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Abstract
L. Volevich1. The Vishik–Lysternik Method in General Elliptic

Boundary Value Problems with Small Parameter.

This paper gives a survey on the concept of ellipticity with small
parameter for general elliptic boundary value problems with operator
and boundary conditions depending polynomially on a small parameter.
We combine the methods of the theory of general elliptic boundary value
problems with the Vishik–Lyusternik method of exponential boundary
layer. The main result includes necessary and sufficient conditions for
the existence of an a priori estimate of the problem uniform with respect
to the parameter. These conditions are formulated in terms of interior
and boundary symbols of the problem with parameter introduced in this
paper.

1supported by the Russian Foundation of Basic Research, Grant 00-01-00387.
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1 Introduction

On a manifold M with the smooth boundary ∂M the equation is consid-
ered

A(x,D, ε)u(x) = f(x) x ∈M, (1-1)

where
A(x,D, ε) := ε2m−2µA2m(x,D)

+ε2m−2µ−1A2m−1(x,D) + · · ·+A2µ(x,D). (1-2)

Here A2m−j , j = 0, . . . , 2m − 2µ is an operator of order 2m − j with
principal part A0

2m−j .
The boundary conditions are of the form

Bj(x
′, D, ε)u(x′) = gj(x

′), x′ ∈ ∂M, j = 1, . . . ,m, (1-3)

where
Bj(x

′, D, ε) := εbj−βjBbj (x
′, D)

+εbj−βj−1Bbj−1(x′, D) + · · ·+Bβj (x
′, D), (1-4)

and Bbj−k, k = 0, . . . , bj−βj is an operator of order bj−k with principal
part B0

bj−k. We shall suppose that for a fixed ε > 0 the problem (1.1),

(1.3) is a standard elliptic problem (i. e. the operator A2m(x,D) is elliptic
and operators {Bbj (x′, D), j = 1, . . . ,m} are connected with A2m(x,D)
by the standard Shapiro–Lopatinskii condition).

If we replace operators A2m−j by A0
2m−j in (1.2) and, respectively,

Bbj−k by B0
bj−k in (1.4), we obtain the principal parts A0(x,D, ε) and

B0
j (x,D, ε) of operators (1.2), (1.4). If we assign ε the weight −1 and ξ

the weight 1, then the symbols of these operators become homogeneous
functions:

A(x, ρξ, ρ−1ε) = ρ2µA(x, ξ, ε), Bj(x, ρξ, ρ
−1ε) = ρβjBj(x, ξ, ε). (1-5)

The main problem is to discribe necessary and sufficient conditions
on symbols of operator in (1.1) and boundary operators in (1.3), which
guarantee

(A) A priori estimate of the problem uniform with respect to ε↘ 0.
(B) Existence of formal asymptotic solution (FAS) of (1.1), (1.3).
(C) Justification of FAS (in other words, when FAS is the expansion

of the real solutions in powers of the small parameter).
We shall start from (B) and in informal way present the Vishik–

Lyusternik method, which will suggest the conditions on inner and bound-
ary symbols of the problem. Then we shall mainly study (A).
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Although problems of type (1.1), (1.3) for high-order elliptic equations
with small parameter in higher derivatives arise in mathematical physics
(mainly in the fluid dynamics and in the elasticity) the profound theory of
such problems begun from the remarkable paper of Vishik-Lyusternik [?],
where the basic idea of exponential boundary layer was developped and
the so-called the Vishik–Lyusternik method was introduced. The main
achievement of this method is the possibility to calculate corrections near
the boundary by solving ODE problems in the direction normal to the
boundary.

This approach with great success was used in applications. There
is a lot of applied papers, where the boundary layer method of Vishik–
Lyusternik is used to write down the asymptotics for concrete boundary
value problems.

As for purely mathematical papers devoted to this problem, there are
not many of them. The so-called general elliptic theory in mid fiftieth
(when the paper of Vishik–Lyusternik was written) was not so popular as
it became a decade later. Vishik and Lyusternik restricted themselves to
the Dirichlet problem for strongly elliptic equations. The generalization
of their results to general boundary value problems was discussed by
Frank in series of papers starting from [?] and Nazarov [?] and later. The
presentation below has common points with these works.

