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1. Introduction
The paper “Comma-free codes” [8] by Golomb, Gordon, and Welch

opened a new direction in coding theory: investigation of combinatorial
problems of word synchronization for block codes. Although comma-
free codes were introduced one year earlier by Crick, Griffith, and Orgel
[3], paper [8] contains essential mathematical results for these codes:
like for example an upper bound on the codes’ size and a proof that,
for any alphabet of size q, this bound is tight when n, the length of
the codewords, is odd and sufficiently small. Numerous efforts were
overtaken to prove that this bound is tight for each odd length and this
task was successfully completed by Eastman in [5]. On the other hand,
it was proved in [8] that this bound cannot be attained for even n if q is
large compared to n. The effort to strengthen Eastman’s result gave rise
[12], [22] to an investigation of a very interesting combinatorial problem
on the maximum number of pairwise comparable vectors of length n over
the alphabet {0, 1, ∗}. Section 2 contains the main results for comma-
free codes, ideas of their proofs, and open problems.

∗The research was supported by The Russian Foundation for Basic Research, grant 01-01-
00035, and by the NRC COBASE research grant INT-00023241.
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The natural generalization of comma-free codes to codes with given
comma-free index or code separation was caused by considering word
synchronization in erroneous channels. The author in [17] showed how
it is possible to combine error-correcting and word-synchronization prop-
erties. In particular, there exist binary codes C of length n with mini-
mum Hamming distance 2s+1 and comma-free index 2s+1 which have
asymptotically minimal redundancy

n− log2 |C| ∼ (s + 1) log2 n for fixed s ≥ 1 and n →∞.

The high encoding and decoding complexity of these codes makes the
investigation of the comma-free index of cosets of linear [n, k] codes of
essential interest. However, Bassalygo proved in [1] that the redundancy
r = n − k of such codes with comma-free index ρ must be at least√

ρn. For finding cosets of linear codes whose redundancy is close to this
bound, the author introduced and considered in [19] a combinatorial
problem on the difference systems of sets. The problem is to find a
sequence (or a code of size 1) of length n over the alphabet {0, 1, ..., q−
1, ∗} which has a comma-free index ρ and a minimal number of letters
distinct of ∗ (here the letter ∗ corresponds to information symbols of a
codeword and is disregarded when calculating the Hamming distance).
The older results, some new results, and the main open problem in this
direction are described in Section 3.

Finally, it is worth noticing that consideration of (block) comma-free
codes gives rise to the notion of bounded synchronization delay of vari-
able length codes. This notion was independently introduced and in-
vestigated by the author in [13], [14], [15] and by Golomb and Gordon
in [10]. In this case there exists an integer s such that knowledge of s
consecutive letters of any sequence of codewords allows one to uniquely
determine at least one place (comma) separating two codewords. Gilbert
and Moore in [6] considered the property of bounded decoding delay of
variable length codes. This property suggests the existence of a decoding
automaton or a machine with a finite number of states which, starting
from a special initial state, decodes any sequence of code words (in the
absence of errors). The bounded synchronization delay property of a
code is equivalent [14], [15] to the existence of a self-adjusting decod-
ing automaton. Such an automaton possesses an additional non-error
propagation property: its initialization in any state can result in wrong
decoding of a bounded number t of initial codewords. In [16], [18], the
author introduced and investigated codes without overlaps whose charac-
teristic property is the existence of decoding automaton invariant with
respect to the initial state (or self-adjusting decoding automata with
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t = 0). Some results as well as the main open problem for codes without
overlaps are given in Section 4.

2. Comma-free codes
Let Fn

q be the set of words (sequences) of length n over the alphabet
Fq = {0, 1, ..., q − 1}. For any x = x1 · · ·xn ∈ Fn

q , y = y1 · · · yn ∈ Fn
q ,

and i = 1, ..., n− 1, we set

Ti(x, y) = xi+1 · · ·xny1 · · · yi (1)

and call Ti(x, y) a splice of x and y. In particular, Ti(x, x) is a cyclic
shift of x. A code C ⊆ Fn

q is called comma-free, if any splice of two
codewords is not a codeword. Let M(n, q) be the maximum size of a
comma-free code C ⊆ Fn

q .

