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И.Л. Софронов и О. В. Подгорнова. Нелокальные спектральные 

граничные условия для волнового уравнения в движущейся среде 

 

Аннотация. Предлагается спектральный метод конструирования слабо-

отражающих граничных условий для волнового уравнения в движущейся 

среде. Изначально выписывается оператор точных граничных условий для 

дискретизованной задачи, который затем аппроксимируется так, что затраты 

на его реализацию невелики. В качестве базового алгоритма используется 

представление ядра оператора в виде суммы экспонент.  

 

 

Ivan L. Sofronov and Olga V. Podgornova. Spectral nonlocal boundary 

conditions for the wave equation in moving media 

 

Abstract. A spectral approach of generating low-reflecting boundary conditions 

for the wave equation in the moving media is proposed. Operator of boundary 

conditions is firstly derived in exact form for discrete equations, and then 

necessary approximation modifications are developed to obtain reasonable 

computational costs. The sum-of-exponentials representation of occurring temporal 

kernels is used as a key approach for such modifications.  
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Introduction 

 

The considered wave equation for the moving media occurs after the formal 

change of variables 

 

 'x x at   (1.1) 

 

in the wave equation 

 2( ) 0tt xx yy zzu c u u u     (1.2) 

 

where a  is a given constant speed, c  is the speed of sound, 0 a c  . It reads 

 

 2 2

' ' ' ' '2 ( ) 0tt tx x x x x yy zzu au a u c u u u      . (1.3) 

 

Here x is the axis looked to the right in the global (rest) coordinate system, and 'x  

is the similar axis in the local system of coordinates uniformly moving to the left. 

The latter system is usually associated with the body (wing) immersed in the 

uniform flow. 

 

Equation (1.3) describes propagation of the perturbations of the pressure or the 

velocity potential and can be immediately obtained from the Euler equations 

linearised about the uniform flow, cf. [Sofronov-JMAA] . 

 

In order to numerically simulate acoustic waves governed by (1.3) high-order finite 

volume or finite difference methods are used. These methods require “non-

reflecting” boundary conditions on open boundaries such that they could have 

really small reflections

. At least the error arising because of spurious reflections 

should not be greater than the approximation error in the interior. One of the best 

choices is exact (transparent) boundary conditions. The correspondent operators 

have been obtained and implemented for the wave equation in case of 0a  , 

spherical boundary, see [Sofronov-DAN] , [Sofronov-EJAM] , [Grote-Keller 

SIAM]  , [Hagstrom-AN] , and in case of 0a  , channel, see [BBS-AIAA] . In 

both cases a spectral approach is used to derive analytically the desired operators 

of the boundary conditions. Namely the Fourier method on the open boundaries: 

spherical functions or imaginary exponentials for 3D or 2D spherical boundary, 

and cosines for inflow/outflow cross-sections of the channel, respectively.  The 

larger number of the basis functions being taken into account the higher accuracy 

of a discrete counterpart (i.e. smaller amount of reflections). Each Fourier 

coefficient – which is a function of time and the normal spatial variable – is treated 

separately by recurrence formulae with respect to time. 

                                                 

 The term “non-reflecting boundary conditions” is an ideal used often in the literature for majority of proposed 

boundary conditions that do have reflections, in fact. In this sense the term “low-reflecting boundary conditions” 

clarified in the next sentence seems to be more relevant. 
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Possibility of use of the Fourier method is a key feature in the construction of the 

abovementioned operators of boundary conditions. Evidently this spectral 

approach permits to tune the accuracy of required discretization to the 

approximation error in the interior. In both spherical and plain cases the Fourier 

method was used owing to the fact that the governing equations have uniform 

coefficients on the transversal coordinate surfaces: spherical or polar coordinates 

for Eq. (1.2) outside 3D/2D sphere, and Cartesian coordinates for Eq. (1.3) in the 

channel to the left from the inflow cross-section and to the right from the outflow 

cross-section, see Figure 1, shaded regions extended to infinity (white regions 

correspond to computational domains).  

 

   

 

 

 

Unfortunately an immediate treatment of Eq. (1.3) with 0a   in the spherical 

geometry, see Figure 1 left, by the spectral approach similar to the case of 0a   –  

what is very desirable for the aeroacoustics in open domains – is not possible 

because of variable coefficients with respect to the azimuth angle: the Fourier 

method does not work. In this paper, we propose a way to find an approximate 

solution to this challenge. Idea consists of using a discrete counterpart of the 

problem from the beginning with successive derivation and efficient approximation 

of the “spectral” boundary operator in terms of a discrete Fourier basis. 

