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A.I.Neishtadt, V.V.Sidorenko

Wisdom system: dynamics in the adiabatic approximation

The Wisdom system is the Hamiltonian system with two degrees of freedom
constructed as a simple approximate model describing some properties of the
asteroid motion over long time scales. Its Hamiltonian is the principal part of
the Hamiltonian of the planar elliptic restricted three body problem, averaged
under the assumption of 3:1 mean-motion resonance. The phase variables of
the Wisdom system evolve at different rates and can be subdivided into the
"fast” and "slow” ones. Important feature of this system is the existence of an
approximate integral, adiabatic invariant. We present detailed classification of
the slow variables’ evolution paths. We also consider properties of the adiabatic
chaos area arising in the system’s phase space. It emerges as a result of the
adiabatic invariance violations generated by qualitative changes in the behavior
of fast variables. In particular, numerous stable long-periodic solutions are
revealed.

A MN.Hemmrant, B.B.Cunopenko

Cucrema YI/I3I[OMa: ANMHAMHUKa B a,[[MaﬁaTI/I‘IECKOM HpMﬁHM}KeHHH

Cucremon YusmoMa Ha3BIBAIOT TaMIIBTOHOBY CUCTEMY C OBYMsSA CTCICHSI-
Mu cBOOOOEI, TOPOXOAECMYIO TJIABHOW YacThIO TaMWJIBTOHUAHA TJIOCKOHW OTpa-
HUYEHHON MIUINITUIECCKON 3a0ady TPEX TEJ, YCPEOHEHHOTO B MPENIOIOKCHIN
pesoHaHca cpenuux apuxenun 3 : 1. Junamuka cucteMbr Y m3momMa XapakTepH-
3yeTcs pasfecHIEeM IEPEMEHHBIX Ha «OBICTPHIES W «MEMNJICHHBIES> U HAJIUINEM
TpUOIMKEHHOTO WHTErpajda — aagmabaTUuIecKoro WHBapuaHTa. B cTaTbe maHa
nogpobHaa kiaccupUKanua BO3MOXKHBIX BapPUAHTOB SBOJIONUN «MEMJICHHBIX>
nepeMeHHBIX. OTMeuaeTcs CyIecTBOBAHINE MHOTOUMCIICHHBIX Y¥CTOMYMBLIX IIC-
pUOAMIECKUX ABUKEHUN B oOJIacTM ammabaTUIECKOTO Xaoca, BOZHUKAIOIIER B
pe3yiabTaTe HAPYUICHUN aguabaTUIHOCTH HPHU U3MEHEHUU KAaYeCTBEHHOTO IO-
BeleHU «OBICTPBIX» MEepEMEHHEIX.



Introduction

Twenty years ago J.Wisdom undertook extensive investigation of the long-
term evolution of asteroid distribution near the 3:1 mean-motion resonance
with Jupiter [1, 2, 3|. His studies were substantially based on the asteroid
dynamics analysis in the frames of the elliptic planar restricted three body
problem: Sun - Jupiter - asteroid. It turned out that in the main approximation
the Hamiltonian of this problem, being averaged over the asteroid’s and
Jupiter’s mean longitudes near the resonance, acquires a rather simple
structure: "fast” and 7slow” phase variables emerge and, at fixed values
of the "slow” wvariables, the Hamiltonian becomes identical to that of the
mathematical pendulum.

A two degrees of freedom Hamiltonian system, described by the truncated
Hamiltonian, will hence be called the "Wisdom systems”. This system is of
interest not only due to its significant role in the Wisdom theory of the 3:1
Kirkwood gap. It can also be used as a convenient model for investigation of
resonant motions at small values of the asteroid’s eccentricity e, of Jupiter’s
eccentricity ey, and of its part py in the total system’s mass.

We intend to present some results on the general properties of the Wisdom
system. We have explored its dynamics on different levels of Hyy, where Hyy 1s
the system’s Hamiltonian (the Wisdom Hamiltonian). Existence of qualitative
distinctions was mentioned in [3], but a detailed description of all possible
scenarios for the slow variable evolution has never been presented so far.