Theorem 1 (Golomb, Gordon, Welch [8], 1958)

M(n, q) ≤ B(n, q) =
1
n

∑
µ(d)qn/d (2)

where the sum is taken over all divisors d of n and µ(d) is the Möbius
function.

The proof of Theorem is based on the fact that B(n, q) is the number
of words x ∈ Fn

q of period n which are not pairwise equivalent with re-
spect to their cyclic shifts. By definition, a comma-free code can contain
only one representative of the equivalence class. In [8] it was also proved
that (2) is attained for odd n ≤ 15 and it was assumed that (2) is tight
for all odd n.

This last assumption was proved by Eastman [5] using a graceful
construction. In fact, his inductive construction gives a comma-free code
En (n is an odd integer) which belong to the set Fn∞ of words of length
n over the alphabet of all nonnegative integers, {0, 1, ... }. Initially,
E1 = F 1∞ is a trivial comma-free code. To describe the inductive step
we need some definitions. A sequence z = (z1, ..., z2k+1) ∈ F 2k+1

q of
an odd length 2k + 1 ≥ 3 is called a brick, if z1 > z2, z2k ≤ z2k+1,
and z2i ≤ z2i+1 implies z2i+2 ≤ z2i+3 for any 1 ≤ i ≤ k − 1 when
k ≥ 2. For any brick z = (z1, ..., z2k+1) ∈ F 2k+1

q we define the numerical
value v(z) =

∑2k+1
i=1 ziq

2k+1−i. For any odd n ≥ 3, a sequence x ∈ Fn
q

is included to En if there exists an odd m ≥ 1 such that x can be
represented as a concatenation of m bricks z(1), ..., z(m) for which e(x) =
(v(z(1)), ..., v(z(m))) ∈ Em. (The uniqueness of the representation, if it
exists, follows from the definition of a brick.) As an example, note that
x ∈ 1001110110100 ∈ F 13

2 can be represented as a concatenation of three
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bricks 10011, 101, and 10100, and e(x) = (19, 5, 20) ∈ F 3∞. Since e(x) is
a brick and since e(x) ∈ E3 we conclude that x ∈ E13.

Let En
q = En

⋂
Fn

q . As a result we have:

Theorem 2 (Eastman [5], 1965) For any q ≥ 2 and any odd n

En
q is a comma-free code and |En

q | = B(n, q). (3)

Another construction of maximum comma-free codes of odd length
was presented later by Scholtz [21]. His construction was iterative and
applicable to codes of variable length. In the meantime in [8] it was
noted that, in general, (2) is not tight for even n and it was proved
that M(2, q) = b1

3q2c whereas B(2, q) = q(q−1)
2 . Thus, for n = 2, (2)

is tight only if q = 2 or q = 3. The same situation holds for n = 4.
Moreover, Jiggs proved in [12] that M(4, 4) = 57 whereas B(4, 4) =
60. This case was of a special interest in the connection with genetic
applications considered in [3], [9].

One of the results of [8] can be formulated as follows: for any even n,
e.g. n = 2l, there exists a minimal number m(l) such that M(n, q) <
B(n, q) if q > m(l). In particular, it is shown that m(1) = m(2) = 3.
In [8] it was also shown that m(l) ≤ 3l + l, and in [12] it was proved
that m(l) ≤ 2l + l. The combinatorial problem that helped to prove the
previous inequality was refined in [22] allowing for better upper bounds
on m(l).

In the current and following sections we use the extended alphabet
F q = {0, 1, ..., q−1, ∗} and denote by F

n
q the set of words (sequences) of

length n over the alphabet F q. We say that a binary word x = x1 · · ·xn ∈
Fn

2 covers y = y1 · · · yn ∈ Fn
2 if xi ≥ yi for all i, i = 1, ..., n, and if there

exists a position where this inequality is strict. This definition can be
extended to words from F

n
2 if the condition xi ≥ yi is only applied to

the positions i where xi 6= ∗ and yi 6= ∗. We call two words from Fn
2 or

F
n
2 comparable if one of the words covers the other. It is easily seen that

the maximum number of pairwise comparable words of Fn
2 equals n+1;

for instance, {000, 001, 011, 111} forms a maximal set for n = 3. We
denote by t(n) the maximum size of a set of pairwise comparable words
of F

n
2 . In particular, {000, 0∗1, ∗10, 10∗, 111} forms a maximal set of

pairwise comparable words of F
3
2 and t(3) = 5. The following statement

in fact shows that m(l) ≤ t(l) + l.