The goal of my lecture is to selebrate Vishik’s anniversary by present-
ing the small parameter theory as a part of general elliptic theory.

2 Formal asymptotic solution of the prob-
lem (1.1), (1.3)

The traditional localization of elliptic problems makes possible to ”glue”
the FAS on M from local FAS on Rn and on Rn+.

2.1. Formal asymptotic solution on Rn.
The construction is absolutely traditional. We seek FAS in the form

U(x, ε) =

∞∑
k=0

εkuk(x). (2-1)

Substituting (2.1) in equation (1.1) and equating the terms with the same
power of ε we obtain recurrent relations

A2µu0 = f, A2µu1 = −A2µ+1u0, (2-2)
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and for an arbitrary k > 1 we obtain

A2µuk = −A2µ+1uk−1 − · · · −A2muk−2m+2µ, (2-3)

where we formally set uk−l = 0 for l > k.
Equations (2.2), (2.3) show that our recurrent system can be solved

if the operator, say,

A2µ(x,D) : Hr(M)→ Hr−2µ(M) (2-4)

has a bounded inverse for some r. It means that A2µ(x,D) is elliptic
and, in principal, some additional conditions on the lower terms of A2µ

are satisfied.
To justify FAS we need some (weak) estimate from below of the op-

erator A(x,D, ε) providing unicity in Rn.
Note, that if the right-hand side f belongs to a space Hs(M) the series

(2.1) according to (2.2), (2.3) belongs, in general, to H−∞(M). However,
if f ∈ C∞, then according to the hypoellipticity of the elliptic operator
A2µ(x,D) the FAS (6) also belongs to A2µ(x,D).

2.2. Formal asymptotic solution in the half-space. Boundary
layer method.

We shall consider the problem (1.1), (1.3) in the half-space

Rn+ := {x = (x′, xn), x′ ∈ Rn−1, xn ≥ 0}.

We shall use the indexing of boundary operators (1.3) such that

β1 ≤ β2 ≤ · · · ≤ βm.

In addition, we make a very important assumption:

βµ < βµ+1. (2-5)

We seek the solution of the problem (1.1), (1.3) in the form

U(x, ε) + V (x′,
xn
ε
, ε), (2-6)

where the first term is the so-called exterior expansion (2.1) and the
second term is the interior expansion (boundary layer) of the form

V (x′,
xn
ε
, ε) =

∞∑
l=0

εl0+lvl(x
′,
xn
ε

). (2-7)

The integer l0 will be indicated below.
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For the exterior expansion we obtain equations (2.2), (2.3), which we
rewrite in the form

A2µ(x,D)uk(x) = F(x, u0, . . . , uk−1). (2-8)

These equations will be supplimented with µ boundary conditions

Bβj (x
′, D)uk(x′, 0) = Gj(x′, u0, . . . , uk−1), j = 1, . . . , µ. (2-9)

It is natural to suppose that equation (2.8) and boundary conditions (2.9)
are connected by means of the Shapiro–Lopatinskii condition.

The interior expansion we shall search as solution of the equation

A(x,D, ε)V (x′,
xn
ε
, ε) = 0,

In this equation we change variable xn by t = xn/ε. After the change
the equation can be rewritten in the form

∞∑
l=0

εl0+l−2m(A(εt, x′, εD′, Dn)vl)(x
′, t) = 0.

Expanding A(εt, x′, εD′, Dn) in powers of ε and equating the terms corre-
sponding to the same power of ε we obtain ordinary differential equations
with respect to t (parametrized by x′ ∈ Rn−1)

A(0, x′, 0, Dn, 1))vl(x
′, t) = F ′(x′, t, v0, . . . , vl−1). (2-10)

These equations will be supplimented by m− µ boundary conditions

Bj(x
′, 0, Dn, 1)vl(x

′, 0) = G′j(x′, v0, . . . , vl−1), j = µ+1, . . . ,m. (2-11)

It is natural to suppose that ODE problem (15), (16) is uniquelly solvable.
Now we see that the construction of FAS is reduced to the definition

of the right-hand sides in (2.9) and (2,11). In this process the important
role plays the choice of the parameter l0:

l0 = βµ + 1.

