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Abstract

We consider the problem of the least-squares approximation on two-dimensional
unstructured grids with ”bad” cells. We discuss how the accuracy of the least-squares
approximation depends on the cell geometry. We analyze a simple geometry and
demonstrate that introducing weight coefficients into the problem may help to essen-
tially improve the accuracy of the least-squares approximation. Based on the results
of our analysis, a heuristic choice of the weights in a general least-squares procedure
is suggested. Our approach is illustrated by numerical tests.
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Introduction. 1

We discuss the issue of a least-squares approximation on two-dimensional

unstructured grids with ”bad” cell geometry. The issues related to approx-

imation and interpolation are covered in many books (e.g. see [2]). Never-

theless, to our best knowledge, the approximation over grid cells, which are

almost degenerate, is not widely addressed in the literature. A general dis-

cussion of the topic can be found in [1], [5]. The impact of the cell geometry

on the quality of approximation has been studied in [3, 4, 7].

Generally, a least-squares reconstruction is difficult for analysis, since a

data set of an arbitrary dimension is used for the approximation. Thus

we first discuss a simple geometry and demonstrate that data measuring at

remote points which lie beyond an actual domain of interest, may consid-

erably worsen the approximation. As a result of our analysis, we elaborate

the weighting coefficients which correct the impact of ”bad” geometry (i.e.

remote points) in a general least-squares procedure. Our approach is illus-

trated by numerical tests.

1. Problem statement.

Consider a data set U = (U1, U2, ..., UN) where the data Ui represent a
continuous function U(x, y) at points Pi = (xi, yi), i = 1, ..., N . We have to
fit the data U to the function

u(x, y) =
M[
k=1

ukφk(x, y), M ≤ N, (1)

where (u1, u2, ..., uM) are fitting parameters, and φk(x, y), k = 1, ...,M are

basis functions. We define the merit function F 2 as follows (e.g. see [6])

F 2 =
N[
i=1

⎡⎢⎢⎢⎣
Ui −

MS
k=1

ukφk(Pi)

σi

⎤⎥⎥⎥⎦
2

. (2)

Below we loosely refer to parameter σi as the weight of the i-th data point.
A least-squares approach considers the vector u = (u1, u2, ..., uM) as the

best fit to a given data set, if u minimizes the function (2). Thus, the

parameters uk can be found from the M conditions

∂F 2

∂uk
= 0, k = 1, ...,M,

1This work was supported by The Boeing Company under contract
No 104AE and Russian Foundation for Basic Research, grant No 03-01-
00063.
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which are called the normal equations of the least-squares problem. Tak-

ing into account the definition (2), we obtain the normal equations in the

following form

N[
i=1

1

σ2i

%
Ui −

M[
j=1

ujφj(Pi)

&
φk(Pi) = 0, k = 1, ...,M.

We introduce the weighted data b and the design matrix [A] as follows

bi = Ui/σi, Aij = φj(Pi)/σi, i = 1, ..., N, j = 1, ...,M.

The normal equations can be written as [α]u = [β], where the matrix [α] =
[A]T [A], and the right-hand side β = [A]T b. They are to be solved for the
vector of parameters u = (u1, ..., uM),

u = [α]−1[β]. (3)

Below we consider the approximation (1) with linear basis functions,

u(x, y) = u0 + u1(x− x0) + u2(y − y0), (4)

where the origin P0 = (x0, y0) is chosen to serve the needs of the problem
under consideration. Our main purpose is to understand how the fitting

parameters u in (4) depend on the geometry {P}. The problem can be

illustrated by the following example. Consider the simplest geometry, P1 =
(−∆x, 0), P2 = (0,∆y), P3 = (∆x, 0), and P4 = (0,−∆y). We reconstruct
U(x, y) at P0 = (0, 0), assuming σi = 1, ∀i = 1, ..., 4. The matrix [α]−1 is
diagonal,

[α]−1 =

⎡⎢⎢⎢⎢⎣
1

4
0 0

0
1

2∆x2
0

0 0
1

2∆y2

⎤⎥⎥⎥⎥⎦ ,
and the reconstruction (4) is

u(x, y) =
U1 + U2 + U3 + U4

4
+
(U3 − U1)
2∆x

x+
(U2 − U4)
2∆y

y.

