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The considered unsteady flow of the viscous incompressible fluid is
caused by the sudden motion of the dihedral angle with the constant
velocity in the fluid being at rest. It is assumed, that the angle moves
in the direction of the edge and the flow is layered. In the case of right
dihedral angle, the analytic solution of the considered problem is obtained,
while in the case of arbitrary angle the problem for a function of three
independent variables is reduced to a boundary value problem for an
ordinary differential equation. The asymptotic behaviour of the solution
of this equation by corresponding boundary conditions is investigated.
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1. Introduction

The unsteady flow of the viscous incompressible fluid is considered.
This flow is caused by the sudden motion of the dihedral angle I' with the
constant velocity U. We assume, that the angle moves in the direction
of the edge and only one velocity component of fluid in this direction is
different from zero. Such flows are called by layered ones [1].

The analytic solution of the considered problem was obtained in case of
the right dihedral angle I' while in case of arbitrary angle we reduced the
problem to the self-similar boundary-value problem. Attention of author
to this problem was attracted by Prof. Neyland in connection with the flow
in the neighbourhood of the intersection wing and fuselage of an aircraft.

In the present work the power geometry methods [2] are used for
obtaining self-similar solutions of boundary-value problems.  These
methods have simple algorithms. They were applied successfully both to
linear and nonlinear problems in works [3] — [7] and others.

The unsteady layered flow, caused by the sudden motion of an infinite
flat plate, was investigated for the first time by Stokes [8]. Steady boundary
layer on the right dihedral angle was considered first by Loytsjansky (1936-
1937) [9].

2. Initial equations

Let us denote cylindrical coordinates by r,6, z; corresponding velocity
components by v,,vy,w; time, pressure, density and kinematic viscosity
coefficient by ¢,p, p,v. With these notations the equations of unsteady
motion of viscous incompressible fluid and equation of continuity have the

form:
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where
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Let the axis Oz be directed along the edge of the dihedral angle I’
having linear angle a € (0,7/2]. We shall consider layered flow setting
v, = vy = 0. Then the equations

(2.1) — (2.4) take the form:

g—f =0, (2-5)
%g—g =0, (2:6)
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2o BdE)- 5 e
g_j = 0. (2.8)

From the equations (2.5) and (2.6) it follows that left side of the
equation (2.7) is independent on r and 9, but right side is independent
on z according to (2.8). Consequently both sides of equation (2.7) are
independent from space variables, but may depend only from time . Let

dp
— = F(t). 2.9
P ) (2.9

Usually the function F(t) is given. Let us assume that p — py = const
both by z - —oco and z — +00. Then since the flow is caused only by
the wall motion, we shall assume that F(t) = 0 and the equation (2.7) is
written in the form:

(2.10)
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where s = r/./v.

We connect the frame of reference (r,9,z) with dihedral angle I'. In
that case, the initial and boundary conditions for the function w(s,?,t)
are:

w=0, as t <0, (2.11)
w=0, as t >0 and ¥4 =0 or ¥ = «a, (2.12)
w—U, as 9 =a/2, s— oo. (2.13)



o. 1l he case ol arbitrary dihedral angle

The boundary layer inside the dihedral angle I' is interesting only in
a neighbourhood the edge, where boundary layers on the faces influence
each other. Outside this neighbourhood each of this boundary layers is
described by well-known Blasius solution.

Let us reduce the equation (2.10) to the one having only two
independent variables. This simple example demonstrates the application
of the power geometry methods (v. Section 5) for the obtaining self-similar
solutions.