First of all note that

Bj(x
′, D, ε)U(x, ε)|xn=0 =

∞∑
l=0

εl[(Bβj (x
′, D)ul)(x

′, 0)
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+

bj−βj∑
s=1

εs(Bβj+s(x
′, D)ul−s)(x

′, 0)] (2-12)

and

Bj(x
′, D, ε)V (x′,

xn
ε
, ε)|xn=0 =

∞∑
l=0

εl+1+βµ−βj [(Bj(x
′, 0, Dn, 1)vl(x

′, 0)

+
∑
s=1

εsBjs(x
′, D)vl−s(x

′, 0)]. (2-13)

Now we substitute expressions (2.12) and (2.13) in the boundary con-
ditions. For j ≤ µ the second sum is O(ε) and the first sum gives the
relations

Bβj (x
′, D)u0(x′, 0) = gj(x

′), j = 1, . . . , µ. (2-14)

To deal with the boundary conditions with j > µ we suppose, that

βj = βµ + 1, j = µ+ 1, . . . , ν

,
βj > βµ + 1, j = ν + 1, . . . ,m.

. The sum (2.12) is O(1) and (2.13) for j ≤ ν is also O(1) and gives

Bj(x
′, 0, Dn, 1)v0(x′, 0) = gj −Bβj (D)u0, j = µ+ 1, . . . , ν. (2-15)

For j > ν expression (2.13) contains negative powers of ε. Equating to
zero the coefficient of the greatest negative power we obtain

Bj(x
′, 0, Dn, 1)v0(x′, 0) = 0, j = ν + 1, . . . ,m. (2-16)

Solving equation (2.8) (corresponding to the case k = 0) with boundary
conditions (2.9) we obtain u0(x). Substituting u0(x) in (2.15) we obtain
the full set of boundary conditions for v0(x). Solving equation (2.10) with
these boundary conditions we obtain v0(x).

This process can be recurrently repeated.

3 Small parameter-elliptic boundary value
problems

Fix a point x0 ∈M and consider the interior symbol

A(ξ, ε) = A0(x0, ξ, ε) (3-1)
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at this point. If x0 ∈ ∂M we define the symbols

Bj(ξ, ε) = B0
j (x0, ξ, ε), j = 1, . . . ,m. (3-2)

We introduce a local coordinate system x = (x′, t) such that ∂M is given
by the equation {t = 0}. In the traditional theory of elliptic problems
the ODE problem on the half-line R+ = {t > 0}

A(ξ′, Dt, ε)v(t) = 0 t > 0, (3-3)

Bj(ξ
′, Dt, ε)v(t)|t=0 = φj , j = 1, . . . ,m, (3-4)

v(t)→ 0 t→ +∞

is called the boundary symbol of the problem (1.1), (1.3), here ξ′ is the
variable dual to x′. The invertibility of this symbol for ξ′ 6= 0 is the
Shapiro–Lopatinskii condition. In the case of problems with small pa-
rameter the analogs of ellipticity condition for (3.1) and the Shapiro–
Lopatinskii condition for (3.3), (3.4) are more complicated.

3.1. Condition on the interior symbol. Symbol A(ξ, ε) is called
small parameter-elliptic if

|A(ξ, ε)| ≥ C|ξ|2µ(1 + ε|ξ|)2m−2µ. (3-5)

This condition comes from the paper of Vishik–Lyusternik. It is not diffi-
cult to show that inequality (3.5) is equivalent to the following conditions:

(i) A0
2m(ξ) is elliptic, i. e. A0

2m(ξ) 6= 0, ξ′ 6= 0;
(ii) A0

2µ(ξ) is elliptic; i. e. A0
2µ(ξ) 6= 0, ξ′ 6= 0;

(iii) A(ξ′, ε) 6= 0, |ξ′| > 0, ε ≥ 0.
As another equivalent definition of the small parameter-ellipticity we

can take the estimate from above for G(x, ξ, ε) := A−1(x, ξ, ε):

|G(x, ξ, ε)| ≤ C|ξ|−2µ(1 + ε|ξ|)−2m+2µ

.
3.2. Small parameter-ellipticity and (weak) parameter-

ellipticity with large parameter
We set λ = 1/ε and denote by Ã(x,D, λ) and B̃j(x,D, λ) operators