 

The outline of the paper is as follows. In Section 1 we formulate the problem, the 

two-dimensional case is considered for simplicity (polar coordinates). Section 2 

describes main steps of the algorithm of generating boundary conditions 

correspondent to the homogeneous case of zero velocity 0a  , a bridge to the 

inhomogeneous case 0a   is made. The latter is considered in Section 3. 

Numerical examples demonstrating accuracy of the approach are given in Section 

4.  Section 5 contains several conclusions. 

 

Note that idea to use discrete governing equations outside domain of interest was 

proposed by V. S. Ryaben’kii and it has been explored, in particular in [RTT-JCP]  

 

 

 

a 
 

Inflow Outflow 

Figure 1: Spherical (left) and plain-channel (right) geometries 
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to construct non-local ABCs for 3D wave equation. A principal discrimination of 

this and our approaches consists of ways of approximations of obtained operators 

that originally require too large computational resource. 

The method [RTT-JCP]  is based on the property of 3D wave equation to have 

lacuna, while our approach develops approximation of boundary operator by sum-

of-exponentials. The latter is more generic from the view of applications; at least 

we can treat 2D wave equation where the method [RTT-JCP]  does not work. 

 

1. Problem formulation and governing equations 

 

 

We omit the prime in Eq. (1.3) hereafter for a convenience, and restrict ourselves 

by the two-dimensional case; the approach is generalized straightforwardly for the 

three-dimensional case as well.  

Let us consider Cauchy problem for the equation 

 

 

2 2 2 2

0 0

0 1

2 ( ) , ( , )tt tx xx yy

t

t t

u au c a u c u f x y

u u

u u





      



 

 (2.1) 

 
supposing that exciting data functions are concentrated inside a finite domain D : 

 

0

1

supp ( , , ) ,

supp ( , ) ,

supp ( , ) .

f t x y D t

u x y D

u x y D

 





 

 
The original problem consists of constructing artificial boundary conditions ABCs 

on D  such that waves propagate through D  without reflection.  

A disk with a radius 0R is taken here as the domain D : 

 

  0, ,D r r R  . 

 

Remark. As usual in formulation of problem of generating ABCs one needs to 

point exactly the governing equations outside D  only. Consequently the aim is to 

replace these governing equations by proposed ABCs. No concretization of 

equations inside D  is required as a rule. 

  

We introduce the polar coordinates  

 

 cos , sinx r y r    (2.2) 

  

and rewrite (2.1) in the form: 
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 

   

2 2 2

2 2 2 2

2 2

sin
2 cos cos

sin 2
sin 0

tt tr t rr

r
r

u a u u c a u
r

u u
c a a u u

r r r




 


 




 
    

 

 
      

 

 (2.3) 

 

 

Equation (2.3) or more precisely some its difference counterpart outside the disk 

D  will be the main equation in our analysis.  The desired “low-reflecting” 

boundary conditions will be generated numerically. 

 

We will need also a simple local boundary condition for (2.3) on D . To generate 

it let us take the well-known condition 

1 1
0

2
t ru u u

c r
    

 

for the 2D wave equation and make the change of variables (1.1). After some 

algebra, putting 0t   in the time-dependent coefficients, we obtain the desired 

local condition: 

 

  
sin

cos 0.
2

t r

c
u a c u a u u

r r



       (2.4) 

 

 

2. Case a=0 

 

We reproduce here main elements of the approach [Sofronov-EJAM] of generating 

analytical transparent boundary conditions for the Eq. (2.3), 0a  . This will be a 

background to make a generalization for the case 0a  . 

  

Let us consider first the following auxiliary extended IBVP for a function 

( , , )m r t  on 2 \ D  

 

2 2

0 0

0 in \

0,  0

( ) ( )

0 as .

m m

tt

m m

tt t

m m

D

m

c D

t

r

  

 



   


  





 

 (3.1) 

  

Here  ( ) , 0,1,m ime m     is the basis of imaginary exponentials on D , ( )t  

is the Dirac’s delta function. 
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The problem has analytical solution expressed in the form  

  

 1

0

( )
( , , ) ( ) ( , )

( )

m m m rs
r t r t

R s
     

   
 m

K

K
 (3.2) 

where mK  is the modified Bessel function (see for example [A-S] ), 1  denotes 

the inverse Laplace transform 1 : ( ) ( )g s f t  . 