Theorem 3 (Tang, Golomb, Graham [22], 1987) For even n = 2l

M(n, q) < B(n, q) if q > t(l) + l. (4)
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The idea of the proof is based on the fact that if C ∈ Fn
q is a comma-

free code and |C| = B(n, q), then C contains a subset D of
(
q
2

)
repre-

sentatives from each cyclic class of the type

a0l−1b0l−1 where 0 ≤ a < b ≤ q − 1. (5)

The main argument is that, for any a, b ∈ Fq, a 6= b, any r, r = 1, ..., l,
and any s, r = 1, ..., l, the set D cannot contain simultaneously the
following four representatives:

w1 = 0r−1y0l−1a0l−r, w2 = 0r−1b0l−1z0l−r,

w3 = 0s−1u0l−1b0l−s, w4 = 0s−1a0l−1v0l−r,

because the words w1w2 and w3w4 would contain 0l−1a0l−1b0l−1 and
0l−1b0l−1a0l−1 as subwords and hence they would contain all cyclic shifts
of (5). In particular when r = s there exists at most one element of Fq

which occurs in words belonging to D at both positions r and l + r.
Since r takes l values in the set E of such elements, we have |E| ≤ l. For
any a ∈ Fq \E consider a word

x(a) = x
(a)
1 x

(a)
2 · · ·x(a)

l ∈ F
l
2

where x
(a)
r = 0, if a occurs in words of D at position r; x

(a)
r = 1, if a

occurs in words of D at position l + r; and x
(a)
r = ∗, if a does not occur

in words of D on the positions r and l+ r (r = 1, ..., l). By construction,
all vectors of the set {x(a) : a ∈ Fq \E} are pairwise comparable. Indeed,
for any a, b ∈ Fq \E, a 6= b, a cyclic shift of (5) belongs to D and hence
there exists r, r = 1, ..., l, such that either x

(a)
r > x

(b)
r or x

(a)
r < x

(b)
r ;

converse inequality on another position s is not possible by the main
argument above.

Results on t(l) presently known are described in the paper by van Lint
[23] with full proofs. An upper bound

t(l) < lc log2 l (6)

with a constant c > 1 was proved in [22]. Using the known recurrence

t(l) ≤ t(l − 1) + t(b l − 1
2
c) (7)

van Lint [23] proved (6) with c = 1. Note that using (6) in (7) we get

t(l) ≤ t(l − 1) + t(b l − 1
2
c) ≤ (l − 1)c log2 l

(
1 +

2c

(l − 1)2c

)
.
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In fact, this shows that c = 1/2 is the minimum constant in (6) which
can be obtained by induction from (7). Moreover, we have

t(l) < l1/2 log2 l for l ≥ 8. (8)

Indeed, using the first values t(1) = 2, t(2) = 3, t(3) = 5, t(4) =
6, t(5) = 8 and the recurrence (7) one can check that (8) is true for
8 ≤ l ≤ 16 (and is not true for smaller l) and then can apply induction
beginning from l = 17, since (1 − 1

l )
1/2 log2 l(1 +

√
2

l−1) < 1 already for
l ≥ 7.

The best known lower bound

t(h2 + h + 1) ≥ h(h2 + h + 1) + 2 for any h = 1, 2, ... (9)

was found in an unpublished paper by Collins, Shor, and Stembridge
(1984). The corresponding set C ∈ F

h2+h+1
2 of pairwise comparable

words consists of the all-zero and all-one words and of all h2 + h + 1
cyclic shifts of each of the words

z(i) = 1z
(i)
0 z

(i)
1 · · · z(i)

h2+h−1
, i = 0, 1, ..., h− 1, (10)

which we define as follows. Given j, j = 0, 1, ..., h2 +h−1, let integers ξ
and η, 0 ≤ ξ ≤ h−1, 0 ≤ ξ ≤ h, be uniquely defined by j = ξ(h+1)+η.
Then z