One can see that the least-squares procedure provides a second order approx-

imation to the function U(x, y) and gradient (∂U(x, y)/∂x, ∂U(x, y)/∂y)|P0.
However, this result should be essentially attributed to the geometry of the

problem. Now let us have an arbitrary geometry, Pi = (∆xi,∆yi), i = 1, ..., 4.
The entries of the matrix [α]−1 are not ”decoupled” anymore, as each of them
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depends now on each of deviations (∆xi,∆yi). Hence, each fitting parameter
uk can be presented as

uk =
N[
l=1

Ckl({P})Ul,

where coefficients Ckl({P}) are defined by the geometry {P}.
We are going to study how far the geometric coefficients Ckl({P}) are

responsible for the quality of the least-squares approximation. In particular,

we are interested in the gradient reconstruction at a given point P0, in which
case u0 = U(x0, y0) and u = (u1, u2). The matrix [α]

−1 used for the gradient
reconstruction takes the form

[α]−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

NS
i=1

(yi − y0)2/σ2i
∆

−
NS
i=1

(xi − x0)(yi − y0)/σ2i
∆

−
NS
i=1

(xi − x0)(yi − y0)/σ2i
∆

NS
i=1

(xi − x0)2/σ2i
∆

⎤⎥⎥⎥⎥⎥⎥⎦ , (5)

where

∆ =

N[
i=1

(xi − x0)2/σ2i
N[
i=1

(yi − y0)2/σ2i −
#

N[
i=1

(xi − x0)(yi − y0)/σ2i
$2
.

The gradient error is

e∇(P0) = ||∇U(x, y)−∇u(x, y)|||P0 =t�
(∂U(x, y)/∂x)|P0 − u1

�2
+
�
(∂U(x, y)/∂y)|P0 − u2

�2
where ∇ is a formal notation for the gradient vector, ∇ = (∂/∂x, ∂/∂y).
We begin our consideration with the following simple configuration. Let

P1 = (−H,h1), P2 = (0, h0), and P3 = (H,h1), where H  h0 (see configu-
ration I in fig.1). We define the function U(x, y) as

U(x, y) = ax2 + y, (6)

where the parameter a = −0.001, and reconstruct the gradient (u1, u2) at
the origin P0 = (0, 0). The analytic gradient is ∂U/∂x = 2ax, ∂U/∂y = 1,
so that ∇U(P0) = (0, 1).
An unweighted least-squares approach (i.e. σi = 1, ∀i = 1, ..., N) gives us

the matrix [α]−1 and the right-hand side β as follows
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P1=(-H,h1)

P3=(H,h1)
P2=(0,h0)

P0=(0,0)

I
II

P1 P3
P2

P0
III

P0 P3

P2

P1

Figure 1: The geometry for the least-squares approximation. Configuration

I has outliers in the data set. Configurations II, III have no outliers.

[α]−1 =

⎡⎢⎣ 1

2H2
0

0
1

2h21 + h
2
0

⎤⎥⎦ , β =

�
(U3 − U1)H

U2h0 + (U3 + U1)h1

�
,

where Ui = U(Pi). According to (3), the gradient (u1, u2) is reconstructed as

u1 =
U3 − U1
2H

, u2 = U2
h0

h20 + 2h
2
1

+ (U1 + U3)
h1

h20 + 2h
2
1

. (7)

For the given geometry, a second order approximation to the gradient

would be

u1 =
U3 − U1
2H

, , u2 =
U2
h0
. (8)

It can be seen from (7) that the least-squares procedure results in a correct

reconstruction of the x -component of the gradient, while the value u2 de-
pends on both h0 and h1. Let H = 100, h1 = 10, and h0 = 1. The relations
(6), (7) give us u1 = 0.0, u2 = 4.97512 ·10−3, so that the error in the gradient
norm is e∇ = 9.95025 · 10−1.
Let us estimate which value h1 would be appropriate for the accurate

reconstruction (8) of the gradient. Substituting u2 into (7) yields

1

h20 + 2h
2
1

[U2h0 + (U1 + U3)h1]− U2
h0
= 0.

Taking into account that U1 = U3 = aH2 + h1 and U2 = h0, we find that
h1 = 0. This trivial solution means that our domain of interest, where the



7

data U are to be defined, has only two characteristic lengths, one of which

is h0 and another one is H.
Suppose that we carry out a physical experiment and measure by mistake

our function U at some points which lie beyond the characteristic domain.