The support of the differential polynomial in left hand side of the
equation (2.10) has three different points: @; = (-1,0,0,1), Q2 =
(0,-2,0,1), @3 = (0,—-2,-2,1) in the space (qi,¢2,93,q1), Where
q1, 92, g3, q4 correspond respectively to t,s,d,w. The form of self-similar
solution depends on the vector P = (pi,p2, ps,ps). This vector must be
perpendicular to the vectors Qs' = Q2 — Q1 = (1,-2,0,0), Q3' = Q3 — Q1 =
(1,-2,-2,0), Q4 = (0,0,0,1). The last vector associates with nonzero
boundary condition (2.13). As a result, we have p; — 2py =0, p3 = ps = 0.
Setting p; = 1, we obtain: P = (1,1/2,0,0); v2 = p2/p1 = 1/2, v3 =
p3/p1 = 0,74 = pa/p1=0; (1 = s/t = s/tV? G =9/t =9/t =¥,
w = t"Py(C1, C2) = UP((1, C2).-

Thus,
w = U¢(<17C2)7 Cl = S/ﬁa C2 = 7. (31)
Substituting these expressions into equation (2.10) we obtain:
0’d 1 o O*®
i 1+ = 2)— — =0. 3.2
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The separation of variables
D(C1,C2) = D1(C1)P2(C2), (3.3)
lead to next equations:
1
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@y + NPy = 0, (3.5)



where A = 7/ 1n view ol the boundary condition (z.12). A particular
solution to the equation (3.5) has the form

9
Py = sin™ . (3.6)

@
Let us obtain the asymptotics of the solution to the equation (3.4) with
the boundary conditions:

Neglecting by C12/2 in comparison with 1 as (; < 1, we reduce the
equation (3.4) to the Euler equation:

(70" + () — NPy = 0. (3.8)

The general solution of this equation is
d, = C1G0 + O (C1,Cy — arbitrary constants).
Assuming C's = 0 we obtain ¢; = ClClA and

w = ClClA(l + o(1))sinAd as (; — 0. (3.9)

We shall see in the next Section that C1 = 2/7 if o = 7/2.
Let now (; — 400. Then using the Laurent series we find that

A2 1
@1:1—<2+0(Q) (3.10)

and hence

A2 1
w=U (1 - ——+0 (—4)) sinA¥ as (; — oo, (3.11)
G (1
where A\ = 7/a.
We shall see further that these asymptotics coinside with ones for the
analytical solution in case of & = 7/2,1i.e. A = 2.

4. The case of right dihedral angle

In special case of @ = 7/2 we consider our problem in Cartesian
rectangular coordinate system (z,y,z). Let us denote corresponding
velocity components by u, v, w. Then the equations of motion and equation
of continuity have the form:



(9t+u(9w+v(9y wa——zg—l—VVw, (4.3)
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Let us consider layered flow setting © = v = 0. Then system of equations
(4.1)—(4.4) may be written as

g—i =0, (4.5)
g—z =0, (4.6)
g—j = 0. (4.8)
In the Section 2 we saw that
g—i = F(t) = 0.
%—f:y(%ﬁJr%s). (4.9)

This equation is classic heat conducting one. We find the self-similar
variables with the help of power geometry (v. Section 5). These well-
known variables are

@ Yy w
— -7 = —, 4.10
$=gmp "=aup FEN =7 (4.10)
Change of variables in the equation (4.9) gives
92 0% (%) (%)
— + —= + 26—+ 2n—=0. 4.11

For this equation we have following boundary conditions:



=0 asé =0 and asn =0, (4.12)
p=1as £ =1 — 4. (4.13)

Separation of variables

p(&,m) = e1(§)e2(n). (4.14)
lead to equations

01"(€) + 281 () = 0, (4.15)

2" (1) + 202’ (n) = 0. (4.16)

The solutions to these equations are expressed by means of Gauss error
function:

2 ] g
erfql:ﬁ/e_a do.
0

By substitution of these solutions into the expression (4.14) we obtain

o(&,m) = erf € erf n. (4.17)
and
¢ 7
4 2 2
w(z,y,t) = —U e 7 do /e_" do (4.18)
T 0

where £ and 7 are given in the form (4.10).

It is evidently that the boundary conditions (4.12)—(4.13) are satisfied
since
erf (+00) = 1.

