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Reactive torque influence onto rotation of comet nuclei

Reactive torques, due to anisotropic sublimation on a comet nucleus
surface, produce slow variations of its rotation. In this paper the secular effects
of this sublimation are studied. The general rotational equations of motion
are averaged over unperturbed fast rotation around the mass center (Euler-
Poinsot motion) and over the orbital comet motion. We discuss the parameters
that define typical properties of the rotational evolution and discover different
classifications of the rotational evolution. As an example we discuss some
possible scenarios of rotational evolution for the nuclei of the comets Halley
and Borrelly.

A N.Henmranr, I.0x.llluepc, B.B.Cunopenko,
®.Ctyk, A.A.Bacunses.

Bnuanne P€aKTHMBHBIX MOMEHTOB Ha BpallleHE€ KOMETHBIX AOep

PeakTuBHEIE MOMEHTHI, BOSHUKAIOIINE IPU AHU30TPOITHON CyOIMMAIUN Be-
IIECTBA C MOBEPXHOCTH KOMETHOTO SApPa, IMPUBOAAT K MOCTEIEHHOMY H3MEHE-
HUIO €r0 BpAaIlATeNIbHOrO nBmkeHus. lamnas paboTa MOCBAIIEHA WCCIEHOBA-
HUIO BO3MOXHEIX BEKOBHIX 5(¢eKToB. Y paBHEHUS, OMUCHBAIOIINE BpAaIlleHUE
Anpa, yCPEOHAIOTCS IO HEBO3MYIIEHHOMY OBUXKEHUIO SAPa OTHOCUTENIHHO EHT-
pa Macc (mo aBuxeHuo Ditepa-Ilyanco) u no op6UTAIBEHOMY OBUXKEHUIO. Y Ka-
3aHBI IAPAMETPHI, ONPENEISIONNE XapaKTEPHEIE OCOOEHHOCTH YBOIIONUN BPa-
IIEHNS; MaHa KIacCUPUKANUs PAsIddHBIX THUIOB SBOJIIONUN. B KauecTBe mpu-
Mepa 06CYyXKIAIOTCSI BO3MOXKHEIE BADMAHTHI SBOJIONUU BPAIIEHUS AOEP KOMET
TlNanmes u Bopen.



1.Statement of the problem
and main assumptions

In the classical model of a comet nucleus suggested by F. Whipple [26],
anisotropic ice sublimation due to solar radiation produces reactive torques,
M", that act on the nucleus. The goal of the present paper is to study
the possible secular effects produced by M" on the rotational dynamics of
the nucleus. Unlike previous studies, based primarily on numerical modeling
of nucleus rotation evolution [9, 10, 20, 21, 24, 27|, we use an averaging
method [1, 5] to extract the secular components of the nucleus motion.

We approximate the nucleus surface by a polyhedron with an arbitrary
number of faces. As an example, Fig. 1 shows such an approximation for the
comet Halley nucleus. The shape of this nucleus is reconstructed on the basis
of TV images obtained by missions “Vega-1,2” and “Giotto” [22, 23].

Reactive torques due to ice sublimation can be evaluated with the use of
the approximate formula:

M" = —;Qj(Rj X Vi), (1)

where N is the number of faces of the approximating polyhedron, @; is the
mass ejection rate on the j-th face, R; is the radius vector of the face’s center
in the body principal frame of reference, and v; is the effective velocity of the
ejected matter.

The mass ejection rate depends on local illumination conditions and the
heliocentric distance, and is difficult to describe accurately [6]. Following [20,
10, 21], to calculate @); in this paper we use an empirical expression

Q; = 559(r)f(6;)Qx . (2)
Here (), is the mass ejection rate from a plane surface of area equal to the
total surface area of the nucleus, oriented perpendicular to the Sun line of
sight at a heliocentric distance of 1 AU, s; is the relative intensity (the ratio of
the maximal possible mass ejection rate from the j-th face at this heliocentric
distance to ().), d; is the angle between the outer normal to the face n; and
the unit vector pointing to the Sun e,, and r is the heliocentric distance.
The function g(r) describes the dependence of the mass ejection rate on
the heliocentric distance. It is given by the expression [17]:

g =0 () 1 (5) ] (3)



Fig.1. P/Halley nucleus: reconstruction based on Vega-1,2 and Giotto
images

Fig.2. Angles and coordinate systems used to describe the comet nucleus
motion



where
c1 = 2.15, ¢5 = 5.093, c3 = 4.6142, ro = 2.808, go = 0.111262.