 

Evidently, the solution ( , , )u r t  of the IBVP with arbitrary Dirichlect boundary 

data ( , )Du t  ,  

 

2

0 0

0 in \

0,  0

( , )

0 as 

tt

tt t

DD

u u D

u u

u u t

u r



 



   


  





 

 (3.3) 

is written down as  

 ( , , ) m m

D

m

u r t u    (3.4) 

where   denotes convolution with respect to the time variable, and  m

Du  are the 

Fourier coefficients defined from the decomposition of 

  , ( ) ( )m m

D D

m

u t u t      

on the boundary D . 

 

Notice that the convolution kernel ( , , )m r t  is written in the factorization from 

 ,0( , , ) ( , ) ( )m m mr t r t     (3.5) 

with 

 .0 1

0

( )
( , ) ( , ).

( )

m m rs
r t r t

R s

  
  

 m

K

K
 

Coming back to the interior IBVP we propose to use (and we do use) the formula 

(3.4) to calculate function on the open boundary while developing a numerical 

algorithm for solving the reduced problem in D . Let us clarify this on the example 

of an explicit difference scheme. Denote by 1 0 1 1 0 0 1( , , ),  r r r r r R r      last three r -

grid points of the polar mesh in D . Suppose the solution is already known for the 

time-layers with p pt t  . Then using a second-order finite-difference scheme one 

can update the solution on the 1pt   time layer for all r  points except the boundary 

point 1r . The solution at point  1, pr t  is calculated by (3.4) taking Dirichlet data at 

0r  as  ,Du t  . Figure 2 schematically represents the algorithm. Thus we obtain 

the transition operator from the layer pt  to the 1pt  . 
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It is important to emphasize that the convolution kernel .0( )m t  is handled by the 

sum-of-exponentials approximations:  

  .0 .0

1

( ) ( ) exp ,  Re 0.
L

m m m m m

L l l l

l

t t a b t b


    

 

This representation allows the recursive evaluation of the convolution operator in 

(3.4) and dramatically reduces computational costs; see details in [Sofronov-

EJAM] . 

 
 

pt  

1r
 

1pt   

pt  

1pt   

pt  

0 0r R
 

pt  

1r
 

 

- Points with values updated by 

using the boundary condition.  

- Points with values updated by a 

finite-difference scheme in the 

interior,  

 

- Points with already known 

values, 

 

Figure 2:  Schematic representation of the update algorithm. 

3. Case a>0 

 

Now consider the equation (2.3) for 0a  . Similarly to (3.1) we have the following 

auxiliary IBVP 

 

2

0 0

0 in /

0,  0

( ) ( )

0 as 

m m

tt a

m m

tt t

m m

D

m

D

t

r

  

 



   


  





 

 (4.1) 

where tt a    denotes the wave operator (2.3) in moving media. 

Auxiliary “elementary” kernels 

 

Evidently there is no simple analytical formula for the solution in this case. 

Therefore let us consider the discrete counterpart for (4.1): 

 

2

0 0

0 in \

0,  0

0 as .

h m h m

tt h a h

m h m

h t ht t

m m

h h hD

m

h

D D

D

r

 

 



   


 





 

 (4.2) 
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I.e. we introduce the polar grid in 2 \ D  

0 0 1

0 1 1

0 1

0 2  

0  .

I

M M

p

r R r r

t t t

    

    

     

    

 

and suppose that we are able to calculate solution of (4.2)  grid function 

 
,

p
m m

h h i l
  with 0, ; 0, , 1; 0,1,i I l M p    . The details of the finite-

difference scheme will be discussed below.  

Evidently we have M  discrete problems (4.2) since the discrete basis on D  

consists of M  discrete functions   ,  0, , 1; 0, , 1m m

h h l
m M l M      .  

