

Multi-Agent Systems represent a class of general parallel and/or distributed
software systems. Many well known techniques of behavior analysis and ver-
ification for concurrent and parallel programs apply to MAS as well. At the
same time, specific architectural features of MAS require significant rework of
these approaches.

For MAS, with their rich architecture, the adequacy and the results of the
behavior analysis are closely related with the exact choice of the level of de-
tail of important architecture features and parameters and with the adopted
restrictions on them. In this paper we have defined a specific fragment of the
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IMPACT architecture [29]. Within this architecture, MAS can be either de-
terministic or nondeterministic, depending on the one-step semantics of the
agents. To account for this, we use two different classes of temporal logics to
express the properties of the MAS behavior. For each class of MAS we have
considered some natural structural constraints: on the number of agents, on
the number of messages available, on the dimensionality (arity) of actions and
messages. We have also considered some important semantic constraints limit-
ing expressivity and the effect of actions: the use of variables and/ or negation
in agent programs, the possibility/ impossibility of deleting facts from agent
states. Our goal was to determine computational complexity of the correspond-
ing MA-BEHAVIOR problem for every combination of these restrictions. In
many but not in all cases, we have established tight complexity bounds. In
particular, our study has shown that under some of these reasonable restric-
tions, it is possible to capture the complexity of behavior properties described
by means of classical linear and branching time logics within relatively low
complexity classes: even in deterministic or nondeterministic polynomial time
under some natural restrictions. Despite the fact that our agent’s architecture
is substantially simpler than the original IMPACT architecture of [29], many
of our results can be extended to the general case, as the main features of the
original one-step semantics of agents are computable in polynomial space, as
is shown in Chapter 11 of [29].

Intelligent Agents and Multi-Agent System architectures published within the
past few years are dissimilar and diversified because they represent various ap-
plication domains of this new software technology. Our study concerns just one
such specific architecture. However, it illustrates the way in which penetrating
deeply into a complex MAS architecture permits, in some cases, a deeper un-
derstanding of the behavior properties of agents. Considered in this light, this
paper creates a framework for applying similar analysis to other MAS architec-
tures in order to find interesting subclasses of MAS with efficiently verifiable
behavior properties. We also note that we considered here only ’naive’ variants
of checking algorithms, leaving to further research the application of different
optimization techniques such as symbolic model checking, abstraction, using
symmetry properties of MAS, introduced in the model checking literature.
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