(1.2), (1.4) multiplied by λ2m−2µ, and, respectively, by λbj−βj . Replacing
in (1), (3) operators A and Bj by Ã and, respectively, by B̃j we obtain
a problem with a ”large” parameter. The theory of it is parallel to the
theory of (1), (3). The principal symbol of Ã at the point x0 is of the
form

Ã(ξ, λ) = A0
2m(ξ) + λA0

2m−1(ξ) + · · ·+ λ2m−2µA0
2µ(ξ).
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For this symbol the small parameter–ellipticity condition leads to the
inequality

|Ã(ξ, λ)| > const |ξ|2µ(|λ|+ |ξ|)2m−2µ. (3-6)

In the papers of Denk-Mennicken-Volevich [?], [?] it is called weak
parameter– ellipticity condition. This condition is a generalization of the
Agmon– Agranovich–Vishik parameter-ellipticity condition correspond-
ing to the case µ = 0. The theory of weak parameter-elliptic problems is
based on the boundary layer method.

Note that the weak parameter–ellipticity condition also arise when
one studies parabolic operators which are not resolved with respect to
the highest time derivative. In this case the inequality must be satisfied
for λ belonging to a lower half-plane of the complex plane. This analogy
shows that the boundary layer method can be also used in such problems.

3.3. Newton’s polygon and parameter-ellipticity conditions
Inequality (3.6) is connected with the Newton polygon of the symbol

Ã and makes it possible to use in the context some ideas of the Newton
polygon method.

Consider the polynomial

A(ξ, λ) =
∑
α,k

aαξ
αλk. (3-7)

Let N(A) be the convex hull in R2 of

{(|α|, k) : aαk 6= 0, (0, 0), (|α|, 0), (0, k)}.

The polygon N(A) is called Newton’s polygon of polynomial (3.7). In
the case of polynomial Ã(ξ, λ) satisfying (3.6) (note, that this estimate
is two-sided) the Newton polygon of Ã is a trapezoid and has the shape
indicated in Figure 1

Inequality (3.6) can be rewritten in the form

|Ã(ξ, λ)| ≥ C
∑

(i,k)∈N(Ã)∩Z2

|ξ|i|λ|k

3.4. Roots of small parameter-elliptic symbols
In the study of the boundary value problems (1.1), (1.3) an important

role play the zeros of the algebraic equation

A(ξ′, τ, ε) = 0, (3-8)

belonging to the half-plane C+ of the complex plane. It will be convinient
to rewrite equation (3.8) in the equivalent form

Ã(ξ′, τ, 1/ε) = 0, (3-9)
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Fig. 1. The Newton polygon.

and denote its zeros as τj(ξ
′, 1/ε), j = 1, . . . , 2m, they depend continu-

ously on (ξ′, 1/ε). Let m±(ξ′, 1/ε) be the number of zeros belonging to
C±. According to (3.5) or (3.6) equations (3.8), (3.9) have no real zeros
τ , so m±(ξ′, 1/ε) is independent of (ξ′, 1/ε), and is denoted by m±. From
the continuity of zeros as ε → ∞ follow that m± coincide with the the
corresponding numbers for the equation P 0

2m(ξ′, τ) = 0.
Denote by µ± the number of roots of P 0

2µ(ξ′, τ) = 0 belonging to C±.
Following Vishik and Lyusternik we introduce the polynomial

Q(τ) := τ−2µA(0, τ, 1).

If we pose ξ′ = 0, ε = 1 in (3.5) and divide both sides of the inequality
by by τ2µ we obtain

Q(τ) > C(1 + |τ |)2m−2µ.

Therefore Q(τ) has no real zeros. Denote by q± the number of roots of
Q(τ) = 0 belonging to C±.