A special attention is paid to the region of the so-called ”adiabatic” chaos in
the system’s phase space. Small quasi-random jumps of the "fast” subsystem’s
adiabatic invariant result in scattering of trajectories in this region [4, 5]. The
jumps may also produce a qualitative change of the motion in the system. In
some cases this phenomenon can entail sudden increase of the resonant asteroid
eccentricity. According to Wisdom’s hypothesis, this effect is responsible for
the formation of the 3:1 Kirkwood gap.

As follows from the arguments presented in [6], the region of the "adiabatic”
chaos i1s the area of co-existence of the regular and chaotic dynamics. This
domain contains a lot of stable periodic trajectories surrounded by stability
islands. The total measure of these islands does not tend to 0 for ¢ — 0, where

1/2
S
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py T, < 1

Ty and T being the typical timescales of the fast and slow motions in Wisdom'’s
system.

Numeric modelling confirms the presence of numerous stable periodic
trajectories in the mentioned domain of the phase space.

In the present paper we concentrate on the Wisdom system itself and avoid
whatever conclusions related to the asteroids’ dynamics at 3:1 resonance. To
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apply our results to this dynamics, it would be necessary to carefully analyze
to what extent the Wisdom system can serve as a model of the elliptic
planar reduced three body problem. Some remarks concerning the limited
applicability of the Wisdom model can be found in [7, 8].

1. Definition of the Wisdom system.

According to [1], in the main approximation, the secular evolution of the
asteroid motion in 3:1 resonance with Jupiter is described by the canonical
equations

Sb = {907 HW}7 (I) = {(1)7 HW}7 (11)
T = {:B,Hw}, Y= {vaW}'

Here ¢ is the critical angle (three times the mean longitude of Jupiter minus the
mean longitude of the asteroid), ® is some function of the asteroid’s semimajor
axis a, x and —y are proportional to the Laplace vector components

e e
1/4 1/4 :
z ~ a*/ Cos W, y%—a/ SIN W,
€j €j

with w being the longitude of the asteroid perihelion.
The Poisson brackets {-,-} in (1.1) are defined in such a way that

{907(1)} =1, {w,y} =&,

{o,2} ={p,y} ={®.2} ={®.y} = 0.
To bring the evolutionary equations into the form (1.1), the expression for
the Hamiltonian Hy , given by Wisdom in [1], should be rewritten as follows:

1
Hy(p, @, 2,y) = 50@2 + [C(z* — y*) + Dz + E] cos p+ (1.2)
+y(2Cz + D)sin p — [F(:B2 + y2) + Gz].
The values of the coefficients «,C, D, E, F, G depend on the resonant value

of the asteroid’s semimajor axis ares = /(1 — ps)/9. Using the formulae
developed in [1], we obtain at a,., = 37%/% ~ 0.48074986 (which is the limit
value of a,., at gy goes to 0):

a ~ 12.98024613, C' ~ 0.86355748, D ~ —2.65764714,

E ~0.36337472, F ~ —0.20514373, G =~ 0.19889968.

In [1] these coefficients were evaluated at a,.., ~ 0.48059680 (p; = 1/1047.355).
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Separating the terms that depend on ¢,® from the terms that are
independent from these variables, we get

Hw = Ho(p,®,2,y) + Hi(w,y). (1.3)
The function Hy(p, @, x,y) at fixed z,y is the Hamiltonian of a pendulum:
1
Ho(p, ®,2,y) = 5a®* — A(z,y) cos(p — R(w,y)). (1.4)
Here

y(2Cz + D)
C(z2—y?)+ Dz + E’

tg R(z,y) =

1/2

A(e.y) = {[C(* ") + Do+ B]" + (202 + DY}

As it was noted in [9], the coefficient A(z,y) is the product of the distances in
R? from the point (z,y) to points P, = (z1,0) and Py = (2,0), where

D ++vD? - 4CE

= ~~ 0.14341

T 20 ”
— /D% —

ro = —D 12)0 4C0E ~z 2.93415.

The second term in (1.3) is
Hy(z,y) = —F(z* +y") + Gu.