The function f(d;) defines the dependence of the mass ejection rate on the angle
between the direction to the Sun and the normal to the j-th face. Following [25],
we assume that

f(8;) =1—a(l — cosé;). (4)

The coeflicient « in Eq.(4) can be chosen to be 1/2 or slightly less.

We consider reactive torques as the only factor changing the nucleus
rotation state; thus, we neglect variations in the nucleus shape and its moments
of inertia due to matter sublimation. In addition, we neglect energy dissipation
due to non-stationary deformations of the rotating nucleus caused by inertia
forces. This approach is quite traditional in studies of spin evolution of short-
period comets on time periods several tens or hundred orbits around the
Sun [21]. We also assume that the comet orbit, defined by eccentricity e and
perihelion distance g, does not change (in the future we plan to study the
influence of the orbit evolution on the evolution of the rotational state).

2.Equations of motion

To describe the rotation of the comet nucleus, we introduce three right-
hand orthogonal coordinate systems with their origin at the center of mass of
the nucleus (Fig. 2):

OXY Z: The “perihelion” system, with the OZ-axis parallel to the Sun -
perihelion line, the OY -axis normal to the plane of the orbit, and the O X-axis
parallel to the tangent to the orbit at perihelion and directed along the orbit
motion;

Ozyz: The frame connected with the angular momentum vector of the
nucleus L. The Oz axis is directed along L, the Oy axis is in the plane OXY;

O&én(: the body-fixed system, the axes O&, On, O( being the principal
inertia axes. The moments of inertia of the nucleus with respect to these axes
are defined as A,, B, C. respectively, and satisfy the condition

A.>B.>C,.

We define the orientation of the coordinate system Ozyz with respect to the
“perihelion”system OXY Z with the use of the angles p and o (Fig. 2). A turn
through the angle ¢ around the OZ axis followed by a turn through the angle
p around the Oy axis puts the trihedron Ozyz into its current position from
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an initial position coinciding with the trihedron OXY Z. The corresponding

transfer matrix has the form:

x Y z
X | mxe, mx, mx, My, = COS 0 COS P
Y | my, my, my, My, = SIN 0 COS p
Z | mzy mMmz, Mz, My, = — sin p
Mxy = —SIN O Mx, = COS O sIn p
My, = COS O My, = Sin 0 sin p
mzy = 0 Mz, = COS p

We define the orientation of the system O¢n( with respect to the system
Ozyz by the Euler angles ¢, 9, 1. The transfer matrix is

& <
T | Age Ggy Qg Aze = COS @ COS P — sin @ sin 9 cos V¥
Y | Ay Gy Gye dye = sIN @ cos 9 + cos @ sin 3 cos ¥
Aye Qo Gy aye = sin ¢ sin o
Ay = — COS P sIn 1) — sin ¢ cos 3 cos ¥ az¢ = sin ¥ sin
Qyyy = — SIN @ 81N P + cos @ cos P cos ¥ aye = —sind cos
Ay = sind cos ¢ a, = cost

The complete set of equations of the comet nucleus motion consists of
the equations describing its rotation in the coordinate system Ozyz and the
equations for the time evolution of its angular momentum vector.

It is convenient to use dimensionless variables and parameters in the
equations of motion. Take as an independent variable 7 = Q,t, where €, is
the initial angular velocity of the nucleus. The dimensionless variable L is the
ratio of the magnitude of the angular momentum vector to L, = L., (here
I. = m,R?, m, is the nucleus mass, and R, is its typical linear size). Then the
parameters A, B, C are the dimensionless moments of inertia:

A, B, C.
A= I B = I C = I
For example, if the nucleus shown in Fig. 1 is homogeneous and R. = 5 km 1is

taken as its typical linear size, we have

A =0.6121, B =0.5857, C' = 0.2129.
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Relations for moments of inertia of celestial bodies of irregular shape
approximated by polyhedrons are given in [T7].