Such measurements (called outliers in the statistics), included into the data

set, may seriously affect the results of the least-squares procedure used to

treat the experimental data. For the configuration I, the length h1 9= 0 indi-
cates that the geometry of the domain associated with the function U(x, y)
has not been correctly defined. Thus, we may suggest outliers in our prob-

lem, i.e. the data at the points which lie beyond the actual characteristic

domain.

What are outliers in our data set? An evident answer is to recognize the

remote points P1 and P3 as the outliers. The configuration II shown in the
figure provides h1 = 0 and gives us the gradient (8) at the point P0. Another,
less evident conclusion, is to admit that it is not correct to measure the data

at the point P0. An appropriate choice would be to put the point P0 in the
vicinity of the midpoint of the edge P1 − P3 (see configuration III in the
figure).

2. The choice of weights in the least-squares procedure.

Now let us look how we can improve the gradient estimate (7) by using

weights in the least-squares procedure. Since the configuration is symmetric

relative to the y-axis, the equal weights σ1 = σ3 ≡ σ are assumed for the
data at the points P1 and P3. We denote the weight of U2 as δ.
For the weighted least-squares approximation, the matrix [α]−1 and the

right-hand side β are given by

[α]−1 =

⎡⎢⎢⎣
σ2

2H2
0

0
σ2δ2

2h21δ
2 + σ2h20.

⎤⎥⎥⎦ , β =

⎡⎢⎣ (U3 − U1)H
σ2

(U3 + U1)
h1
σ2
+ U2

h0
δ2

⎤⎥⎦ . (9)

The gradient is

u1 = (U3 − U1) 1
2H
,

u2 =
σ2 h20

σ2 h20 + δ2 2h21

U2
h0
+

δ2 h1
σ2 h20 + δ2 2h21

(U1 + U3) =

Aw(σ, δ)
U2
h0
+Bw(σ, δ)(U1 + U3),
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where

Aw(σ, δ) =
σ2 h20

σ2 h20 + δ2 2h21
, Bw(σ, δ) =

δ2 h1
σ2 h20 + δ2 2h21

.

It can be seen from the expression above that the values Aw(σ, δ) = 1,

Bw(σ, δ) = 0 are required to get the consistent approximation (8). Solving
these equations, we obtain δ = 0, σ ∈ R, which solution is irrelevant to the
least-squares problem.

For practical purposes, we need to evaluate σ and δ in magnitude in order
to obtain asymptotic estimates Aw(σ, δ) → 1, Bw(σ, δ) → 0. To get such

estimates we use the following approach. Let us consider the unweighted

least-squares procedure in which new basis functions are exploited instead

of the basis φ1 = x, φ2 = y. The new basis functions are

φ̃1 = f(x, y)φ1, φ̃2 = g(x, y)φ2,

where the functions f(x, y) and g(x, y) must take the required values 1/σ and
1/δ at points Pi. This approach is equivalent to the weighting procedure in
which the data vector U(Pi) remains unweighted. The matrix [α]

−1 and the
right-hand side β are now given by

[α]−1 =

⎡⎢⎢⎣
σ2

2H2
0

0
σ2δ2

2h21δ
2 + σ2h20.

⎤⎥⎥⎦ , β =

⎡⎢⎣ (U3 − U1)H
σ

(U3 + U1)
h1
σ
+ U2

h0
δ

⎤⎥⎦ . (10)

The fitting parameters are

u1 = (U3 − U1) σ

2H
, (11)

and

u2 =
σ2 δ2

δ2 2h21 + σ2 h20

�
U2
h0
δ
+ (U1 + U3)

h1
σ

�
. (12)

Again, we seek for the weights (σ, δ) which provide the second order ap-
proximation (8) to the gradient. Comparing (11) and (8), we get σ = 1.

Substituting (8) and σ = 1 into (12) yields

U2h0δ + 2(U1 + U3)h1δ
2 = 2h21δ

2 + h20.

Solving the above equation for δ, we require that the discriminant D =

U22h
2
0+8h

2
0h1(U1+U3−h1) > 0. Taking into account the explicit form of the

function (6), we obtain the following estimate

h1 < h
max
1 = 125

h20
H2
, (13)
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i.e. h1 < 1/80 in case that h0 = 1, H = 100. Only if the points P1 and P3
lie in the narrow band between 0 and hmax1 , the weights will help to get the

accurate gradient.