Surprisingly, the Hamiltonian Hyw i1s independent from the Jupiter’s
eccentricity ey. This parameter defines the values and the typical timescale
of the secular changes of the asteroid orbital elements. Nevertheless, if the
Jupiter’s eccentricity is non-zero and small enough, in the main approximation
its value does not affect the topological phase flow properties of the planar
elliptic three body problem averaged at the resonance.

It is important to mention the reversibility of the system (1.1): if

is its solution, then

2.(t) = Qz(~t), Q = diag(~1,1,1, 1),

is also a solution. This property was used for numerical search for periodic
solutions (Sec. 4).



Table 1. The relation between ¢ and p; values
for the case of Jupiter’s motion in orbit of eccentricity e; = 0.048

£ HJ
0.2 9.2-107°
0.1 2.3-107°
0.05 5.8-107°

0.025 1.4-10°°

The Table 1 provides an insight into the values of the three body problem
parameters ey, py and the related values of the Wisdom system parameter €.
The accepted value of Jupiter’s eccentricity (e; = 0.048) is conventional for
model calculations in the asteroidal dynamics.

2. Adiabatic approximation

In general, the phase variables ¢, ®, z,y evolve at different rates: p, ® are
the "fast” variables (¢, d ~ 1), z,y are the "slow” variables (&,y ~ ¢). Below,
the equations describing the behavior of the fast variables will be called ”the
fast subsystem”. The slow subsystem will be constituted by the equations for
the slow variables, respectively.

2.1. Properties of the fast subsystem

At ¢ = 0 the fast subsystem dynamics i1s described by the mathematical
pendulum equations

¢ =ad, &= —A(z,y)sin(p — R(z,y)), (2.1)

where z,y should be considered as parameters. The phase portrait of the
subsystem (2.1) is given by Fig.1. The separatrices separate the regions of
oscillatory and rotational behavior of the critical angle .

Let o(t, z,y, h), ®(t, z,y, h) denote the solution of equations (2.1) at fixed
values of z,y satisfying the condition

HW(SD(tv T, Y, h)7 (I)(tv T, Y, h)7 L, y) = h.
Its qualitative behavior depends on the value of the parameter

()
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The angle ¢ oscillates in the case £ < 1, and rotates at £ > 1. The separatrices
correspond to k = 1.
In subsystem (2.1), we can introduce new variables

I=1I(h,z,y),x =x(p,®,x,y).

For the rotational solutions, I,y mod2n coincide with the "action-angle”
variables, while for the oscillating solutions [ is a half of the "action” variable
value and y mod 47 is equal to the doubled value of the "angle” variable. This
change of the variables is the canonical transformation with some generating
function W (e, I, z,y), where x,y should again be considered as parameters.
In the case ¢ # 0, equations (2.1) describe the dynamics of a pendulum
with slowly varying parameters. Away from the separatrices, I(h,z,y) is the
adiabatic invariant of the Wisdom system. Along the solutions of equations

(1.1), its value is preserved with the accuracy of O(e) over the time interval of
order 1/e.

2.2. Properties of the slow subsystem

To study the qualitative behavior of the slow variables @,y we perform the
canonical transformation

(S07@7$7y) '—> (Y7T7i7y)7 (2'2)

the relations between the new and old variables being

Y= —(0.L2.75), ®=-—(0.1.2.7 2.
X= 57 (o, 1, z,7), P (o, 1, z,7), (2.3)
LW 0w
T=u 56_,3/ ] 5—6

As it follows from formulae (2.3), this transformation is close to the identical
one on variables z,y. After transformation (2.2), the symplectic structure in
the Wisdom system’s phase space is defined by the Poisson brackets with the
following values

x. I} =1 {z,5} =¢,
{x.z} ={x. 9} ={L,z} = {L,y} = 0.
The Wisdom Hamiltonian admits the form

E(x, [,z,y) = Aw(L,Z,7) + O(e).

Here Aw(I,z,y) is the Hamiltonian Hy rewritten as a function of I, z,y.
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If the projection of the phase point z(t) onto the phase portrait of the
frozen fast subsystem is away from the separatrices, the evolution of the slow
variables Z,¥ is described, with the accuracy of O(e) over time intervals of
order 1/¢, by the equations

T =c

ay (Ivivy)v y: —£ 6@ (Ivivy)v (24)

where I should be considered as a fixed parameter. This statement
remains valid after the formal substitution of the initial variables @,y and
I(h,z(0),y(0)) instead of Z,y, I. Therefore we shall omit the dash over the
evolutionary variables below.