Proposition. Following relations take place

m+ = µ+ + q+, m− = µ− + q−. (3-10)

The idea of the proof is following. As was established by Vishik and
Lyusternik (for details see [?]) zeros of (3.8) can be splitted in the two
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groups:

{τj(ξ′, 1/ε), j = 1, . . . , 2µ}
⋃
{τj(ξ′, 1/ε), j = 2µ+ 1, . . . , 2m}.

(3-11)
The first set in (3.11) consists of the roots (with regard to multiplicities)
uniformly bounded for small ε, and as ε→ 0 it tends to the set

{τ0j (ξ′), P2µ(ξ′, τ0j (ξ′) = 0, j = 1, . . . , 2µ}.

More exactly, for a fixed ξ′, small δ > 0, and ε < ε(δ, ξ′) in the disk of
radius δ surrounding a root τ0j (ξ′) of the multiplicity pj there are exactly
pj roots τj(ξ

′, 1/ε). The roots in the second set (3.11) are O(1/ε) for
ε→ 0 and

ετj(ξ
′, ε)→ νj , j = 2µ+ 1, . . . , 2m,

where νj are the roots of Q(τ) = 0. More exactly, for a fixed ξ′, small
δ > 0, and ε < ε(δ, ξ′) in the disk of radius δ surrounding a root νj of
the multiplicity qj there are exactly qj roots ετj(ξ

′, 1/ε). Since polyno-
mials A(ξ, ε), A0

2m(ξ, ε), A0
2µ(ξ, ε) and Q(τ) have no real roots, we come

to relations (3.10).
3.5. Properly small parameter-elliptic symbols The small

parameter-elliptic polynomial A(ξ, ε) is called properly small parameter-
elliptic, if

m+ = µ− = m, µ+ = µ− = µ (3-12)

Note that relations (3.12) are satisfied automatically in the case n > 2,
and only in the case n = 2 it is an additional condition.

Comparing (3.10) and (3.12) we obtain that in the case of properly
small parameter-elliptic polynomial

q+ = q− = m− µ. (3-13)

It is the so-called condition of regular degeneration of Lyusternik and
Vishik.

Remark. The existence of the two groups of roots with different
behaviour with respect to the parameter is the main difference of small
parameter ellipticity (or weak parameter ellipticity) from the standard
ellipticity or parameter–ellipticity. Namely, one of this group leads to the
boundary layer type solutions.

3.6. Conditions on the boundary symbol
Now we can formulate the analog of the Shapiro–Lopatinskii condition

for the small parameter–elliptic operators.
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Condition I. For every ξ′ ∈ Rn−1\{0} and ε ∈ [0,∞) the ordinary
differential equation on the half-line

A(ξ′, Dt, ε)v(t) = 0 t > 0, (3-14)

Bj(ξ
′, Dt, ε)v(t)|t=0 = φj , j = 1, . . . ,m, (3-15)

v(t)→ 0 t→ +∞

has a unique solution for arbitrary (φ1, . . . , φm) ∈ Cm.
Condition II. For every ξ′ ∈ Rn−1\{0} the ordinary differential equa-

tion on the half-line

A2µ(ξ′, Dt)v(t) = 0 t > 0, (3-16)

Bβj (ξ
′, Dt)v(t)|t=0 = φj , j = 1, . . . , µ, (3-17)

v(t)→ 0 t→ +∞

has a unique solution for arbitrary (φ1, . . . , φµ) ∈ Cµ.
Condition III. The ordinary differential equation on the half-line

A(0, Dt, 1)v(t) = 0 t > 0, (3-18)

Bj(0, Dt, 1)v(t)|t=0 = φj , j = µ+ 1, . . . ,m, (3-19)

v(t)→ 0 t→ +∞

has a unique solution for arbitrary (φµ+1, . . . , φm) ∈ Cm−µ.
Denote by vj(t, ξ

′, ε), j = 1, . . . ,m the fundamental system of solu-
tions of the problem (3.14), (3.15), i. e.