Since our geometry does not meet the requirement (13), a formal conclu-

sion should be that the accurate reconstruction of both gradient components

is impossible. However, we essentially used our knowledge of the function

U(x, y) in our analysis. The symmetry of the function U(x, y) allows to get
the required value u1 = 0 along the x-axis. Thus, below we analyze the

y-component of the gradient, assuming an arbitrary weight in the expression
(11).

Let us rewrite (12) as

u2 = A(σ, δ)
U2
h0
+B(σ, δ) (U1 + U3),

where

A(σ, δ) =
σ2 δ h20

σ2 h20 + δ2 2h21
, B(σ, δ) =

σ δ2 h1
σ2 h20 + δ2 2h21

.

First we define the parameter σ. The equation A(σ, δ) = 1 yields

σ∗ =
h1
h0

u
2δ2

δ − 1. (14)

Substituting σ∗ into the equation B(σ∗, δ∗) = 0, we obtain
√
2h1 δ

√
δ − 1

2h20 + 2h0h1(δ − 1)
= 0.

The two roots of the equation are δ∗1 = 0 and δ∗2 = 1. The choice of δ
∗
1 = 0

is irrelevant to the least-squares problem. The value δ∗2 = 1 gives us σ
∗ =∞

with a consistent asymptotic estimate u2 → 1, as σ → ∞. Hence, for

practical purposes one should take δ = 1 and choose the weights (14) for the
data at the remote points P1 and P3 as big as possible to obtain the gradient
reconstruction u2 with the desired accuracy.
To evaluate the order of magnitude for σ, we analyze the matrix (5) in

the presence of outliers. Let points P1, P2, ..., PN−1 be (xi, yi), where xi ∼
l, yi ∼ l, and the point PN be a remote point, xN ∼ L, yN ∼ L, where we
assume L  Nl. Consider the diagonal entries of the matrix [α]−1 for the
unweighted least-squares approximation,

α−111 =

NS
i=1

y2i

NS
i=1

x2i
NS
i=1

y2i −
�
NS
i=1

xiyi

�2 , (15)
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where the origin (x0, y0) = (0, 0).
Each sum in (15 ) can be rearranged as

α−111 ∼

N−1S
i=1

y2i + L
2

(
N−1S
i=1

x2i + L
2)(

N−1S
i=1

y2i + L
2)−

�
N−1S
i=1

xiyi + L2
�2 =

N−1S
i=1

y2i + L
2

N−1S
i=1

x2i
N−1S
i=1

y2i +
N−1S
i=1

x2iL
2 +

N−1S
i=1

y2iL
2 + L4 −

�
N−1S
i=1

xiyi

�2
− 2

N−1S
i=1

xiyiL2 − L4
,

or, taking into account

N−1[
i=1

x2i ∼
N−1[
i=1

y2i ∼ (N − 1)l2,

α−111 ∼
L2

N−1S
i=1

x2iL
2 +

N−1S
i=1

y2iL
2 − 2

N−1S
i=1

xiyiL2
=

1
N−1S
i=1

(xi − yi)2
.

A similar estimate holds for α−122 .
Since we assume xi ∼ l, yi ∼ l, their difference can be very small, xi −

yi ∼ " → 0. ( Note the singularity in the estimate above which arise in

degenerated case that all of the points Pi are placed at the same straight
line. ) The entries of [α]−1 will grow with grid refinement and affect the
gradient reconstruction (3), unless the outlier is suppressed by a weight σL,
L/σL → 0, as L→∞.
For the configuration I, we have L ∼ sH2 + h21 ≈ H. Thus, we choose

σ = H2 in which case the weighted least-squares procedure yields u2 =
0.999998, e∇ = 2 · 10−6 for values h0 = 1, h1 = 10, H = 100.