Taking into account relation (1.3), we obtain

Aw(Il 2, y) = Ao(I,2,y) + Hi(z.y), (2.5)

where Ao(I, z,y) is the Hamiltonian H, expressed in terms of I, z,y. Writing
Hy as a composite function

HO(Sov (I),:B,y) = HO(W? (I),A(:B,y), R(:B,y)),
we get
Ao(I,z,y) = Ao(I, Az, y)). (2.6)

Now let us differentiate with respect to A the left-hand and the right-hand
sides of the equality

T om a

o* 1/2
=5 [T 24y + Acoste - B)| e

where ., " are functions of I, A, R. After some manipulations with these
formulae, one can find

81, Al ) = {eos(ip — R)). (27)

The angle brackets in (2.7) denote averaging over x:

(o)) = 5o [ Flolx Lasy).ay) dx

2no

Here o = 1 if the function ¢(x, I, z,y) corresponds to the rotational motion in
the fast subsystem; in the case of averaging over the oscillatory solution o = 2.



Explicit expressions for (cos(¢ — R)) were given in [3]. Using our notations,

we have )
5 ()
K

2K . —|—1—2/§2, Kr>1
(cos(¢ — R)) = K <E> (2.8)
2F(k
K((&)) -1, k<1

In these formulae K(-) and E(-) denote the complete elliptic integrals of the
first and second kinds, respectively.
Relations (2.5)-(2.7) allow us to rewrite equations (2.4) as follows:

i=e (a;; + Z—’;@OS(@ - R)>) : (2.9)

= Gy + Gloote - ).

Substituting (2.8) into system (2.9) we obtain the evolutionary equations
describing the long-term dynamics of the slow subsystem at the level Hy = h.

2.3. Forbidden area and uncertainty curve
Let

h*(x,y) = Hl(xvy) - A(:B,y), h*(:l?,y) = Hl(:l?,y) + A(:B,y).

The region M(h) = {z,y : h.(z,y) > h} on the plane z,y is the forbidden
area for the phase trajectories of the system (2.9): for a given value of h, slow
variables can not accept values from M (h).

The curve I'(h) = {z,y : h*(x,y) = h} is called the uncertainty curve. In
the case h*(z,y) = h the trajectory in the fast subsystem (at fixed z,y) is a
separatrix. Consequently, here the adiabatic approximation loses its validity.
Dependent upon the value of h, the curve I'(h) consists of one or two ovals
or does not exist at all (Sec.3). If one takes z,y from the region bounded by
the curve I'(h) (h > h*(z,y)), the critical angle ¢ rotates in the solutions of
the system (1.1) on the level Hy = h. For @,y selected outside of this region
(h < h*(z,y)), the dynamics of the fast subsystem is oscillatory.

Whenever the projection of the Wisdom system’s phase trajectory on the
plane z,y intersects the curve I'(h), the adiabatic invariant undergoes a quasi-
random change [3, 4, 5]. Investigating the motion evolution over the time
interval of order 1/¢, we can neglect this violation of the adiabatic invariance:
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with the accuracy of O(e) the behavior of slow variables, for the majority of
initial conditions, is described by the solutions of the averaged system (2.9)
matched at the uncertainty curve in accordance with the condition

L = Lout, (2.10)

where [;, and I, are the values of I(h,z,y) along the parts of the phase
trajectory of (2.9) lying inside and outside of the region bounded by the curve
L'(h).

In the case of multiple passages across the uncertainty curve, the summing
of the quasi-random changes gives rise to a diffusion of the adiabatic invariant.
In particular, if we consider the behavior of the solutions z;(¢) and z,(¢) with
the close initial values (|z1(0) — z2(0)| ~ ¢), then the difference between the
adiabatic invariants’ values along these solutions and the difference between
the projections of the phase points on the plane z.y can grow up to values
of order 1 over time intervals ranging from 1/¢? through 1/e® (respectively,
the amount of passages performed across the uncertainty curve ranges from
~ 1/e to ~ 1/e?) [4, 5]. Quasi-random jumps of the adiabatic invariant, caused
by qualitative changes in the fast motion properties, lead to formation of an
adiabatic chaos region in the Wisdom system’s phase space (Sec. 3).