A(ξ′, Dt, ε)vj(t) = 0 t > 0, (3-20)

Bk(ξ′, Dt, ε)vj(t)|t=0 = δkj , k = 1, . . . ,m, (3-21)

and
vj(t)→ 0 t→ +∞

The existence of such solutions follows from Condition I. Since the solu-
tions of (3.15), (3.16) decay exponentially as t→∞, we obtain∫ +∞

0

|Dl
tvj(t, ξ

′, ε)|2dt) := h2lj(ξ
′, ε) <∞. (3-22)

In the traditional cases (ellipticity or parameter– ellipticity) the right
hand side can be easily obtained from the homogeneity. In our case it is
a rather difficult task leading to cumbersome expressions.
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Main Lemma. Let vj(t), j = 1, . . . ,m are solutions of (3.20) and
(3.21). Then integrals (3.22) converge for l = 0, 1, . . . and the right-hand
sides hlj(ξ

′, ε) are not greater than constant times

|ξ′|l−βj−1/2(1 + ε|ξ′|)βj−bj , j ≤ µ, l ≤ βµ+1;

εβµ+1−l+1/2|ξ′|βµ+1−βj (1 + ε|ξ′|)l−βµ+1+βj−bj−1/2, j ≤ µ, l > βµ+1;

εβj−bµ |ξ′|l−βµ−1/2(1 + ε|ξ′|)bµ−bj , j > µ, l ≤ bµ;

εβj−l+1/2(1 + ε|ξ′|)l−bj−1/2, j > µ, l > bµ.

The rough idea of the proof of the Lemma is following. As in the case
of FAS we seek the solution of (3.20), (3.21) in the form

vj(t, ξ
′, ε) = Uj(t, ξ

′, ε) + Vj(
t

ε
, ξ′, ε), (3-23)

where

Uj(t, ξ
′, ε) =

µ∑
p=1

φpj(ξ
′, ε) exp(iτ+p (ξ′, ε)t)

and

Vj(
t

ε
, ξ′, ε) =

m∑
p=µ+1

φpj(ξ
′, ε) exp(i(ετ+p (ξ′, ε))t/ε).

The function Uj is a solution of some perturbation of the problem (3.14),
(3.15) in condition II, and Vj is a solution of some perturbation of the
problem (3.18), (3.19) in condition III. The perturbation argument leads
to special form of the unknown coefficients φpj .

3.7. Weakly parameter–elliptic problems with small param-
eter.

Replacing 1/ε by λ and A,B1, . . . , Bm by Ã, B̃1, . . . , B̃m we obtain
a problem with large parameter, see [?]–[?]. In this case conditions (I),
(II), (III) can be trivially rewritten.

Consider the corresponding system of fundamental solutions of the
ODE problen on the half-line

Ã(ξ′, Dt, λ)ṽj(t) = 0 t > 0, (3-24)

B̃k(ξ′, Dt, λ)ṽj(t)|t=0 = δkj , k = 1, . . . ,m, (3-25)

and
ṽj(t)→ 0 t→ +∞.
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It folllows from the unicity of solutions of the ODE problems under con-
sideration, that

ṽj(t, ξ
′, λ) = λβj−bjvj(t, ξ

′, 1/λ),

and according to the Main Lemma the integrals

(

∫ +∞

0

|Dl
tṽj(t, ξ

′, λ)|2dt))1/2

are not greater than constant times

|ξ′|l−βj−1/2(|λ|+ |ξ′|)βj−bj , j ≤ µ, l ≤ βµ+1;

|ξ′|βµ+1−βj (|λ|+ |ξ′|)l−βµ+1+βj−bj−1/2, j ≤ µ, l > βµ+1;

|ξ′|l−βµ−1/2(|λ|+ |ξ′|)bµ−bj , j > µ, l ≤ bµ;

(|λ|+ |ξ′|)l−bj−1/2, j > µ, l > bµ.

In the case of boundary operators independent of λ (i. e. bj = βj , j =
1, . . . ,m) we come to the results of [?].

4. A priori estimates for small parameter–elliptic problems.
All the estimates are based on the Main Lemma and follow the plan

of [?]-[?]. This technique also allows in the case of variable cvoefficients
to construct left and right parametrices and (under additional conditions
on the lower terms) to construct the inverse operator.