(i)
j = 0, if ξ ≥ i and ξ + η ≤ h − 1; z

(i)
j = 1, if ξ ≤ i − 1 and

ξ + η ≥ h− 1; z
(i)
j = ∗, otherwise. In particular, for h = 3 (and l = 13)

we have

z(0) = 1 0 0 0 ∗ 0 0 ∗ ∗ 0 ∗ ∗ ∗
z(1) = 1 ∗ ∗ 1 1 0 0 ∗ ∗ 0 ∗ ∗ ∗
z(2) = 1 ∗ ∗ 1 1 ∗ 1 1 1 0 ∗ ∗ ∗

A detailed proof of the fact that this elegant construction gives pair-
wise comparable words was published by van Lint [23]. The main open
problem is whether there exists a constant c, c ≥ 3/2, such that

t(l) = O(lc) as l →∞. (11)

Since (2) is, in general, not attained for even n, a problem of finding
the asymptotic behavior of M(n, q) for a fixed n and q → ∞ was also
investigated in [8]. Jiggs proved in [12] that for a fixed n ≥ 5 and q →∞

2qn

en
. M(n, q) . qn

n
.
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The author assumes that the bound (2) is tight in the asymptotic sense
typical for coding theory, that is,

M(n, q) ∼ qn

n
when q (q ≥ 2) is fixed and n →∞.

However, this problem is still open.

3. Codes with given comma-free index
The notion of comma-free codes gives natural rise to a parameter

ρ(C) of a code C ⊆ Fn
q which is called the comma-free index or code

separation and is defined as follows: ρ(C) is the minimum Hamming
distance d(Ti(x, y), z) where Ti(x, y) is a splice defined by (1). The
minimum is taken over all x, y, z ∈ C, and i = 1, . . . , n − 1. We extend
this definition to codes C ⊆ F

n
q by assuming that in finding the Hamming

distance between two words one does not take into account the positions
where letters ∗ occur. If a word z ∈ F

n
q forms a code (of size 1) with a

comma-free index of at least ρ then we call z a comma-free sequence of
index ρ or simply a comma-free sequence if ρ = 1. In particular, every
word (10) is a comma-free sequence.

Let M(n, q, ρ) be the maximum cardinality of a code C ⊆ Fn
q with

ρ(C) = ρ. Since a comma-free code is defined as a code C with ρ(C) = 1,
we have M(n, q, 1) = M(n, q).

Theorem 4 (Levenshtein [17], 1969) For any fixed ρ ≥ 1,

M(n, 2, ρ) & 1
c(ρ)e

2n

n
as n →∞ (12)

where c(ρ) is a constant (in particular, c(1) = c(2) = 1, c(3) = 14,
c(4) = 18).

Note that as a result we have M(n, 2) & 2n

en over even n →∞.
Codes C ⊆ Fn

2 which were used to prove Theorem 4 have redundancy
n − log2 |C| which grows only by log2 n when n → ∞. However, their
encoding and decoding is complex. Therefore, it is natural to consider
the same problem for cosets of linear [n, k]-codes C ⊆ Fn

q . (Any linear
code contains the zero vector and, hence, its comma-free index equals
zero.) Considering linear codes we tacitly assume that q is a prime power
and Fq is the Galois field GF (q). The following result shows that the
redundancy r = n − k of a linear [n, k]-code whose coset has a given
comma-free index should be significantly larger than those mentioned
before.
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Theorem 5 (Bassalygo [1], 1966) If q is a prime power and a coset of
a linear [n, k]-code C has comma-free index ρ, then

r = n− k ≥ √
ρn. (13)

The proof of this statement is based on the fact that for a coset of
a linear [n, k] code over GF (q) there exist k information positions and
r = n−k check positions such that any check position is a linear function
over GF (q) of the previous information positions. If r(r−1) < (n−1)ρ,
then one can show that there exists an i, 1 ≤ i ≤ n − 1, and words
x, y, z ∈ C such that d(Ti(x, y), z) < ρ. Therefore, r(r − 1) ≥ ρ(n − 1)
which implies (13).