3. ”Slow” dynamics of Wisdom system
at adiabatic approximation

Up to notations, the averaged equations (2.9) coincide with the evolutionary
equations obtained by Wisdom in [3]. Comparison of the phase portraits
presented in [3] reveals substantial differencies in the phase trajectories
behavior at various values of the parameter h. This motivated us to explore
in what way the qualitative properties of the solutions to system (2.9) depend
upon h. Here we present the main results of this analysis.

3.1. Phase portraits of the slow motions

Consideration of the phase portrait of system (2.9) is the most direct way
to get a clear idea of the slow motion properties at different levels Hy = h. It
turns out that by matching (or "gluing”) the trajectories at I'(h), in accordance
with the condition [, = I, we obtain 9 types of phase-behavior modes
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structurally stable under sufficiently small variations of h. Bifurcations take
place when h accepts one of the following values:

hy &~ —1.545, hy = —0.024, hs = 0.595, ha ~ 0.608,

hs ~ 0.612, he ~ 1.182, hy ~ 1.932, hs ~ 3.694.

Brief classification of the phase portrait features is given below.

Type I:h < h;. The center of the phase portrait is occupied by the
"forbidden” area M (h). The phase trajectories are the closed curves encircling
M(h). The equilibrium solutions are absent. As an example, we present in Fig.
2 the phase portrait of the slow motion at h = —2.

Type II:h € (hq, h2). The phase portrait of this type is shown in Fig. 3.
After the bifurcation at A = h;, the "forbidden” area consists of two domains.
In addition to this, an unstable equilibrium emerges on the axis Oz. When
h — hy, the equilibrium solution tends to the point Py = (zg,0), where

D-G
T = —2(0 ~F) ~ 1.33646.
At h — hs the "forbidden” domain located in the vicinity of the coordinate
origin shrinks to the point P;.

Type III:h € (ha, hs). Due to the bifurcation at h = hs, the uncertainty
curve I'(h) appears on the phase portrait (Fig. 4). The curve I'(h) encircles
the point P; and shrinks to it when h — hs. When the projection of the
Wisdom system’s phase point on the plane @,y lies inside the area bounded
by the curve I'(h), the critical angle ¢ rotates. The bifurcation at h = hy also
generates three additional equilibrium solutions.

Type IV:h € (hs, hs). At h = hs, the closest to the forbidden area
unstable equilibrium transforms into a stable equilibrium and a pair of unstable
equilibria lying outside the Oz axis (Fig. 5).

Type V:h € (ha, hs). At h = hy the re-connection of the separatrices takes
place (Fig. 6).

Type VI:h € (hs,hg). The bifurcation at h = hs results in the
disappearance of the homoclinic contour pertaining to the Type V phase
portraits: stable and unstable equilibria merge and vanish after that. Main
features of this type of behavior are presented in Fig. 7. At h — he the
"forbidden” area shrinks to the point Ps.

Type VII:h € (hg, h7). The bifurcation at h = hg resembles to some extent
the bifurcation at h = hs: the "forbidden” area vanishes, one more component
of the uncertainty curve I'(h) and one more triad of equilibrium solutions
appear in the vicinity of the point P,. Two of the newly born equilibria are
placed so close to each other that it is impossible to distinguish between them
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on the Type VII phase portrait in Fig. 8, where they are "represented” by
the same point lying on the right component of the curve I'(h). The enlarged
fragment in Fig. 9 shows the unstable equilibrium outside the region bounded
by I'(h) and the stable equilibrium inside it. Being so close, for all values of h
taken from the interval under consideration, at h — h; these equilibria meet
at the point Pg = (zg,0), where

D+G

Y 1.86718.
2(C + F)

rg =

Type VIII:h € (hr,hs). An example of Type VIII phase portrait is
presented in Fig. 10. At h = h; the components of the uncertainty curve
connect at the point Ps. Two close equilibria pertaining to the Type VII phase
portraits merge at the same point and disappear thereafter.