4.1 A priori estimates on a manifold without boundary.
The small parameter–ellipticity condition sugggests the choice of the

functional space Hr,s(M). In the case M = Rn this space is defined as
the space of u ∈ H−∞ with the norm

||u||r,s := ||(1 + |D|2)s/2(1 + |εD|2)(r−s)/2 (3-26)

uniformly bounded for ε ≤ ε0. The standard localization technique per-
mits to define these spaces on a smooth manifold M .

Theorem. For a symbol A(x, ξ, ε) with smooth coefficients following
conditions are equivalent

(I) A(x0, ξ, ε) for each x0 ∈M satisfy the small parameter–ellipticity
condition.

(II) For arbitrary real r, s and large enough R the estimate

||u,M ||r,s ≤ C(||A(x,D, ε)u||r−2m,s−2µ + ||u,M ||(−R)) (3-27)

holds with constant independent of ε.
4.2. A priori estimate in Rn+.



15

Denote by Hr,s(Rn+) the space of restrictions to Rn+ of the elements
from Hr,s(Rn) . We shall consider only the case of positive integer r and
r ≥ s.

In the case r > 1/2 the elements u(x) ∈ Hr,s(Rn+) have traces u(x′, 0)

belonging to the space Hr−1/2,s−1/2(Rn−1) with norm (see [?]– [?]).

||g,Rn−1||r−1/2,s−1/2 := ||Ξr−1/2,s−1/2(D′, ε)g,Rn−1||,

where

Ξr−1/2,s−1/2(ξ′, ε) =

{
(1 + |ξ′|)s− 1

2 (1 + ε|ξ′|)r−s, s > 1/2,

ε
1
2−s(1 + ε|ξ′|)r− 1

2 , s ≤ 1/2
(3-28)

It is also useful to note that according to the form of operators (1.2),
(1.4)

A(D, ε)Hr,s(Rn+) ⊂ Hr−2m,s−2µ(Rn+),

Bj(D, ε)H
r,s(Rn+) ⊂ Hr−bj ,s−βj (Rn+), j = 1, . . . ,m.

We now can correspond to our problem the continuous operator

{A(D, ε), B1(D, ε), . . . , Bm(D, ε)} : Hr,s(Rn+)

→ Hr−2m,s−2µ(Rn+)×
m∏
j=1

Hr−bj−1/2,s−βj−1/2(Rn−1), (3-29)

whose norm is uniformly bounded with respect to ε.
Main Theorem. Suppose that the symbol A(ξ, ε) is properly small

parameter–elliptic and inequality βµ < βµ+1 holds. Then following con-
ditions are equivalent.

(A) Conditions (I), (II), (III) for the boundary symbol.
(B) Condition (I) and estimates of the Main Lemma for fundamental

system of solutions (3.24), (3.25).
(C) For natural r > bm + 1/2 and s satisfying

βµ + 1/2 ≤ s < βµ+1 + 1/2

the estimate

||u,Rn+||r,s ≤ C(||A(D, ε)u,Rn+||r−2m,s−2µ + ||u,Rn+||

+

m∑
j=1

||u,Rn−1||r−bj−1/2,s−βj−1/2) (3-30)
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holds with the constant independent of ε.
The main analytical part of the proof of the theorem is the estimate

of the solution in Rn+ of the homogeneous problem

A(D, ε)v(x) = 0 xn > 0, (3-31)

Bk(D, ε)v(x)|xn=0 = gk(x′), k = 1, . . . ,m, (3-32)

which directly follows from the Main Lemma. The reduction of the non-
homogeneous case to homogeneous is following the standard lines.

Now consider the special case of the Dirichlet problem:

Bj(D, ε) = (Dn)j−1, bj = βj = j − 1.

In this case r > m−1/2 and µ−1/2 ≤ s < µ−1/2, so we can take s = µ.
The estimate (3.30) takes form

||u,Rn+||r,µ ≤ C(||A(D, ε)u,Rn+||r−2m,−µ + ||u,Rn+||

+

µ∑
j=1

||(1 + |D′|)µ−j−1/2(1 + ε|D′|)r−µ(Dn)j−1u(., 0),Rn−1||

+

m∑
j=µ+1

εj−µ−1/2||(1 + ε|D′|)r−j−1/2(Dn)j−1u(., 0),Rn−1||).
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