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The considered unsteady �ow of the viscous incompressible �uid is
caused by the sudden motion of the dihedral angle with the constant
velocity in the �uid being at rest� It is assumed� that the angle moves
in the direction of the edge and the �ow is layered� In the case of right
dihedral angle� the analytic solution of the considered problem is obtained�
while in the case of arbitrary angle the problem for a function of three
independent variables is reduced to a boundary value problem for an
ordinary di	erential equation� The asymptotic behaviour of the solution
of this equation by corresponding boundary conditions is investigated�
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�� Introduction

The unsteady �ow of the viscous incompressible �uid is considered�
This �ow is caused by the sudden motion of the dihedral angle � with the
constant velocity U � We assume� that the angle moves in the direction
of the edge and only one velocity component of �uid in this direction is
di	erent from zero� Such �ows are called by layered ones ����

The analytic solution of the considered problem was obtained in case of
the right dihedral angle � while in case of arbitrary angle we reduced the
problem to the self�similar boundary�value problem� Attention of author
to this problem was attracted by Prof� Neyland in connection with the �ow
in the neighbourhood of the intersection wing and fuselage of an aircraft�

In the present work the power geometry methods ��� are used for
obtaining self�similar solutions of boundary�value problems� These
methods have simple algorithms� They were applied successfully both to
linear and nonlinear problems in works ��� � ��� and others�

The unsteady layered �ow� caused by the sudden motion of an in�nite
�at plate� was investigated for the �rst time by Stokes ���� Steady boundary
layer on the right dihedral angle was considered �rst by Loytsjansky ��
���
�
��� �
��

�� Initial equations

Let us denote cylindrical coordinates by r� �� z� corresponding velocity
components by vr� v�� w� time� pressure� density and kinematic viscosity
coe�cient by t� p� �� �� With these notations the equations of unsteady
motion of viscous incompressible �uid and equation of continuity have the
form�
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Let the axis Oz be directed along the edge of the dihedral angle �
having linear angle 	 � ��� 
���� We shall consider layered �ow setting
vr � v� � �� Then the equations
����� � ����� take the form�
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From the equations ���
� and ����� it follows that left side of the
equation ����� is independent on r and �� but right side is independent
on z according to ������ Consequently both sides of equation ����� are
independent from space variables� but may depend only from time t� Let
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�

Usually the function F �t� is given� Let us assume that p� p� � const
both by z � �� and z � ��� Then since the �ow is caused only by
the wall motion� we shall assume that F �t� � � and the equation ����� is
written in the form�
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where s � r�
p
��

We connect the frame of reference �r� �� z� with dihedral angle �� In
that case� the initial and boundary conditions for the function w�s� �� t�
are�

w � �� as t � �� ������

w � �� as t � � and � � � or � � 	� ������

w� U� as � � 	��� s��� ������



�� The case of arbitrary dihedral angle

The boundary layer inside the dihedral angle � is interesting only in
a neighbourhood the edge� where boundary layers on the faces in�uence
each other� Outside this neighbourhood each of this boundary layers is
described by well�known Blasius solution�

Let us reduce the equation ������ to the one having only two
independent variables� This simple example demonstrates the application
of the power geometry methods �v� Section 
� for the obtaining self�similar
solutions�

The support of the di	erential polynomial in left hand side of the

equation ������ has three di	erent points� Q� � ���� �� �� ��� Q� �

������ �� ��� Q� � ��������� �� in the space �q�� q�� q�� q��� where

q�� q�� q�� q� correspond respectively to t� s� �� w� The form of self�similar

solution depends on the vector P � �p�� p�� p�� p��� This vector must be

perpendicular to the vectorsQ�
� � Q��Q� � ������ �� ��� Q�

� � Q��Q� �

��������� ��� Q� � ��� �� �� ��� The last vector associates with nonzero

boundary condition ������� As a result� we have p�� �p� � �� p� � p� � ��

Setting p� � �� we obtain� P � ��� ���� �� ��� 
� � p��p� � ���� 
� �

p��p� � �� 
� � p��p���� �� � s�t�� � s�t���� �� � ��t�� � ��t� � ��
w � t�������� ��� � U����� ����

Thus�

w � U����� ���� �� � s�
p
t� �� � �� �����

Substituting these expressions into equation ������ we obtain�
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The separation of variables

����� ��� � ������������� �����

lead to next equations�
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where � � 
�	 in view of the boundary condition ������� A particular
solution to the equation ���
� has the form
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Let us obtain the asymptotics of the solution to the equation ����� with
the boundary conditions�
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Neglecting by ��
��� in comparison with � as �� � �� we reduce the

equation ����� to the Euler equation�
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The general solution of this equation is

�� � C���
� � C���

�� �C�� C� � arbitrary constants��

Assuming C� � � we obtain �� � C���
� and

w � C���
��� � o����sin�� as �� � �� ���
�

We shall see in the next Section that C� � ��
 if 	 � 
���
Let now �� � ��� Then using the Laurent series we �nd that
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And hence
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where � � 
�	�
We shall see further that these asymptotics coinside with ones for the

analytical solution in case of 	 � 
��� i�e� � � ��

�� The case of right dihedral angle

In special case of 	 � 
�� we consider our problem in Cartesian
rectangular coordinate system �x� y� z�� Let us denote corresponding
velocity components by u� v� w� Then the equations of motion and equation
of continuity have the form�
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Let us consider layered �ow setting u � v � �� Then system of equations
����������� may be written as