Type IX:h > hg. At h = hg unstable equilibria (which appeared at h = hg
and located outside the Oz axis till h < hg) merge with the stable equilibrium
lying on that axis left to the coordinate origin. So for h > hg the system (2.9)
has only three equilibrium solutions: two stable equilibria and one unstable.

3.2. Bifurcation diagram

The diagram in Fig. 12 brings additional information about the phase-
portrait transformations at the parameter h variation. It presents the location
and the stability properties of the equilibrium solutions lying on the Oz axis.

The curve H in Fig. 12 represents the family of equilibrium solutions being
born at h = h; at the point Pg. The curves S; and S5 depict the families of the
equilibria vanishing at A = h7 in the point Pg. The notation used emphasizes
the relation of these families to the periodic solutions of the three body problem
found by Hill and Sinclair.

Indeed, the limit points Py and Ps are associated in a natural way with
the equilibrium solutions of the original system (1.1)

=0, =0, z=2yg,y=0 (3.1)
and
p=w, =0, z=2xg, y=0. (3.2)

When the Wisdom system provides a reasonable approximation of the three
body problem dynamics, its equilibria correspond to the periodic solutions of
that problem in which the asteroid rotates around the Sun three times faster
than Jupiter. As it was shown in [12], the equilibrium solutions (3.1) and (3.2)
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can be interpreted as analogs to the Hill solution (Jupiter’s and asteroid’s
longitudes of the perihelion coincide) and of the Sinclair solution (the said
longitudes differ in =), respectively. Detailed numerical investigations of the
Hill and Sinclair solutions were undertaken in [8, 13, 14].

Finally, we would dwell upon some subtle features of the revealed chain of
bifurcations. First, the attention should be drawn to the series of bifurcations
for sufficiently small h variation, as shown in Fig. 13. Another remarkable
property is the presence of very closely placed equilibria on the Type VII
phase portraits (at a distance ~ 1073).

4. Long-periodic solutions

4.1. Adiabatic chaos region and stability islands

In the neighborhood of the uncertainty curve the projection of the system
(1.1) phase point to the z,y plane jumps in a quasi-random way from one
trajectory of the averaged system (2.9) to another: |I;, — Iu| ~ €. As a result,
over the long time interval this projection travels through the region Z(h)
obtained by the junction of all the slow trajectories crossing I'(h). The region
=(h) consists of one or two domains. The number of domains depends on the
curve I'(h) (Fig. 14).

Further we consider the region

E*(h) = {QO,(I),JB,y : HW(QO,(I),JB,’!/) = h7 (:va) € E(h)}

in the Wisdom system’s phase space. If the phase trajectory of the system
(1.1) belongs to =*(h), then its projection onto the z,y plane lies in the region
=(h). The violation of adiabatic invariance, caused by the qualitative change
of the fast motion character, is the main source of the trajectories’ complex
behavior in =*(h). Hence, this domain is called adiabatic chaos area (on the
level Hy = h).

The Poincaré mapping can be used to study the solutions’ properties in
=*(h). After the canonical transformation (2.2) is performed, the values of the
variables T, at the phase trajectory successive transitions through the plane
7 = 0 with 7 > 0 (i.e., at the transitions from the region 7 < 0 to the region

y > 0) are connected through

Yk-l—l = V(kaikvh)v ik-l-l = U(kaikvh)v (41)

where h defines the level of Hyy.
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We construct the Poincaré mapping numerically. It turns out that, instead
of the variables ¥, I, %, ¥, it is convenient to introduce the variables X, I, %,y
connected to the original variables ¢, ®. z,y by means of more simple formulae

~

X =x(p, ®,2,9), I =I(p,®,2,7y), (4.2)

ow ow
z=1z +€E(¢a(§amay)a Y=y 5%(30,‘1%13,?/)-

To calculate the derivatives OW [0z, OW /Oy we use the relations obtained
in [5]:
6_W - 1 /Q 6HW _ 6HW dv —
96 ow(r) Jo \ O¢ o€ X=
1 [x[(0A
— i I (G ) st = 1 = (ot ) -