3. A general weighting procedure. Numerical results.

The analysis made in the previous section concerns a particular configu-

ration and function U(x, y). Nevertheless, it allows us to elaborate heuristic
weights in the least-squares procedure. A general recommendation is that

once outliers have been detected in the problem, those data must have small

values ρi = (1/σi). Based on the analysis above we suggest that the weights
σi can be defined as

σi = r
2
i = (xi − x0)2 + (yi − y0)2,

where (x0, y0) is the point where the gradient is reconstructed. Formally, the
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weights can be scaled as

σ̃i = σi/r
2
min, rmin = min

i=1,...,N
{ri} ,

so that the point closest to the origin P0 has σ̃min = 1.
Below we consider numerical tests which illustrate the choice of the weight

coefficients. We define the geometry for our test cases as follows. Let points

P1 = (−H, 0), P2 = (0.02, h), P3 = (H,−0.01), and P4 = (−0.07,−h), where
h and H are the controlling parameters for the configuration. Let H = 1,

h = 1, so the points Pi lie very close to a unit circle. We are going to
imitate a refinement procedure by halving h at each ”refinement step”, the
parameter H being fixed. We reconstruct the gradient (u1, u2) at P0 = (0, 0)
and compare the error e∇(h) for the unweighted and weighted least-squares
approximation. We are also interested in the diagonal elements of the matrix

[α]−1, which, in our opinion, may help to detect the outliers.
We begin our consideration with a function

U(x) =
1

2
((x−A)2 + (y −A)2), (16)

where the parameter A = 2. The gradient is ∂U/∂x = x−A, ∂U/∂y = y−A,
∇U(P0) = (−2,−2).
First, we reconstruct the gradient by using an unweighted least-squares

approach. The error e∇(h) and the diagonal entries α−1ii , i = 1, 2 are shown
in Table 1.

Table 1.

The unweighted least-squares procedure for the function (16).

h e∇(h) α−111 α−122
1.0000 0.0152469 0.4993633 0.5005867

0.5000 0.01270758 0.4992012 2.001396

0.2500 0.04471311 0.498952 7.996793

0.1250 0.1690752 0.4987531 31.89793

0.06250 0.652037 0.4995403 126.5818

0.03125 2.506628 0.5056627 493.8101

0.01562 9.159516 0.5333749 1817.866

0.007813 28.16445 0.6214184 5610.583

0.003907 59.85515 0.7776305 11945.89

0.001953 84.41483 0.9052282 16863.26

0.0009766 94.74845 0.9624739 18936.42

0.0004883 98.10343 0.9827952 19611.53
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It can be seen from the table that the error in the gradient grows, as

h is getting smaller. The error in the gradient norm is mostly due to the

y-component of the gradient. Actually, at the last step of the refinement we
have ex = |∂U/∂x|P0 − u1| = 0.48743 and ey = |∂U/∂y|P0 − u2| = 98.103.
Let us evaluate the characteristic lengths lx and ly from the relation

U(lx, 0)− U(0, 0)
lx

∼ 1, U(0, ly)− U(0, 0)
ly

∼ 1.

For ”homogeneous” function (16), the characteristic domain is lx = ly. Our
”anisotropic” refinement procedure makes the points P1 and P3 lie outside
the characteristic domain. The presence of the outliers in the problem is

evidenced by different orders of magnitude in α−111 and α−122 , as one may
expect α−111 ∼ α−122 , if the characteristic domain is chosen adequate to the
function (16 ). Thus, the weighting procedure is required to eliminate the

outliers.

Table 2.

The weighted least-squares procedure for the function (16).

h e∇(h) α−111 α−122
1.0000 0.01489822 0.4994162 0.5030751

0.5000 0.05869409 0.4927092 0.1304421

0.2500 0.1923858 0.4118147 0.0430285

0.1250 0.2295866 0.1353229 0.01894057

0.0625 0.1119552 0.024711 0.006007634

0.03125 0.06687997 0.009721229 0.002569299

0.01562 0.06012273 0.007275371 0.003624347

0.007812 0.07669123 0.00675025 0.01162409

0.003906 0.127259 0.006623483 0.04456423

0.001953 0.2398984 0.006590117 0.1765079

0.0009766 0.4704899 0.006577596 0.703892

0.0004883 0.9289341 0.00656544 2.809573

The results of the weighted least-squares approximation are shown in Ta-

ble 2. Comparing the unweighted and weighted gradient reconstruction, one

can see that weighting reduces the gradient error. However, the weighting

procedure is efficient only in the presence of outliers. At initial steps of the

refinement, the error is smaller for the unweighted least-squares approach.

Also, it can be seen from Table 2 that at last steps of the refinement the

geometry distortion is so strong that the error begins to grow again.
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Table 3.