It is not difficult to verify that in the case & = 7/2 the formulas (3.9) and
(3.11) coincide with the corresponding asymptotics of the solution (4.18).
This comparison shows that in (3.9) C; = 2/m as o = 7/2. We do not
make analogous comparison for o < 7/2 since separation of independent
variables is impossible if we make use of oblique Cartesian coordinates.

5. On the power geometry

Let us give some information about the power geometry which we
concern in the present paper. The details are in monograph [2].

We shall consider the boundary-value problems for the functions
r3,...,&, of two independent variables z1, 2. Let X = (z1,...,2,).



1lhe differential monomial a(X ) 1s a product or the usual monomial
cxi"xy...x,» = cX® and a finite number of partial derivatives
O,/ 0z 0z, where ¢ = const, R = (r1y.eeymn) € R"m = 3,..,n, [ =
14 15. To each differential monomial a(X) there corresponds the vectorial
power exponent Q(a) € R" according to the following rules: Q(cX%) = R;
Q(@la}k/(%}lf@a:lf) = —l1Ey — l3Es + Ej, where E; denotes the j-th unit
vector; Q(ajaz) = Q(a1) + Q(az), a1 and as are differential monomials.
The finite sum of differential monomials

F(X) =3 ar(X) (5.1)
is called the differential polynomial. In R" to the polynomial (5.1), there
corresponds support S(f) = {Q(ax)}, which is the set of all vectorial power

exponents of its monomials. The convex hull I'(f) of the support S(f) is
called the Newton-Bruno polyhedron of the polynomial (2.1). Its boundary

OT'(f) consists of faces 'Y where d = dim(F(-d)). To each face T there

J J J
corresponds truncated polynomial f;d) (X) =X ar(X) over k:Qax) €
Fg-d). Let R} denote the space dual to the space R". There exists the
scalar product (P,Q) = p1g1 + ...+ pngs for P = (p1,...,p,) € R} and
Q = (q¢1,.--,9,) € R". For each face Fg-d), there exists such a vector
P e R?, that (P,Q;) > (P, Q) for any Q; € Fg-d) and @y € T\ Fg-d). In R"
the hyperplane (P, Q) = const = (P, Q1) is supporting to the polyhedron
I'(f) and the vector P is the exterior normal vector to the face Fg-d), ie.
directed outside of I'(f). For example let us consider the system of three
differential equations

fi(X)=0, i=1,2,3, (5.2)

where f;(X) are differential polynomials. To each of them there
(d)

corresponds its support S(f;), its polyhedron I'(f;), its set of faces I'};

and truncated equations fi(;i) (X) = 0. The system of the equations
A xy = 0. 5=
fzgi (X)_07 7’_172737 (53)
is called the truncated system, if a vector P = (p1,...,p5) € RS is the
exterior normal vector to faces I‘Eii) of the polyhedrons I'(f;) for i = 1,2, 3.
The corresponding truncated system (5.3) exists for each vector P # 0.
Let for #; — 400 the system (5.2) have a solution of the form w,, =
1" om(C) + Oz %), m = 3,4,5, where
¢ =axx ", €>0, and v, = pn/p1, m=2,3,4,5. (5.4)

Then the truncation of the solution

Ty = 21" om((), m=3,4,5, (5.5)



1s a solution of the truncated system (o.5) |2,0nh.V1|. I'he truncated system
(5.3) is quasihomogeneous, i.e. three faces I‘(fji), I‘gz), Fg‘;i) can be put into
one and the same linear subspace B C R® by means of parallel translations.
Let the space B be two-dimensional subspace with the basis B;, By € R°

and we have for example the boundary conditions
ns3 ns
xr3 = c3xy°, x5 = cpay® for w9 — 00, c3,cr = const (5.6)

for the truncated system (5.3). Then this system has the self-similar
solution (5.4), where the vector P = (py, ..., ps), is orthogonal to the vectors
By, By, —ngFEs+ E3, —ngsFEs + E5. It is possible to to prove that p; > 0 if
we take an interest in the asymptotics for z; — oo.
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