0

Here w(x) denotes the frequency of the motion in the fast subsystem:

TKV oA

wir) =1 (%)

mVaA
2K (k)

, k>1

, k<l

In fact, the difference between the non-canonical change of variables

(907 @7 :B7 y) % (i? ‘[7 EB\? g)
and the canonical transformation (2.2) is small enough:
X — Xl =0(e), [T - 1| = Ofe),
T — 2| = 0(¢*), [7—g| = O(e?)
in every point in the region where both these sets of variables are defined.
As an example, the points at which two regular and one chaotic trajectories
cross the hyperplane § = 0 (passing from the region § < 0 to the region § > 0)

are shown in Fig. 15. Fig. 16 demonstrates the existence of the stability island
filled with invariant curves in the chaotic region of the mapping

-~ -~

X\k-l—l = V(ikv {B\kv h)7 Eik-l-l = U(ikvikv h) (43)

14



Stable fixed point in the center of Fig. 16 corresponds to the stable periodic
solution of the equations (1.1) embedded into the adiabatic chaos area Z*(h).
Taking into account the typical time between two successive passages of the
phase point through the plane § = 0, we can estimate the period of this solution
as O (%) So it 1s reasonable to specify it as a long-periodic solution.

As it was established in [6], in the case of the Hamiltonian system with
one degree of freedom depending on slowly varying parameter, the number
of stability islands located inside the adiabatic chaos area is large enough
and is of order ~ 1/e. Moreover, the total measure of these islands on the
Poincaré section is comparable with the measure of the chaotic area as a whole.
Although the Wisdom system has two degrees of freedom, on the level Hy 1t
can be reduced to the Hamiltonian system of the lower dimension with a time-
dependent parameter. So it is natural to expect the existence of many stable
periodic solutions with the periods ~ 1/¢ inside =*(h). This is confirmed by
the numeric results presented in Sec. 4.2. In [15] it is proven rigorously that
the Hamiltonian system with two degrees of freedom indeed can possess the
numerous stable periodic solutions lying in the adiabatic-chaos realm.

Note. Except the adiabatic-chaos area Z*(h) the Wisdom system has an
area of the so-called homoclinic chaos [12]. An interaction of the fast and
slow subsystems results in the splitting of the separatrices which constitute
closed contours on the slow-motion phase portraits constructed in the adiabatic
approximation (Sec. 3). The width of the emerging stochastic layer can be
estimated as O (exp(—C1/¢)), where C is some positive constant [16, 17]. The
dynamics in this region of the system’s phase space is beyond the scope of our
current study.

4.2. Numeric search of the stable long-periodic
solutions inside the adiabatic chaos region

As an example, we evaluate numerically the amount of the stable periodic
solutions in Z*(h) at A = 1.9. In this case the adiabatic-chaos area consists
of two components, =7 and = (Fig. 14). To simplify the computations, we
consider the "symmetric” periodic solutions solely. ”Symmetric” is a solution
satisfying the conditions

©(0) = 0mod 7, ¢ <§> = O0mod r, (4.4)

y(0) =y @) =0,

for a certain 7' > 0. Taking into account the Wisdom system’s reversibility
(Sec. 1), one can prove that any solution of the boundary value problem
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(4.4), being extended outside the interval [0, %], gives birth to a T-periodic
solution of equations (1.1) with the monodromy matrix

M(h) = QW @h) QW <§h> .
Here W(t,h) denotes the fundamental matrix of the appropriate linearised
equations (W(0,h) = E4, where Ey4 is the (4 x 4)-identity matrix).

Since there are no reasons to assume that only "symmetric” stable periodic
solutions are accepted by the Wisdom system, the results of our calculations
should be interpreted as the lower bound estimations.

To select the stable solutions, we undertake the usual analysis restricted
by the linear approximation. The characteristic equation

det (M(h) — pE4) =0
can be rewritten as
(p = 1)%(p* = 2ap + 1) = 0,

where

M
2
The solution z(t) is stable at |a| < 1.