For constructing cosets of linear [n, k]-codes C ⊆ Fn
q whose redun-

dancy is close to the bound (13), the author introduced and investigated
in [19] the following combinatorial notion. A collection Q of q disjoint
subsets Qi of Nn = {0, 1, . . . , n− 1}, i = 0, 1, ..., q− 1, is called a differ-
ence system of sets (DSS) of index ρ if for each number s, s = 1, ..., n−1,
the equation

x− y = s mod n (14)

has at least ρ solutions for x ∈ Qi, y ∈ Qj , i, j = 0, 1, ..., q−1, i 6= j. (It
is worth to underline that x and y should belong to different subsets.)

For a collection Q of disjoint subsets Qi of Nn = {0, 1, . . . , n−1}, i =
0, 1, ..., q − 1 (in particular, for a DSS) consider a sequence

z(Q) = z0z1 · · · zn−1 ∈ F
n
q (15)

where zi = ∗, if i /∈ ⋃q−1
i=0 Qi, and zi = j, if i ∈ Qj (i = 0, 1, ..., n− 1). It

is easily seen that such a collection Q is a DSS of index ρ if and only if
z(Q) is a comma-free sequence of index ρ. As an example, note that the
collection Q of subsets Q0 = {0, 9}, Q1 = {1, 18}, Q2 = {3, 14} of N25

form a DSS of index 1. The corresponding sequence

z(Q) = 01 ∗ 2 ∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ ∗ ∗2 ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∈ F
25
3 (16)

is a comma-free sequence.
For a DSS Q of index ρ, consider a code C(Q) ⊆ Fn

q of redundancy
|⋃q−1

i=0 Qi| whose information positions are in the places, where z(Q) has
∗, and the remaining positions equal 0. From the definition of a DSS of
index ρ, the shift of C(Q) ⊆ Fn

q on the vector obtained from z(Q) by
replacement all ∗ for zeros gives a comma-free code of index ρ. For this
reason we have

∑q−1
i=0 |Qi| being the redundancy of a DSS. We denote by
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rq(n, ρ) the minimum redundancy of all DSS of index ρ with parameters
n and q. Such a DSS with redundancy equal to rq(n, ρ) is referred to as
optimal.

A DSS of index ρ is called perfect if for every number s, 1 ≤ s ≤ n−1,
equation (14) has exactly ρ required solutions. A DSS is called regular if
all subsets Qi are of the same size. We use the notation DSS-(n,m, q, ρ)
for a regular DSS of index ρ with q subsets of size m of the set Nn; its
redundancy equals r = qm. In particular, the sequence (16) generates
a regular perfect DSS-(25, 2, 3, 1). Any cyclic difference set (v, k, λ) (see
[2]) is a perfect regular DSS-(v, 1, q, ρ) with q = k and ρ = λ. Thus a
DSS can be seen as a generalization of cyclic difference sets.

Theorem 6 (Levenshtein [19], 1971) For any DSS with parameters n,
q, and ρ,

rq(n, ρ) ≥
√

qρ(n− 1)
q − 1

(17)

with equality if and only if the DSS is perfect and regular.

It follows that any perfect regular DSS is optimal. Note also that the
condition n = (q − 1)qm2/ρ + 1 is necessary for attainability of (17); in
particular, ρ must be a divisor of (q − 1)qm2.

Theorem 7 (Levenshtein [19], 1971)

r2(n, 1) = d
√

2(n− 1)e, r2(n, 2) = d2√n− 1e. (18)

In particular, for any n ≥ 2 and τ0 = d
√

n−1
2 e, τ1 = dn−1

2τ0
e, the sets

Q0 = {τ0 + 1, 2τ0 + 1, ..., τ1τ0 + 1} and Q1 = {1, 2, ..., τ0}
form an optimal DSS with q = 2 and ρ = 1 which is perfect and regular
if n = 2m2 + 1. For n = 13 we have τ1 = 3, τ0 = 2 and get the following
example of a comma-free sequence

1 1 0 ∗ 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗
It is interesting to note that even though every word in (10) of length
n = h2 + h + 1 is a comma-free sequence, non of them is optimal for
h ≥ 3.

The case q ≥ 3 remains unsolved despite the example of a perfect
regular DSS-(25, 2, 3, 1) shown above. The main open problem is to
prove the following assumption:

rq(n, 1) = O(
√

n) for a fixed q ≥ 2 as n →∞. (19)
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Note that r2(n, 1) ∼ √
2n holds by (18).