 

First, similarly to (3.3) we consider the discrete problem 

 

2

0 0

0 in \

0,  0

( , )

0 as 

h h

tt h a h

h

h t ht t

h

h DD

h

D u u D

u D u

u u t

u r



 



   


 





 

 (4.3) 

with arbitrary Dirichlet data ( , )h

Du t  . Its solution can be expressed in terms of the 

solution m

h : 

      
, 0,,

ˆ ,
pp pm

h h hi l mi l
m

u u   (4.4) 

where  
0,

ˆ
p

h m
u  are the Fourier-coefficients of  

0,

p

h l
u  in the basis  

1

0

M
m

h m





, i.e. 

      
0, 0,

ˆ ,
p p m

h h hl m l
m

u u   

and   denotes the discrete convolution  operator defined by the following rule 

  
0

.
p

p p p p

p

f f
 



    

Next we introduce the “elementary” kernels  ,
p

m k

h i
 which are the Fourier-

components of  
,

p
m

h i l
 in the basis  

1

0

M
m

h m





 numerated so that  

  

      
1

,

,
0

,
M

p p
m m n m n

h h hi l i l
n








  (4.5) 

 

here k n m   can have the values 0, 1, , ( 1)k M    .  

 

The following matrix notation clarifies the formula (4.5)  
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0 0,0 0,1 0,2 0, 1 0

1 1, 1 1,0 1,1 1, 2 1

2 2, 2 2, 1 2,0 2, 3 2

1 1, ( 1) 1, ( 2) 1, ( 3) 1,0 1

.

M

h h h h h h

M

h h h h h h

M

h h h h h h

M M M M M M M M M

h h h h h h











 

  

           

     
    
    
    
    
    
    

     

. (4.6) 

 

Remark. In case 0a   owing to the separation of variables the matrix in (4.6) is 

diagonal, i.e. , 0m k

h   if 0k  , cf. (3.5). 

Each elementary kernel  ,
p

m k

h i
depends now on temporal index p  only (at fixed 

radial index i ).  

 

Thus (4.4) can be rewritten in the form  

        
1 1

,

, 0,
0

ˆ .
M M m

pp m k k m

h h h hi l mi l
m k m

u u 
  



 

 
  

 
   (4.7) 

 

Formula  (4.7) will serve us to generate low-reflecting boundary conditions, cf. 

(3.5). 

Numerical aspects of the algorithm 

 

At first we say some words about the finite-difference scheme for (2.3). All 

derivatives are approximated by central second order finite differences. The 

scheme is implicit in time because of the mixed derivatives and at each time step 

we have to solve the linear system p p pA U F , where pU  is a solution on the 

current time step p . Matrix pA  has the form 1 2

p p pA I A A   , where I  is the 

identical matrix, 1

pA  corresponds to the r  derivatives, 2

pA  corresponds to the   

derivatives. To inverse the matrix pA  we use the simple iterations in form  

 
1k k

p p ky y
B A y F



 
   

with   1 2

p p pB I A I A   , ky  is thk  approximation of pU ,   is an iterative 

parameter. On each iteration step we have to inverse two three-diagonal matrices 

that are handled by the sweep method. 

 

We define the basis  
1

0

M
m

h m





 by imaginary exponentials on the equidistant grid: 

exp(2 / ),  0, , 1 m

h m M m M     . 

Discrete delta function h  is given simply by 

  
1,  0,

0,  otherwise.

p

h

p



 

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According to (4.7) we must calculate the kernels ,m k

h  for all time steps p  such 

that 
pt T , where T  is a calculation time. However, similarly to the update 

algorithm shown in Figure 2, it is enough to keep functions  ,
p

m k

h i
 only for single 

value of 1i  . Nevertheless these calculations of “elementary” kernels in (4.6) are 

very expensive. It requires also large memory resources to keep  ,

1

p
m k

h  as well as 

large computational costs to calculate the convolution in (4.7). 

 

That is why we have developed set of modifications to (4.7) in order to sharply 

reduce the computational costs. First we subdivide the passing waves onto low and 

high frequencies (with respect to spatial grid size). Therefore we decrease the 

summation limits in (4.7). Only low-frequency harmonics with 0,m M M   

are treated accurately with the non-local discrete boundary condition. For high-

frequency harmonics, discretization of the local boundary condition (2.4) is used. 

The new limits correspond to the truncation of the matrix h , i.e. instead of 

M M  matrix we consider M M  matrix.  

 

Next we introduce restriction on the summation index k : let k  belong to the 

interval , ,k K K    simply throwing away any others k .  