1.

a

Table 2. Numerically found stable periodic solutions
satisfying conditions (4.4)

The number of | The number of | The total
€ solutions solutions number of
in =7 in =3 solutions
0.2 4 4 8
0.1 18 24 42
0.05 37 37 74
0.025 72 63 135

Information about the stable periodic solutions found numerically in Z*(h)
can be found in Table 2. The amount of such solutions N increases as the
parameter ¢ decreases.

It would be important to mention that the existence of numerous stable
periodic solutions inside the adiabatic-chaos area was proven in [6, 15] under
the assumption of €/ < 1. This assertion is not valid for the values of
used in our numerical study. (Our computer facilities were too week for an
extensive search of periodic solutions at € < 0.025). Nevertheless, the derived
in [6] asymptotic relation N ~ 1/e was satisfied, with a reasonable accuracy,
even at € < 0.1 (Fig. 17).
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Conclusion

We present a number of patterns in the slow motion behavior in the Wisdom
system. However, our results can be applied to the analysis of the asteroidal
resonant motion only when this system is an adequate model. In general
it misses some significant features of the original three body problem. For
example, the Wisdom system can not be used to study an interplay of low-
and high-eccentricity motions at the 3:1 resonance described in [7]. It reveals
the necessity of examining the exactness of the Wisdom model in this context.

According to [6, 15], the existence of many stable periodic solutions is
a rather general property of the adiabatic chaos area in the phase space of
Hamiltonian systems. Our numerical quest for periodic solutions in Wisdom
system confirms this conjecture.
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Fig.1. The phase portrait of the fast subsystem at € =0



Fig.2. The slow motions at h = —2 (Type I phase portrait). The
forbidden area is shaded.

Fig.3. The slow motions at h = —1 (Type II phase portrait). The
forbidden area is shaded.



Fig.4. The slow motions at h = 0.5 (Type III phase portrait). The
more shaded domain is the forbidden area (right). The less shaded
domain is the part of the slow variables plane enclosed by the
uncertainty curve ['(h) (left).

h<h,  h=hy  h>h

Fig.5. The bifurcation of the phase portrait at h = hg
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Fig.6. The bifurcation of the phase portrait at h = hy
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Fig.7. The slow motions at h = 0.9 (Type VI phase portrait). The
more shaded domain is the forbidden area (right). The less shaded
domain is the part of the slow variables plane enclosed by the
uncertainty curve ['(h) (left).



Fig.8. The slow motions at h = 1.9 (Type VII phase portrait). The
shaded domains are the parts of the slow variables plane enclosed by

the uncertianty curve I'(h).
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Fig.9. The enlarged fragment of the phase portrait at h =1.9. The
equilibria located in the close vicinity of the uncertainty curve are

shown.



Fig. 10. The slow motions at h = 3.0 (the type VIII phase portrait).
The shaded domain is the part of slow variables plane enclosed

by T'(h).

Y

Fig. 11. The slow motions at h = 4.0 (the type IX phase portrait).
The shaded domain is the part of slow variables plane enclosed

by T'(h).
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Fig. 12. Bifurcation diagram: location of the system (2.9) equilibria
on the Oz axis. Solid lines correspond to stable equilibria, dotted lines
represent unstable ones. More and less shaded domains provide an idea

about the location of the forbidden area M (h) and the uncertainty
curve I'(h) respectively. Namely, the vertical segments of the more
shaded domain represent the segments of the Oz axis lying inside

M(h) at corresponding value of h. In the similar way the less shaded

domain represents the segments of the Oz axis inside the areas

enclosed by I'(h).
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Fig. 13. The enlarged fragment of the bifurcation diagram



Fig. 14. The adiabatic chaos regions (shaded) on the slow variables
plane at h =1.9 (top) and h = 4.0 (bottom). The thick lines are used
to show the uncertainty curve location.



0 T 2T

Fig. 15. Poincaré section of the system’s phase flow on the level
h =1.9. Two regular and one chaotic (embedded into Z*(h))
trajectories are shown.
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Fig. 16. An example of the stability island in the adiabatic chaos
region (h =1.9)
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Fig. 17. The amount of the numerically found stable periodic
solutions at different values of parameter £. The dashed line is the
graph of the function N = c¢/e, ¢ = 3.8.
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