Cyclic difference sets (v, k, 1) (or DSS-(v, 1, k, 1)) are known to exist
for parameters k = t + 1 and v = t2 + t + 1 where t is a prime power.
There exists a very possible conjecture that these are the only valid
parameters (see [4]). This implies that rt+1(t2 + t + 1, 1) ≤ t + 1 if t is
a prime power. Note that from (17) it follows that

rq(n, 1) &
√

n as q and n →∞. (20)

Thus, for the known cyclic difference sets, the asymptotic bound (20) is
tight, however, for q grows as

√
n when n → ∞. The following result

allows one to construct asymptotic optimal comma-free sequences with
a slower growth of q as a function in n.

Theorem 8 If there exists a DSS-(v, 1, q, ρ), 2 ≤ q < v, then, for any
h = 2, 3, ... , there exists a regular DSS-(n,m, q, ρ) with n = vh and
m = qh−1

q−1 .

To describe the construction denote D = {a0, a1, ..., aq−1} a q-subset
of Nv = {0, 1, ..., v − 1} which forms a DSS-(v, 1, q, ρ). We can assume
that 0 /∈ D. For any i = 0, 1, ..., q − 1 and t = 1, ..., h, let

Qi,t = {
h∑

j=t

xjv
j−1 : xt = ai, xj ∈ D when j = t + 1, ..., h}.

The required DSS-(vh, qh−1
q−1 , q, ρ) consists of the sets

Qi =
h⋃

t=1

Qi,t, i = 0, 1, ..., q − 1. (21)

Using the existence of DSS-(t2 + t + 1, 1, t + 1, 1) which happen to be
the known cyclic difference sets we get the following statements.

Corollary 1 For any prime power t and integer h there exists a regular
DSS-(n,m, t + 1, 1) with n = (t2 + t + 1)h and m = (t+1)h−1

t .

Corollary 2 If q = t + 1 and t runs prime powers, then for the subse-
quence of n = (t2 + t + 1)t

rq(n, 1) .
√

en and q ∼ ln n

2 ln(lnn)
. (22)

Corollary 2 follows from Corollary 1 since for h = t we have n ∼ t2te
and mq ∼ tte as t → ∞. For the sequence q = t + 1 there exists also a
subsequence of n which implies rq(n, 1) ∼ √

n for a slightly faster growth
of q as a function in n.
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4. Codes without overlaps
A finite (or countable) code C ⊂ ⋃

n=1 Fn
q is called a code without

overlaps [16], [18] if two conditions are satisfied. At first a prefix of a
codeword, which is not empty and does not coincide with this codeword,
is not a suffix of a codeword and secondly, for variable-length codes, a
codeword does not contain another codeword as a subword. Any code
C ⊂ Fn

q without overlaps is a comma-free code. Moreover this code has
the strongest non-error propagation property which is that an error in a
codeword or in a state of a suitable decoding automaton has no influence
on decoding of subsequent codewords.

Let L(n, q) denote the maximum cardinality of a code C ⊂ Fn
q without

overlaps. For any H ⊂ Fm
q the code CH ⊂ ⋃

n=1 Fn
q with the set H of

synchronizing suffices is defined as the set of all words c such that for
any h ∈ H the word hc contains elements of H only in the first and last
m positions. Note that some words of CH can have length smaller than
m. Codes with one synchronizing suffix (|H| = 1) were investigated by
Gilbert in [7]. In the case of suffix 0m these are codes without overlaps
which we denote by G0,m

q . Let G0,m
q (n) = G0,m

q
⋂

Fn
q and G(n, q) =

max |G0,m
q (n)| where the maximum is taken over all m ≥ 1. This results

in L(n, q) ≥ G(n, q).

Theorem 9 (Gilbert [7], 1960, Levenshtein [16], 1964). For a fixed
q ≥ 2,

G(n, q) & q
−q
q−1 ln q

qn

n
as n →∞ (23)

and G(n, q) & q − 1
eq

qn

n
over the subsequence n =

qi − 1
q − 1

, i = 1, 2, . . . .