Taking into account the assumptions made above, we can write the
equations of motion in the following form [3]:

dv o 1 1
E:Lsmﬁsm¢cos¢<z—§)+ (5)

1
—I—Z [(Mg sin + M cos ) cosd — M sinﬁ} \
dp sin®¢  cos?ep M

E_L( " + B -7 cos p ctg ¥ —

r
Yy

L

@:Lcosﬁ 1 sin2¢_cos2¢ _I_Mgcomﬁ‘—M];sirnp7
dr Lsin 9

T

(ctgp + sin p ctg¥),

C A B
dp  M; do  Mj dL |
dr— L’ dr Lsinp’ dr %
The values M7, My, M} and M;, M}, M in equations (5) are the projections

of the reactive torque onto the corresponding axes of the coordinate systems

Ozyz and O&n(:

MT = aq;gMg ‘I’ a':nnM; —I_ a’iL‘CM27

T

and similarly for M and M with

M; =eg(r) ; s5dje[(1 — a) + a(e,,nj)],

and similarly for M} and M;, where

d;

R' K\ kL lx
dj :Ile(J),EZvQR.
d;

Here v, is the effective velocity of ejected matter.

The parameter € determines the influence of the reactive torque on the
nucleus rotation. Considering ¢ as a small parameter (in this case the motion
is a weakly perturbed Euler-Poinsot motion), we use the averaging method to
develop a qualitative description of the solutions of (5). The adequacy of the
assumption € < 1 is confirmed for several short-period comets (see Table 1).



Table I. Typical parameter values derived from published
data [9, 11]

Comet Q. R, m,-10712 [ -10"12 Q. €
name kg h™'] [km] [kg] [kgkm®] [hr!]
Jupiter family comets
2P /Encke 5.1-107 2.3 53.7 294 0.97 3.9-107*
46P /Wirtanen 3.4-10° 0.6 0.9 0.32 1 5.7-1073
9P /Tempel 1 5.1-107 2.3 53.7 380 0.15 1.2-1072
19P/Borrelly  1.5-10% 4 85 1360 0.25 6.4-1073
Halley-like comets
1P /Halley 23-10% 5 525 13100 01 7.9-1073
109P /Swift- 1.3-10° 12 7240 106 0.1 14-1073
Tuttle

Note an important property of the system (5): if

(9(7), p(7),0(7), L(7),9(7), (7))

is its solution, then

(r = 9(=7), 7 = p(=7); 7+ o(=7), L(=7), 7 + p(=7), 7 — p(=7))

is also its solution. This “reversibility” of solutions is due to absence of
dissipation in the model of forces determining the comet nucleus dynamics.

3.Averaging approximation

3.1.Unperturbed motion

To successfully apply the averaging method and interpret the results one
should take into consideration the following properties of the unperturbed
motion.

At ¢ = 0 equations (5) describe the Euler-Poinsot case of a rigid body
motion. In that case variables L, o, p are independent of 7 and the behavior of
variables ¢, 9,1 can be described in terms of the Jacobi elliptic functions [15].
The nucleus’ inertia ellipsoid rolls without slipping on a fixed plane II
perpendicular to the constant vector of angular momentum L. Points of the
inertia ellipsoid that are tangent to the plane II at different times form a closed
curve (polhode). Depending on initial conditions, this curve encircles either O¢

or O( axis (Fig. 3).



Fig.3. The inertia ellipsoid and polhodes



One can use the following first integral of system (5) for ¢ = 0 to define
the polhode on the inertia ellipsoid:

2BT 1 29
w = T2 :[1—<l—a>sin2¢]sin219—l—cogsc ,

where

Ifwe (i, 1), the motion is called a complex short axis mode (complex SAM):
the polhodes encircle the shortest axis of the inertia ellipsoid O¢. If w € (1, é),

the motion is called a complex long axis mode (complex LAM): the polhodes
encircle the longest axis of the inertia ellipsoid O(. At w = é the polhodes
degenerate into points, corresponding to rotation around the axis with the
largest inertia momentum (simple SAM). Similarly w = é corresponds to
rotation around the axis with the smallest inertia momentum (simple LAM).
Note, these classifications of motion are not usual and cannot be found in
classic monographs on rigid body dynamics. Nevertheless, they are often used
in studies of the rotation of celestial bodies (see, for example, [13, 21]).