The unweighted least-squares procedure for the function (17).

h e∇(h) α−111 α−122
1.0000 2.153319 0.4993633 0.5005867

0.5000 2.153135 0.4992012 2.001396

0.2500 2.18501 0.498952 7.996793

0.1250 2.429651 0.4987531 31.89793

0.0625 4.095294 0.4995403 126.5818

0.03125 11.7667 0.5056627 493.8101

0.01562 38.88393 0.5333749 1817.866

0.007812 114.0223 0.6214184 5610.583

0.003906 236.5301 0.7776305 11945.89

0.001953 329.5013 0.9052282 16863.26

0.0009766 367.5444 0.9624739 18936.42

0.0004883 379.3713 0.9827952 19611.53

Table 4.

The weighted least-squares procedure for the function (17).

h e∇(h) α−111 α−122
1.0000 2.153138 0.4994162 0.5030751

0.5000 2.171339 0.4927092 0.1304421

0.2500 2.021146 0.4118147 0.0430285

0.1250 1.099674 0.1353229 0.01894057

0.0625 0.6035814 0.024711 0.006007634

0.03125 0.5099836 0.009721229 0.002569299

0.0156 0.4908921 0.007275371 0.003624347

0.007812 0.4869887 0.00675025 0.01162409

0.003906 0.4880201 0.006623483 0.04456423

0.001953 0.4951019 0.006590117 0.1765079

0.0009766 0.5184101 0.006577596 0.703892

0.0004883 0.5765298 0.00656544 2.809573

Another solution to Laplace’s equation is

U(x, y) = A log
�s

R1(x, y)/R2(x, y)
�
, (17)

where R1(x, y) = (x− a)2 + y2, R2(x, y) = (x− 4a)2 + y2. In our numerical
calculations, a = 1.0, A = 1.0. The gradient is ∂U/∂x = A((x−a)/R1(x, y)−
(x−4a)/R2(x, y)), ∂U/∂y = A(y/R1(x, y)−y/R2(x, y)),∇U(P0) = (−0.25, 0).
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The results for the unweighted and weighted least-squares approach are

shown in Table 3 and Table 4, respectively. The results are similar to those

for the function (16). Again, the outliers in the problem are evidenced by

different orders of magnitude in the diagonal elements of [α]−1.
Our next test is to consider the function

U(x, y) = x+ exp(Ay), (18)

where the parameterA = 5. The gradient is ∂U/∂x = 1, ∂U/∂y = A exp(Ay),
∇U(P0) = (1, 5).

Table 5.

The least-squares procedure (LS) for the function (18). The gradient error

for the unweighted and weighted LS approach.

h e∇(h) (unweighted LS) e∇(h) (weighted LS)
1.0000 69.28902 69.63832

0.5000 7.106995 7.835687

0.2500 1.408095 5.731806

0.1250 0.3305086 5.29683

0.0625 0.07890232 1.911436

0.03125 0.01458822 0.6712025

0.01562 0.009495008 0.2829979

0.007812 0.03703674 0.133406

0.003906 0.07644436 0.06547207

0.0019531 0.1057604 0.03250343

0.0009766 0.1176681 0.0161402

0.0004883 0.1213422 0.007900425

The gradient error for the unweighted and weighted least-squares approach

is shown in Table 5. For the function (18), one may expect the characteristic

length ly � lx, so that the data at the points P2 and P4 will be outliers
at the first steps of the refinement. It can be seen from the table that the

weighting procedure does not recognize the outliers for the function (18),

as a uniform initial geometry provides almost equal weights for the points

of the configuration. On the other hand, the outliers, which exist on the

initial grid, can be eliminated by means of the refinement. The unweighted

least-squares procedure is appropriate for the problem, as the gradient error

reduces with the grid refinement. Only that the grid parameter h� ly (i.e.
at last steps of the refinement), the unweighted approach fails to reconstruct

the gradient, so that weighting is of use.
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Conclusions.

• We have obtained preliminary results concerning the problem of the

least-squares approximation on bad grids. It has been shown that if

data used for the approximation are measured at the points which lie

beyond an actual characteristic domain, the least-squares procedure will

give us a reconstruction with poor accuracy.

• We have suggested a heuristic choice of the weights in the least-squares
approximation. It has been demonstrated that introducing weight coef-

ficients into the problem may help to eliminate outliers and improve the

accuracy of the least-squares procedure. The issue of weighting requires

a further thorough study and has to be considered together with the

problem of the detection of outliers.
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