(24)

Let Fn,w
2 be the subset of all words of Fn

2 which have w ones. For any
relatively prime n and w, a maximum code C ⊂ Fn,w

2 without overlaps
was constructed by Markov and Noskov in [20]. Their construction is
based on the remarkable fact that every cyclic class of words of Fn,w

2
contains a unique representative x ∈ Fn,w

2 such that for any of its prefices
y ∈ Fn′,w′

2 , 1 ≤ n′ < n, there holds wn′ > w′n. This maximum code
consists of all

(
n
w

)
/n such representatives and is unique up to writing

code words in the reverse order.
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For a set C ⊂ ⋃
n=1 Fn

q , denote by Ĉ the set of all words from
⋃

n=0 Fn
q

which contain no word of C. Consider the generating functions

f(C, z) =
∑

n=1

|C(n)|zn and g(C, z) =
∑

n=0

|Ĉ(n)|zn

where C(n) = C ∩ Fn
q and Ĉ(n) = Ĉ ∩ Fn

q . The author proved in [18]
that for any code C ⊂ ⋃

n=1 Fn
q without overlaps

g(C, z)(1− qz + f(C, z)) = 1.

The following statement is a consequence of this equality.

Theorem 10 (Levenshtein [18], 1970)

L(n, q) ≤
(

1− 1
n

)n−1 qn

n
<

1
e

qn

n− 1
. (25)

The main open problems are to strengthen bounds (23)–(25) and
prove or contradict the conjecture that L(n, q) = G(n, q).

To investigate this conjecture we present a new class of codes without
overlaps which are generalizations of the Gilbert codes G0,m

q . Denote
by Gk,m

q the code with the set H of synchronizing suffices where H
consists of (q − 1)k

(
m−1

k

)
words h ∈ Fm

q which have exactly m − k
zeros with one of the zeros in the last position. For instance, H =
{10000, 01000, 00100, 00010} when q = 2, k = 1, m = 5.

Theorem 11 For any q, k,m, n (0 ≤ k ≤ m− 1, q ≥ 2, m ≥ 2, n ≥ 1),
the code Gk,m

q (n) = Gk,m
q

⋂
Fn

q is a code without overlaps.

The code Gk,m
q contains qk words of length k + 1 which have a zero

only in the last position. These words form a code without overlaps.
The remaining words have a length of at least k + 2 and begin with
a prefix of k + 1 nonzero letters. From the definition of a code with
the set H of synchronizing suffices we can say that a prefix a ∈ F l

q of
x ∈ Gk,m

q (n), n ≥ k + 2, differs from a suffix b ∈ F l
q of y ∈ Gk,m

q (n) in
the case m < l < n. In the case k + 1 ≤ l ≤ m, a contains at least k + 1
nonzero letters whereas b can contain at most k of them. In the case
1 ≤ l ≤ k, a has no zeros whereas b has zero on the last position.

Let Gk(n, q) = maxGk,m
q (n) where the maximum is taken over all

m ≥ k + 1. It is natural to compare G(n, q) = G0(n, q) with Gk(n, q),
k ≥ 1. Words of Gk,m

q (n) have a larger number of possible suffices, but a
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stronger restriction is imposed to their choice. The fact that for n ≥ k+2
all words of Gk,m

q (n) begin with a prefix of k+1 nonzero letters allows us
to apply Theorem 2.1 (after correcting some misprints in its formulation)
of the paper by Guibas and Odlyzko [11] to find a generating function

f−(Gk,m
q , z) =

∑

n=k+2

|Gk,m
q (n)|z−n.

We give the result for q = 2 and k = 1.

Theorem 12 f−(G1,m
2 , z) =

∑m−1
i=1 xi where x0, x1, ..., xm−1 is a solu-

tion of the following system of m linear equations:
{

(z − 2)x0 +
∑m−1

j=1 xj = z−2

x0 −
∑m−1

j=1 ai,jxj = −δi,1z
−2, i = 1, 2, ..., m− 1,

where

ai,j =
zmin(i−1,m−j) − 1

z − 1
+ bi,j , 1 ≤ i, j ≤ m− 1,

bi,j = 0, if i > j, and bi,j = zm+i−j−1, if i ≤ j.

As an example,

z2f−(G1,5
2 , z) =

z6 + 3z5 − z4 − z3 + z2 − z − 1
z10 − z9 − z8 − z6 − 2z5 + z3 + 1

.

Calculations show that we still have G(n, 2) > G1(n, 2) at least for
n ≤ 100.
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