 

We will see in the examples of numerical simulation that such approximations of 

the full matrix in (4.6) do have a sense: it is sufficient to take small enough 

 and K M  to produce accurate results. 

 

Thus we really need only a band submatrix h  in (4.6): 
0,0 0,1 0,

1, 1 1,0 1,1

2, 1

,

, , 1 ,0 ,max( , )

0 0

0

0

0
.

0

0

0 0

0 0

K

h h h

h h h

h

K K

h

h

M K M M M K M

h h h h







 

      

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Finally, and this is the most valuable modification to reduce computational costs, 

we use a technique developed in [AES-CMS]  and approximate each discrete 

convolution kernel by sum of exponentials: 

      
,

, , , , ,

1 1
1

,  with 1,
m kL

pp p
m k m k m k m k m k

h h l l l

l

a q q


    (4.8) 

here p  is the power in the last term. 
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This representation allows for the recursive evaluation of the convolutions in (4.7).  

  

In practice we use 
, 30m kL   for large enough computational time and therefore we 

need calculate in advance and keep only about 
,2 m kL  complex numbers to 

represent each “elementary” kernel. So the cost of our approximation to (4.7) is not 

too large: more exactly the requirements on memory are estimated by ( )O LM K   

of real values and the computational cost is estimated by ( )O LM K   operations per 

time step, 
,max( )m kL L . 

 

Incorporation of the modified formula (4.7) into a difference scheme for interior 

problem in order to update solution at the external open boundary is made in the 

same manner as described in the previous section. The only discrimination is that 

we must treat a band matrix of “elementary” kernels (width 2 1K  ) instead of 

simply diagonal one (the parameter 0 for 0K a   ) 

 

According to the algorithm described in [AES-CMS]  the approximation (4.8) can 

be obtained by knowledge of  
1

p

h  at 0,1, ,2p L . Thus the extended auxiliary 

problems are computed only for several first time steps. 

4. Numerical examples 

 

In order to avoid singularities in the origin we consider the annular domain 

1 2r  . We impose homogeneous Dirichlet boundary conditions at 1r   and our 

discrete non-local boundary conditions at 2r  . The velocity 0.2a   and 1c  . 

Two equidistant meshes are used: coarse one with 

0.05,  2 /64,  0.03hr h ht    , and fine one with 

0.025,  2 /128,  0.015hr h ht    .  

 

In the simulations we consider the equation (2.3). The initial data is taken to zero 

and the source is introduced as a right-hand side in equation (2.3) having the form 

( , , ) ( ) ( ) ( ).sf r t h t g r r p    

Here ( )h t  is so-called Ricker signal with the central frequency 0 2f  , see Figure 3 

(left)  

 
2 2

0( 1)2

0( ) 2 ( 1) 1 ,
f t

h t f t e
  

    

the source distribution is on Figure 3 (central) with 
2 2 2/( ) ,  ,  0.4

( )
0, otherwise

r d re r d d
g r

   
 


 

and the frequency dependence of the source is on Figure 3 (right) 

  sin sin 2 sin3 sin5 sin7 .p            
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Figure 3: time dependency, Ricker function (left); distribution on r variable 

(central);  -distribution (right). 

 

We compare calculated solutions with the reference solution 
,E RS  obtained on the 

extended area 1 10r   and on the very fine mesh so that this discrete solution can 

be identified with the exact.  

 

Below we represent the results in continuous norm C  measured over our annular 

domain 1 2r  . Note that the errors for 2L -norm have the same orders and 

behavior.  

 

In Figure 4 (top) we represent the relative errors of the solutions ES  obtained on 

the extended areas, i.e. the errors that are due to the approximations of the 

difference scheme on our grids. 

 

Then in Figure 4 (bottom) we represent the relative error of the solutions WRBCS  

with low-reflecting boundary conditions in form (4.7) compared with the solution 

computed on the extended domain on the same mesh. We set 22, 2M K    for 

the coarse mesh and 32, 2M K    for the fine one. The results are pretty well: 

“boundary” errors are much less than the approximation errors (20 to 30 times) and 

don’t affect the resulting error. 

 

Note that if we use the local boundary condition (2.4) at 2r   then the errors have 

the values compared with the solution, i.e. the errors are about 100%. 

