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Wisdom system� dynamics in the adiabatic approximation

The Wisdom system is the Hamiltonian system with two degrees of freedom
constructed as a simple approximate model describing some properties of the
asteroid motion over long time scales� Its Hamiltonian is the principal part of
the Hamiltonian of the planar elliptic restricted three body problem� averaged
under the assumption of ��� mean�motion resonance� The phase variables of
the Wisdom system evolve at di�erent rates and can be subdivided into the
	fast	 and 	slow	 ones� Important feature of this system is the existence of an
approximate integral� adiabatic invariant� We present detailed classi
cation of
the slow variables� evolution paths� We also consider properties of the adiabatic
chaos area arising in the system�s phase space� It emerges as a result of the
adiabatic invariance violations generated by qualitative changes in the behavior
of fast variables� In particular� numerous stable long�periodic solutions are
revealed�
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sISTEMA uIZDOMA� DINAMIKA W ADIABATI�ESKOM PRIBLIVENII

sISTEMOJ uIZDOMA NAZYWA�T GAMILXTONOWU SISTEMU S DWUMQ STEPENQ�
MI SWOBODY� POROVDAEMU� GLAWNOJ �ASTX� GAMILXTONIANA PLOSKOJ OGRA�
NI�ENNOJ �LLIPTI�ESKOJ ZADA�I TREH TEL� USREDNENNOGO W PREDPOLOVENII
REZONANSA SREDNIH DWIVENIJ � � �� dINAMIKA SISTEMY uIZDOMA HARAKTERI�
ZUETSQ RAZDELENIEM PEREMENNYH NA �BYSTRYE� I �MEDLENNYE� I NALI�IEM

PRIBLIVENNOGO INTEGRALA � ADIABATI�ESKOGO INWARIANTA� w STATXE DANA

PODROBNAQ KLASSIFIKACIQ WOZMOVNYH WARIANTOW �WOL�CII �MEDLENNYH�

PEREMENNYH� oTME�AETSQ SU�ESTWOWANIE MNOGO�ISLENNYH USTOJ�IWYH PE�
RIODI�ESKIH DWIVENIJ W OBLASTI ADIABATI�ESKOGO HAOSA� WOZNIKA��EJ W

REZULXTATE NARU�ENIJ ADIABATI�NOSTI PRI IZMENENII KA�ESTWENNOGO PO�
WEDENIQ �BYSTRYH� PEREMENNYH�






Introduction

Twenty years ago J�Wisdom undertook extensive investigation of the long�
term evolution of asteroid distribution near the ��� mean�motion resonance
with Jupiter ��� 
� ��� His studies were substantially based on the asteroid
dynamics analysis in the frames of the elliptic planar restricted three body
problem� Sun � Jupiter � asteroid� It turned out that in the main approximation
the Hamiltonian of this problem� being averaged over the asteroid�s and
Jupiter�s mean longitudes near the resonance� acquires a rather simple
structure� 	fast	 and 	slow	 phase variables emerge and� at 
xed values
of the 	slow	 variables� the Hamiltonian becomes identical to that of the
mathematical pendulum�

A two degrees of freedom Hamiltonian system� described by the truncated
Hamiltonian� will hence be called the 	Wisdom systems	� This system is of
interest not only due to its signi
cant role in the Wisdom theory of the ���
Kirkwood gap� It can also be used as a convenient model for investigation of
resonant motions at small values of the asteroid�s eccentricity e� of Jupiter�s
eccentricity eJ � and of its part �J in the total system�s mass�

We intend to present some results on the general properties of the Wisdom
system� We have explored its dynamics on di�erent levels of HW � where HW is
the system�s Hamiltonian �the Wisdom Hamiltonian�� Existence of qualitative
distinctions was mentioned in ���� but a detailed description of all possible
scenarios for the slow variable evolution has never been presented so far�

A special attention is paid to the region of the so�called 	adiabatic	 chaos in
the system�s phase space� Small quasi�random jumps of the 	fast	 subsystem�s
adiabatic invariant result in scattering of trajectories in this region ��� ��� The
jumps may also produce a qualitative change of the motion in the system� In
some cases this phenomenon can entail sudden increase of the resonant asteroid
eccentricity� According to Wisdom�s hypothesis� this e�ect is responsible for
the formation of the ��� Kirkwood gap�

As follows from the arguments presented in ���� the region of the 	adiabatic	
chaos is the area of co�existence of the regular and chaotic dynamics� This
domain contains a lot of stable periodic trajectories surrounded by stability
islands� The total measure of these islands does not tend to � for �� �� where

� �
�
���
J

eJ
� Tf
Ts

� ��

Tf and Ts being the typical timescales of the fast and slow motions in Wisdom�s
system�

Numeric modelling con
rms the presence of numerous stable periodic
trajectories in the mentioned domain of the phase space�

In the present paper we concentrate on the Wisdom system itself and avoid
whatever conclusions related to the asteroids� dynamics at ��� resonance� To
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apply our results to this dynamics� it would be necessary to carefully analyze
to what extent the Wisdom system can serve as a model of the elliptic
planar reduced three body problem� Some remarks concerning the limited
applicability of the Wisdom model can be found in ��� ���

�� De�nition of the Wisdom system�

According to ���� in the main approximation� the secular evolution of the
asteroid motion in ��� resonance with Jupiter is described by the canonical
equations

�� � f��HWg� �� � f��HW g� �����

�x � fx�HWg� �y � fy�HWg�
Here � is the critical angle �three times the mean longitude of Jupiter minus the
mean longitude of the asteroid�� � is some function of the asteroid�s semimajor
axis a� x and �y are proportional to the Laplace vector components

x � a���
�
e

ej

�
cos�� y � �a���

�
e

ej

�
sin��

with � being the longitude of the asteroid perihelion�
The Poisson brackets f�� �g in ����� are de
ned in such a way that

f���g � �� fx� yg � ��

f�� xg � f�� yg � f�� xg � f�� yg � ��

To bring the evolutionary equations into the form ������ the expression for
the Hamiltonian HW � given by Wisdom in ���� should be rewritten as follows�

HW ����� x� y� �
�



��� � �C�x� � y�� �Dx � E� cos�� ���
�

�y�
Cx�D� sin �� �F �x� � y�� �Gx��

The values of the coe�cients ��C�D�E�F�G depend on the resonant value

of the asteroid�s semimajor axis ares � �

q
��� �J �	�� Using the formulae

developed in ���� we obtain at ares � ����� � ���������� �which is the limit
value of ares at �J goes to ���

� � �
����
����� C � ����������� D � �
����������
E � ���������
� F � ���
�������� G � �����������

In ��� these coe�cients were evaluated at ares � ���������� ��J � �	����������
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Separating the terms that depend on ��� from the terms that are
independent from these variables� we get

HW � H������ x� y� �H��x� y�� �����

The function H������ x� y� at 
xed x� y is the Hamiltonian of a pendulum�

H������ x� y� �
�



��� �A�x� y� cos���R�x� y��� �����

Here

tgR�x� y� �
y�
Cx�D�

C�x� � y�� �Dx � E
�

A�x� y� �
�h
C�x� � y�� �Dx � E

i�
� y��
Cx�D��

����
�

As it was noted in ���� the coe�cient A�x� y� is the product of the distances in
R� from the point �x� y� to points P� � �x�� �� and P� � �x�� ��� where

x� � �D �
p
D� � �CE

C

� ��������

x� � �D �p
D� � �CE

C

� 
�������

The second term in ����� is

H��x� y� � �F �x� � y�� �Gx�

Surprisingly� the Hamiltonian HW is independent from the Jupiter�s
eccentricity eJ � This parameter de
nes the values and the typical timescale
of the secular changes of the asteroid orbital elements� Nevertheless� if the
Jupiter�s eccentricity is non�zero and small enough� in the main approximation
its value does not a�ect the topological phase �ow properties of the planar
elliptic three body problem averaged at the resonance�

It is important to mention the reversibility of the system ������ if

z�t� � ���t�� ��t�� x�t�� y�t��T

is its solution� then

z��t� � Qz��t�� Q � diag���� �� ������

is also a solution� This property was used for numerical search for periodic
solutions �Sec� ���
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Table �� The relation between � and �J values
for the case of Jupiter�s motion in orbit of eccentricity eJ � �����

� �J

��
 ��
 � ����
��� 
�� � ����
���� ��� � ����
���
� ��� � ����

The Table � provides an insight into the values of the three body problem
parameters eJ � �J and the related values of the Wisdom system parameter ��
The accepted value of Jupiter�s eccentricity �eJ � ������ is conventional for
model calculations in the asteroidal dynamics�

�� Adiabatic approximation

In general� the phase variables ���� x� y evolve at di�erent rates� ��� are
the 	fast	 variables � ��� �� � ��� x� y are the 	slow	 variables � �x� �y � ��� Below�
the equations describing the behavior of the fast variables will be called 	the
fast subsystem	� The slow subsystem will be constituted by the equations for
the slow variables� respectively�

���� Properties of the fast subsystem

At � � � the fast subsystem dynamics is described by the mathematical
pendulum equations

�� � ��� �� � �A�x� y� sin���R�x� y��� �
���

where x� y should be considered as parameters� The phase portrait of the
subsystem �
��� is given by Fig��� The separatrices separate the regions of
oscillatory and rotational behavior of the critical angle ��

Let ��t� x� y� h����t� x� y� h� denote the solution of equations �
��� at 
xed
values of x� y satisfying the condition

HW ���t� x� y� h����t� x� y� h�� x� y� � h�

Its qualitative behavior depends on the value of the parameter


 �
�p



�
� �

h �H��x� y�

A�x� y�

����

�

�



The angle � oscillates in the case 
 � �� and rotates at 
 � �� The separatrices
correspond to 
 � ��

In subsystem �
���� we can introduce new variables

I � I�h� x� y�� 
 � 
����� x� y��

For the rotational solutions� I� 
mod
� coincide with the 	action�angle	
variables� while for the oscillating solutions I is a half of the 	action	 variable
value and 
mod �� is equal to the doubled value of the 	angle	 variable� This
change of the variables is the canonical transformation with some generating
function W ��� I� x� y�� where x� y should again be considered as parameters�

In the case � �� �� equations �
��� describe the dynamics of a pendulum
with slowly varying parameters� Away from the separatrices� I�h� x� y� is the
adiabatic invariant of the Wisdom system� Along the solutions of equations
������ its value is preserved with the accuracy of O��� over the time interval of
order �	��

���� Properties of the slow subsystem

To study the qualitative behavior of the slow variables x� y we perform the
canonical transformation

����� x� y� �� �
� I� x� y�� �
�
�

the relations between the new and old variables being


 �
�W

�I
��� I� x� y�� � �

�W

��
��� I� x� y�� �
���

x � x� �
�W

�y
� y � y � �

�W

�x
�

As it follows from formulae �
���� this transformation is close to the identical
one on variables x� y� After transformation �
�
�� the symplectic structure in
the Wisdom system�s phase space is de
ned by the Poisson brackets with the
following values

f
� Ig � �� fx� yg � ��

f
� xg � f
� yg � fI� xg � fI� yg � ��

The Wisdom Hamiltonian admits the form

��
� I� x� y� �  W �I� x� y� �O����

Here  W �I� x� y� is the Hamiltonian HW rewritten as a function of I� x� y�

�



If the projection of the phase point z�t� onto the phase portrait of the
frozen fast subsystem is away from the separatrices� the evolution of the slow
variables x� y is described� with the accuracy of O��� over time intervals of
order �	�� by the equations

�x � �
� W

�y
�I� x� y�� �y � ��� W

�x
�I� x� y�� �
���

where I should be considered as a 
xed parameter� This statement
remains valid after the formal substitution of the initial variables x� y and
I�h� x���� y���� instead of x� y� I� Therefore we shall omit the dash over the
evolutionary variables below�

Taking into account relation ������ we obtain

 W �I� x� y� �  ��I� x� y� �H��x� y�� �
���

where  ��I� x� y� is the Hamiltonian H� expressed in terms of I� x� y� Writing
H� as a composite function

H������ x� y� � H������ A�x� y�� R�x� y���

we get
 ��I� x� y� �  ��I�A�x� y��� �
���

Now let us di�erentiate with respect to A the left�hand and the right�hand
sides of the equality

I �
�


�

Z ��

��

�



�
� ��I�A� �A cos�� �R��

����
d��

where ��� �� are functions of I�A�R� After some manipulations with these
formulae� one can 
nd

� �

�A
�I�A�x� y�� � hcos���R�i� �
���

The angle brackets in �
��� denote averaging over 
�

hf��� x� y�i � �


��

Z ���

�

f���
� I� x� y�� x� y� d
�

Here � � � if the function ��
� I� x� y� corresponds to the rotational motion in
the fast subsystem! in the case of averaging over the oscillatory solution � � 
�
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Explicit expressions for hcos���R�i were given in ���� Using our notations�
we have

hcos���R�i �

����������	���������




�
E
�
�




�

K
�
�




� � �� 

�� 
 � �


E�
�
K�
�

� �� 
 � �

�
���

In these formulae K��� and E��� denote the complete elliptic integrals of the

rst and second kinds� respectively�

Relations �
�����
��� allow us to rewrite equations �
��� as follows�

�x � �

�
�H�

�y
�
�A

�y
hcos���R�i

�
� �
���

�y � ��
�
�H�

�x
�
�A

�x
hcos���R�i

�
�

Substituting �
��� into system �
��� we obtain the evolutionary equations
describing the long�term dynamics of the slow subsystem at the level HW � h�

���� Forbidden area and uncertainty curve

Let

h��x� y� � H��x� y��A�x� y�� h��x� y� � H��x� y� �A�x� y��

The region M�h� � fx� y � h��x� y� � hg on the plane x� y is the forbidden
area for the phase trajectories of the system �
���� for a given value of h� slow
variables can not accept values from M�h��

The curve "�h� � fx� y � h��x� y� � hg is called the uncertainty curve� In
the case h��x� y� � h the trajectory in the fast subsystem �at 
xed x� y� is a
separatrix� Consequently� here the adiabatic approximation loses its validity�
Dependent upon the value of h� the curve "�h� consists of one or two ovals
or does not exist at all �Sec���� If one takes x� y from the region bounded by
the curve "�h� �h � h��x� y��� the critical angle � rotates in the solutions of
the system ����� on the level HW � h� For x� y selected outside of this region
�h � h��x� y��� the dynamics of the fast subsystem is oscillatory�

Whenever the projection of the Wisdom system�s phase trajectory on the
plane x� y intersects the curve "�h�� the adiabatic invariant undergoes a quasi�
random change ��� �� ��� Investigating the motion evolution over the time
interval of order �	�� we can neglect this violation of the adiabatic invariance�
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with the accuracy of O��� the behavior of slow variables� for the majority of
initial conditions� is described by the solutions of the averaged system �
���
matched at the uncertainty curve in accordance with the condition

Iin � Iout� �
����

where Iin and Iout are the values of I�h� x� y� along the parts of the phase
trajectory of �
��� lying inside and outside of the region bounded by the curve
"�h��

In the case of multiple passages across the uncertainty curve� the summing
of the quasi�random changes gives rise to a di�usion of the adiabatic invariant�
In particular� if we consider the behavior of the solutions z��t� and z��t� with
the close initial values �jz���� � z����j � ��� then the di�erence between the
adiabatic invariants� values along these solutions and the di�erence between
the projections of the phase points on the plane x� y can grow up to values
of order � over time intervals ranging from �	�� through �	�� �respectively�
the amount of passages performed across the uncertainty curve ranges from
� �	� to � �	��� ��� ��� Quasi�random jumps of the adiabatic invariant� caused
by qualitative changes in the fast motion properties� lead to formation of an
adiabatic chaos region in the Wisdom system�s phase space �Sec� ���

�� �Slow� dynamics of Wisdom system

at adiabatic approximation

Up to notations� the averaged equations �
��� coincide with the evolutionary
equations obtained by Wisdom in ���� Comparison of the phase portraits
presented in ��� reveals substantial di�erencies in the phase trajectories
behavior at various values of the parameter h� This motivated us to explore
in what way the qualitative properties of the solutions to system �
��� depend
upon h� Here we present the main results of this analysis�

���� Phase portraits of the slow motions

Consideration of the phase portrait of system �
��� is the most direct way
to get a clear idea of the slow motion properties at di�erent levels HW � h� It
turns out that by matching �or 	gluing	� the trajectories at "�h�� in accordance
with the condition Iin � Iout� we obtain � types of phase�behavior modes
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structurally stable under su�ciently small variations of h� Bifurcations take
place when h accepts one of the following values�

h� � ������� h� � ����
�� h� � ������ h� � ������

h� � ����
� h� � ����
� h� � ����
� h	 � ������

Brief classi
cation of the phase portrait features is given below�
Type I�h � h�� The center of the phase portrait is occupied by the

	forbidden	 areaM�h�� The phase trajectories are the closed curves encircling
M�h�� The equilibrium solutions are absent� As an example� we present in Fig�

 the phase portrait of the slow motion at h � �
�

Type II�h 	 �h�� h��� The phase portrait of this type is shown in Fig� ��
After the bifurcation at h � h�� the 	forbidden	 area consists of two domains�
In addition to this� an unstable equilibrium emerges on the axis Ox� When
h� h�� the equilibrium solution tends to the point PH � �xH � ��� where

xH � � D �G


�C � F �
� ��������

At h � h� the 	forbidden	 domain located in the vicinity of the coordinate
origin shrinks to the point P��

Type III�h 	 �h�� h��� Due to the bifurcation at h � h�� the uncertainty
curve "�h� appears on the phase portrait �Fig� ��� The curve "�h� encircles
the point P� and shrinks to it when h � h�� When the projection of the
Wisdom system�s phase point on the plane x� y lies inside the area bounded
by the curve "�h�� the critical angle � rotates� The bifurcation at h � h� also
generates three additional equilibrium solutions�

Type IV�h 	 �h�� h��� At h � h�� the closest to the forbidden area
unstable equilibrium transforms into a stable equilibrium and a pair of unstable
equilibria lying outside the Ox axis �Fig� ���

Type V�h 	 �h�� h��� At h � h� the re�connection of the separatrices takes
place �Fig� ���

Type VI�h 	 �h�� h��� The bifurcation at h � h� results in the
disappearance of the homoclinic contour pertaining to the Type V phase
portraits� stable and unstable equilibria merge and vanish after that� Main
features of this type of behavior are presented in Fig� �� At h � h� the
	forbidden	 area shrinks to the point P��

Type VII�h 	 �h�� h��� The bifurcation at h � h� resembles to some extent
the bifurcation at h � h�� the 	forbidden	 area vanishes� one more component
of the uncertainty curve "�h� and one more triad of equilibrium solutions
appear in the vicinity of the point P�� Two of the newly born equilibria are
placed so close to each other that it is impossible to distinguish between them
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on the Type VII phase portrait in Fig� �� where they are 	represented	 by
the same point lying on the right component of the curve "�h�� The enlarged
fragment in Fig� � shows the unstable equilibrium outside the region bounded
by "�h� and the stable equilibrium inside it� Being so close� for all values of h
taken from the interval under consideration� at h � h� these equilibria meet
at the point PS � �xS� ��� where

xS � � D �G


�C � F �
� ��������

Type VIII�h 	 �h�� h	�� An example of Type VIII phase portrait is
presented in Fig� ��� At h � h� the components of the uncertainty curve
connect at the point PS � Two close equilibria pertaining to the Type VII phase
portraits merge at the same point and disappear thereafter�

Type IX�h � h	� At h � h	 unstable equilibria �which appeared at h � h�
and located outside the Ox axis till h � h	� merge with the stable equilibrium
lying on that axis left to the coordinate origin� So for h � h	 the system �
���
has only three equilibrium solutions� two stable equilibria and one unstable�

���� Bifurcation diagram

The diagram in Fig� �
 brings additional information about the phase�
portrait transformations at the parameter h variation� It presents the location
and the stability properties of the equilibrium solutions lying on the Ox axis�

The curve H in Fig� �
 represents the family of equilibrium solutions being
born at h � h� at the point PH � The curves S� and S� depict the families of the
equilibria vanishing at h � h� in the point PS � The notation used emphasizes
the relation of these families to the periodic solutions of the three body problem
found by Hill and Sinclair�

Indeed� the limit points PH and PS are associated in a natural way with
the equilibrium solutions of the original system �����

� 
 �� � 
 �� x 
 xH � y 
 � �����

and
� 
 �� � 
 �� x 
 xS� y 
 �� ���
�

When the Wisdom system provides a reasonable approximation of the three
body problem dynamics� its equilibria correspond to the periodic solutions of
that problem in which the asteroid rotates around the Sun three times faster
than Jupiter� As it was shown in ��
�� the equilibrium solutions ����� and ���
�
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can be interpreted as analogs to the Hill solution �Jupiter�s and asteroid�s
longitudes of the perihelion coincide� and of the Sinclair solution �the said
longitudes di�er in ��� respectively� Detailed numerical investigations of the
Hill and Sinclair solutions were undertaken in ��� ��� ����

Finally� we would dwell upon some subtle features of the revealed chain of
bifurcations� First� the attention should be drawn to the series of bifurcations
for su�ciently small h variation� as shown in Fig� ��� Another remarkable
property is the presence of very closely placed equilibria on the Type VII
phase portraits �at a distance � ������

	� Long
periodic solutions

���� Adiabatic chaos region and stability islands

In the neighborhood of the uncertainty curve the projection of the system
����� phase point to the x� y plane jumps in a quasi�random way from one
trajectory of the averaged system �
��� to another� jIin� Ioutj � �� As a result�
over the long time interval this projection travels through the region ��h�
obtained by the junction of all the slow trajectories crossing "�h�� The region
��h� consists of one or two domains� The number of domains depends on the
curve "�h� �Fig� ����

Further we consider the region

���h� � f���� x� y � HW ����� x� y� � h� �x� y� 	 ��h�g

in the Wisdom system�s phase space� If the phase trajectory of the system
����� belongs to ���h�� then its projection onto the x� y plane lies in the region
��h�� The violation of adiabatic invariance� caused by the qualitative change
of the fast motion character� is the main source of the trajectories� complex
behavior in ���h�� Hence� this domain is called adiabatic chaos area �on the
level HW � h��

The Poincar#e mapping can be used to study the solutions� properties in
���h�� After the canonical transformation �
�
� is performed� the values of the
variables x� 
 at the phase trajectory successive transitions through the plane
y � � with �y � � �i�e�� at the transitions from the region y � � to the region
y � �� are connected through


k
� � V �
k� xk� h�� xk
� � U�
k� xk� h�� �����

where h de
nes the level of HW �

��



We construct the Poincar#e mapping numerically� It turns out that� instead
of the variables 
� I� x� y� it is convenient to introduce the variables b
� bI� bx� by
connected to the original variables ���� x� y by means of more simple formulae

b� � ������ x� y�� bI � I����� x� y�� �����

bx � x� �
�W

�y
����� x� y�� by � y � �

�W

�x
����� x� y��

To calculate the derivatives �W	�x� �W	�y we use the relations obtained
in ����

�W

��
�

�

���
�

Z b�
�

�
�HW

��
�


�HW

��

��
d
 �

�
�

���
�

Z b�
�

��
�A

��

�
�cos���R� � hcos���R�i��

�A
�
�R

��

�
sin���R�

�
d
� � � x� y�

Here ��
� denotes the frequency of the motion in the fast subsystem�

���� �

����������	���������


	�
p

A

K

�
�

�

� � � � �

	
p

A

�K���
� � � �

In fact� the di�erence between the non�canonical change of variables

����� x� y�� �b
� bI� bx� by�
and the canonical transformation �
�
� is small enough�

j
� b
j � O���� jI � bIj � O����

jx� bxj � O����� jy � byj � O����

in every point in the region where both these sets of variables are de
ned�
As an example� the points at which two regular and one chaotic trajectories

cross the hyperplane by � � �passing from the region by � � to the region by � ��
are shown in Fig� ��� Fig� �� demonstrates the existence of the stability island

lled with invariant curves in the chaotic region of the mapping

b
k
� � bV �b
k� bxk� h�� bxk
� � bU �b
k� bxk� h�� �����

��



Stable 
xed point in the center of Fig� �� corresponds to the stable periodic
solution of the equations ����� embedded into the adiabatic chaos area ���h��
Taking into account the typical time between two successive passages of the
phase point through the plane by � �� we can estimate the period of this solution

as O
�
�

�

�
� So it is reasonable to specify it as a long�periodic solution�

As it was established in ���� in the case of the Hamiltonian system with
one degree of freedom depending on slowly varying parameter� the number
of stability islands located inside the adiabatic chaos area is large enough
and is of order � �	�� Moreover� the total measure of these islands on the
Poincar#e section is comparable with the measure of the chaotic area as a whole�
Although the Wisdom system has two degrees of freedom� on the level HW it
can be reduced to the Hamiltonian system of the lower dimension with a time�
dependent parameter� So it is natural to expect the existence of many stable
periodic solutions with the periods � �	� inside ���h�� This is con
rmed by
the numeric results presented in Sec� ���� In ���� it is proven rigorously that
the Hamiltonian system with two degrees of freedom indeed can possess the
numerous stable periodic solutions lying in the adiabatic�chaos realm�

Note� Except the adiabatic�chaos area ���h� the Wisdom system has an
area of the so�called homoclinic chaos ��
�� An interaction of the fast and
slow subsystems results in the splitting of the separatrices which constitute
closed contours on the slow�motion phase portraits constructed in the adiabatic
approximation �Sec� ��� The width of the emerging stochastic layer can be
estimated as O �exp��C�	���� where C� is some positive constant ���� ���� The
dynamics in this region of the system�s phase space is beyond the scope of our
current study�

���� Numeric search of the stable long�periodic

solutions inside the adiabatic chaos region

As an example� we evaluate numerically the amount of the stable periodic
solutions in ���h� at h � ���� In this case the adiabatic�chaos area consists
of two components� ��� and �

�

� �Fig� ���� To simplify the computations� we
consider the 	symmetric	 periodic solutions solely� 	Symmetric	 is a solution
satisfying the conditions

���� � �mod �� �
�
T




�
� �mod �� �����

y��� � y
�
T




�
� ��

for a certain T � �� Taking into account the Wisdom system�s reversibility
�Sec� ��� one can prove that any solution of the boundary value problem

��



������ being extended outside the interval ��� T
�
�� gives birth to a T �periodic

solution of equations ����� with the monodromy matrix

M�h� � QW��

�
T



� h
�
QW

�
T



� h
�
�

Here W �t� h� denotes the fundamental matrix of the appropriate linearised
equations �W ��� h� � E�� where E� is the ��� ���identity matrix��

Since there are no reasons to assume that only 	symmetric	 stable periodic
solutions are accepted by the Wisdom system� the results of our calculations
should be interpreted as the lower bound estimations�

To select the stable solutions� we undertake the usual analysis restricted
by the linear approximation� The characteristic equation

det �M�h�� �E�� � �

can be rewritten as
��� ������ � 
a�� �� � ��

where

a �
trM



� ��

The solution z�t� is stable at jaj � ��

Table �� Numerically found stable periodic solutions
satisfying conditions �����

The number of The number of The total
� solutions solutions number of

in ��� in ��� solutions
��
 � � �
��� �� 
� �

���� �� �� ��
���
� �
 �� ���

Information about the stable periodic solutions found numerically in ���h�
can be found in Table 
� The amount of such solutions N increases as the
parameter � decreases�

It would be important to mention that the existence of numerous stable
periodic solutions inside the adiabatic�chaos area was proven in ��� ��� under
the assumption of ���� � �� This assertion is not valid for the values of �
used in our numerical study� �Our computer facilities were too week for an
extensive search of periodic solutions at � � ���
��� Nevertheless� the derived
in ��� asymptotic relation N � �	� was satis
ed� with a reasonable accuracy�
even at � � ��� �Fig� ����

��



Conclusion

We present a number of patterns in the slow motion behavior in theWisdom
system� However� our results can be applied to the analysis of the asteroidal
resonant motion only when this system is an adequate model� In general
it misses some signi
cant features of the original three body problem� For
example� the Wisdom system can not be used to study an interplay of low�
and high�eccentricity motions at the ��� resonance described in ���� It reveals
the necessity of examining the exactness of the Wisdom model in this context�

According to ��� ���� the existence of many stable periodic solutions is
a rather general property of the adiabatic chaos area in the phase space of
Hamiltonian systems� Our numerical quest for periodic solutions in Wisdom
system con
rms this conjecture�
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Fig��� The phase portrait of the fast subsystem at � � �



Fig��� The slow motions at h � �� �Type I phase portrait�� The
forbidden area is shaded�

Fig��� The slow motions at h � �� �Type II phase portrait�� The
forbidden area is shaded�



Fig��� The slow motions at h � ��	 �Type III phase portrait�� The
more shaded domain is the forbidden area �right�� The less shaded

domain is the part of the slow variables plane enclosed by the
uncertainty curve 
�h� �left��

Fig��� The bifurcation of the phase portrait at h � h�



Fig��� The bifurcation of the phase portrait at h � h�

Fig�	� The slow motions at h � ��� �Type VI phase portrait�� The
more shaded domain is the forbidden area �right�� The less shaded

domain is the part of the slow variables plane enclosed by the
uncertainty curve 
�h� �left��



Fig�
� The slow motions at h � ��� �Type VII phase portrait�� The
shaded domains are the parts of the slow variables plane enclosed by

the uncertianty curve 
�h� �

Fig��� The enlarged fragment of the phase portrait at h � ��� � The
equilibria located in the close vicinity of the uncertainty curve are

shown�



Fig� ��� The slow motions at h � ��� �the type VIII phase portrait��
The shaded domain is the part of slow variables plane enclosed

by ��h� �

Fig� ��� The slow motions at h � 	�� �the type IX phase portrait��
The shaded domain is the part of slow variables plane enclosed

by ��h� �



Fig� ��� Bifurcation diagram
 location of the system ����� equilibria
on the Ox axis� Solid lines correspond to stable equilibria
 dotted lines
represent unstable ones� More and less shaded domains provide an idea
about the location of the forbidden area M�h� and the uncertainty
curve ��h� respectively� Namely
 the vertical segments of the more
shaded domain represent the segments of the Ox axis lying inside

M�h� at corresponding value of h � In the similar way the less shaded
domain represents the segments of the Ox axis inside the areas

enclosed by ��h� �

Fig� ��� The enlarged fragment of the bifurcation diagram



Fig� ��� The adiabatic chaos regions �shaded� on the slow variables
plane at h � ��� �top� and h � 	�� �bottom�� The thick lines are used

to show the uncertainty curve location�



Fig� ��� Poincar�e section of the system�s phase �ow on the level
h � ��� � Two regular and one chaotic �embedded into ���h� �

trajectories are shown�

Fig� �	� An example of the stability island in the adiabatic chaos
region �h � ��� �



Fig� �
� The amount of the numerically found stable periodic
solutions at di�erent values of parameter � � The dashed line is the

graph of the function N � c��� c � ��� �
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