�p

�x
� �� ���
�

�p

�y
� �� �����

�w

�t
� ��

�

�p

�z
� �

�
���w

�x� �
��w

�y�

�
A � �����

�w

�z
� �� �����

In the Section � we saw that
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This equation is classic heat conducting one� We �nd the self�similar
variables with the help of power geometry �v� Section 
�� These well�
known variables are
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Change of variables in the equation ���
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For this equation we have following boundary conditions�
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Separation of variables
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The solutions to these equations are expressed by means of Gauss error
function�
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By substitution of these solutions into the expression ������ we obtain
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where � and � are given in the form �������
It is evidently that the boundary conditions ������������� are satis�ed

since
erf ���� � ��

It is not di�cult to verify that in the case 	 � 
�� the formulas ���
� and
������ coincide with the corresponding asymptotics of the solution �������
This comparison shows that in ���
� C� � ��
 as 	 � 
��� We do not
make analogous comparison for 	 � 
�� since separation of independent
variables is impossible if we make use of oblique Cartesian coordinates�

�� On the power geometry

Let us give some information about the power geometry which we
concern in the present paper� The details are in monograph ����

We shall consider the boundary�value problems for the functions
x�� ���� xn of two independent variables x�� x�� Let X � �x�� ���� xn��



The di	erential monomial a�X� is a product of the usual monomial
c x�

r�x�
r����xn

rn � cXR and a �nite number of partial derivatives
�lxm��x

l�
� �x

l�
� � where c � const� R � �r�� ���� rn� � Rn�m � �� ���� n� l �

l�� l�� To each di	erential monomial a�X� there corresponds the vectorial
power exponent Q�a� � Rn according to the following rules� Q�cXR� � R�
Q��lxk��x

l�
� �x

l�
� � � �l�E� � l�E� � Ek� where Ej denotes the j�th unit

vector� Q�a�a�� � Q�a�� � Q�a��� a� and a� are di	erential monomials�
The �nite sum of di	erential monomials

f�X� �
X

ak�X� �
���

is called the di	erential polynomial� In Rn to the polynomial �
���� there
corresponds support S�f� � fQ�ak�g� which is the set of all vectorial power
exponents of its monomials� The convex hull ��f� of the support S�f� is
called the Newton�Bruno polyhedron of the polynomial ������ Its boundary

���f� consists of faces �
�d�
j where d � dim��

�d�
j �� To each face �

�d�
j there

corresponds truncated polynomial  f
�d�
j �X� �

P
ak�X� over k � Q�ak� �

�
�d�
j � Let Rn

�
denote the space dual to the space Rn� There exists the

scalar product hP�Qi � p�q� � � � � � pnqn for P � �p�� � � � � pn� � Rn
�
and

Q � �q�� � � � � qn� � R
n� For each face �

�d�
j � there exists such a vector

P � Rn
�
� that hP�Q�i � hP�Q�i for any Q� � �

�d�
j and Q� � � n ��d�

j � In Rn

the hyperplane hP�Qi � const � hP�Q�i is supporting to the polyhedron

��f� and the vector P is the exterior normal vector to the face �
�d�
j � i�e�

directed outside of ��f�� For example let us consider the system of three
di	erential equations

fi�X� � �� i � �� �� �� �
���

where fi�X� are di	erential polynomials� To each of them there

corresponds its support S�fi�� its polyhedron ��fi�� its set of faces �
�d�
ij

and truncated equations  f
�d�
ij �X� � � � The system of the equations

 f
�di�
iji �X� � �� i � �� �� �� �
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is called the truncated system� if a vector P � �p�� ���� p�� � R
�
�
is the

exterior normal vector to faces �
�di�
iji

of the polyhedrons ��fi� for i � �� �� ��
The corresponding truncated system �
��� exists for each vector P 	� ��

Let for x� � �� the system �
��� have a solution of the form xm �
x�m� �m��� � O�x�

�m����m � �� �� 
� where

� � x�x
���
� � � � �� and 
m � pm�p�� m � �� �� �� 
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Then the truncation of the solution

xm � x�m� �m���� m � �� �� 
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is a solution of the truncated system �
��� ���Ch�VI�� The truncated system

�
��� is quasihomogeneous� i�e� three faces �
�d��
�j� � �

�d��
�j� � �

�d��
�j� can be put into

one and the same linear subspace B 
 R� by means of parallel translations�
Let the space B be two�dimensional subspace with the basis B�� B� � R�

and we have for example the boundary conditions

x� � c�x
n�
� � x� � c�x

n�
� for x� ��� c�� c� � const �
���

for the truncated system �
���� Then this system has the self�similar
solution �
���� where the vector P � �p�� ���� p��� is orthogonal to the vectors
B�� B�� �n�E� �E�� �n�E� �E�� It is possible to to prove that p� � � if
we take an interest in the asymptotics for x� ���
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