 

The demonstrated results confirm that K   can be small enough compared to K . In 

Figure 5 2L - norm of  ,

1

p
m k

h  in logarithm scale is shown. We take here 24,  m L -

norm is calculated with respect to 0, , Tp P , correspondent to 5 seconds. One 

can observe a sharp peak near 0k  . 
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Figure 4: relative errors of the solution calculated on extended domain, dashed line 

is for the coarse mesh ( 2 /64h  ), solid line is for the fine mesh ( 2 /128h  ). 

Top figure corresponds to the reference discrete solution on the extended region: 

, /E E R E CC
S S S , bottom to the solution with our boundary condition at 2r  : 

/E LRBC E CC
S S S  

We summarize the influence of the parameters ,M K   on relative errors in the 

tables below. Table 1 results correspond to the coarse mesh, Table 2 to the fine 

one. 
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The reader can compare these values with those on the Figure 4, right: 32.8 10  

coarse and 47.5 10  fine grids, respectively. 

 

 8M    16M    24M    32M     

1K    5.5E-02 2.7E-02 2.2E-03 1.9E-03 

2K    5.5E-02 2.8E-02 1.2E-03 3.5E-04 

Table 1: Relative errors for the coarse mesh for the different sizes of the matrix h  

band. 

 

 8M    16M    32M    64M     

1K    5.6E-02 2.9E-02 2.4E-03 2.4E-03 

2K    5.6E-02 3.0E-02 7.6E-04 6.3E-04 

Table 2: Relative errors for the fine mesh for the different sizes of the matrix h  

band. 

It is important to notice that we use the approximation representation (4.8) to 

reconstruct the kernels  ,
p

m k

h  for 0,1, , Tp P  where TP  is large enough. 

According to the algorithm for finding coefficients , ,,m k m k

l la q  in (4.8) we need 

function ,m k

h on a short time interval only, i.e. 0,1, , Lp P , where 2 60LP L  . 

Of course such construction is not correct for arbitrary medium. For example it is 

obvious that we cannot apply such procedure for the medium with some 

inhomogeneous in some distance from the external boundary. But our medium has 

no obstacles and we don’t expect some impulse arrived from outside. 

 

Another difficulty with usage of (4.8) occurs while considering large values of K  . 

If  k  is small enough the kernel looks like one presented in Figure 6 (top.). Such 

kernels are approximated very well by the sum-of-exponentials (4.8). But if k  

increases the kernel becomes like one from Figure 6 (bottom). It is impossible here 

to construct the approximation (4.8) with decaying exponentials at short time. 

Notice that amplitude of these kernels decreases at t  goes to infinity. Fortunately 

for the case of our coarse and fine meshes we don’t need to deal with such 

“abnormal” kernels. Pretty well accuracy is achieved without considering kernels 

of these types. 

 

If we need finer meshes we must consider “abnormal” kernels as well. Let us 

discuss two possible ways how to avoid the difficulties with the approximation.  

Evidently the nature of this oscillation behavior is owing to the delta-function 

Dirichlet boundary data while calculating the elementary kernels, see (4.2). 

Therefore the first way is to work with submeshes. I.e. we can try to find the 

kernels on finer sub meshes with smooth ”delta” function h originated from the 

main grid. Thus the kernels will be smoother and could permit desired 



 16 

approximations. The second way consists in using more sophisticated finite-

difference scheme in (4.2) that gives smaller oscillations for discontinuous initial 

data.  

 

Figure 5: 2L - norm of  ,

1

p
m k

h , 4m  , versus distance k . Velocity a=0.2  (top) and 

a=0.7 (bottom). 
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Figure 6: Amplitude of “elementary” kernels  ,

1

p
m k

h  for 4m  ; 0k   (top) and 

4k   (bottom). 
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5. Conclusions 

 

In this paper we have introduced the novel approach of constructing discrete 

transparent boundary condition for the wave equation in the moving media. 

Necessary approximation modifications of exact formula leading to low-reflecting 

boundary conditions are proposed. These modifications permit to rapidly calculate 

the boundary operator. Numerical examples show that the error due to reflections 

is much less than the error due to finite-difference scheme. 

 

Also the described algorithm may be considered as a generic method to construct 

low-reflecting boundary conditions for the different kind of equations and 

boundary shapes. We already have some results concerning the wave equation in 

the layered media and we think about another applications. 

 

As mentioned above there are some open questions while approximating the 

kernels. They required more detailed investigation and this will be a part of our 

future work.  
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