If w = 1, the motion is asymptotic: as 7 — + oo the immediate rotation axis
tends to the On axis. The polhodes corresponding to the asymptotic motions
are separatrices separating polhodes of complex SAM and complex LAM (Fig.
3).

SAMs (complex and simple) can be divided into subsets SAMy and SAM_
where the projection of the angular velocity vector w onto the axis O is
correspondingly positive or negative. In the same way LAMs are divided into
subsets LAM and LAM_ with different signs of projection of w onto O( axis.

3.2.Construction of evolutionary equations

The evolutionary equations are the closed set of equations for the secular
components of variation in the variables o, p, L and the value of w, which varies
at € # 0 in accordance with

do  2(w,M") 2wdL _

2

dr L  Ldr
1 ., , 1 ”
=7 (a — w> a.eM{ + (1-— w)aann + <% — w> aszg] .

In the following w is used as a variable for describing motion of the nucleus

with respect to the angular momentum vector.
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We construct the evolutionary equations in two steps. First, the right hand

: : dw do dp dL
sides of the equations for %2, 9%, 22 < are averaged along the unperturbed

motion (Euler-Poinsot motion). SAMs and LAMs are described by different
formulae and thus need to be considered separately (however, after a change
of notation the expressions for SAMs and LAMs are similar). The second step
is to average the equations over the orbital motion.

3.3.Evolutionary equations in the first
approximation of the averaging method

Omitting tedious calculations, we present the evolutionary equations
obtained:

2= 20—y [Pl (5 - v) + Difacde (5o —w)] - ©

~aacospty [0 (-~ w) (al). = (L= w)(a,).) +

8 (2 — ) tat. — (1w, )]}

Gp _ SR pe (a2, — (a2,)) + Di((a%)e — (a2,)0)]

dr 2L
do  ea®y ;. ¢
o (D)),
dL
E = £ {(1 — a)(I)o (Dg<afzf>e + Dg<a24>e) -

—acos p®y (DS ((aZe). — (a2,)e) + DS ((a2)e — (aZ,)0)]} -

For the secular components in (6) we use a notation that coincides with the
corresponding variables; (a). is the average of a(¢(7),9(7),%(7)) in the Euler-
Poinsot motion,

N N N
¢ ¢ ¢ _
D =Y sjdie, DS = sjdjenje, D5 =" si(djenjy — djnmje),
=1 =1

i=1
¢ ¢ ¢
Di =Y sjdje, Di =Y sidienje, D5 = si(dinnje — djgnjy),
4=1 7j=1 j=1

(1= g(r(v))dy
o = T A (l—l—ecosy)z’

11



B — (1 — e?)3/? /7T cosvg(r(v))dv
te T 0 (l—l—ecosy)2'

In the last two formulae we integrate over the true anomaly v.
If i < w < 1 (SAM motion), then

(9A(1 — (90’[1)) ™
00 —bc 2K (k)

2 . HA(I — (90’[1)) E(k) 2 . 1-— (90’[1) E(k‘)
e L N = (-}

. = D (- 23]

where K (k) and E(k) are complete elliptic integrals of the first and second
kind with modulus

<0,z€>e =+ <a'z§>e = 07

k— (1—90)(1—0Aw)
N (1—(9,4)(1—(90’&))

The value (a.¢). is positive for SAM_ motions and negative for SAM_ motions.
Ifl<w< é (LAM motion)

(90(9,411) — 1) ™
04 —bc 2K(k)

g = Mt [ L (1 2]

(aze)e = 0, (asx)e = +

84— b & K (k)
9 . 1—0Aw E(k) 2 . OC(HAw—l) E(k‘)
s (1 - K(k)) @) = =g K (k)’

. J (1—04)(1 — bow)
(1 — 90)(1 — HAw)
The sign of (a,). depends on whether the motion belongs to LAMj
or LAM_ .
The evolutionary equations for SAM and LAM have the same structure.
To demonstrate this, one can rewrite Egs. (6) in the following concise form:

eF1 (04,00, ng, Diz,u), motion € SAM, (é <w < 1) ;

eF+(6c,0a, DSy 4, D55, u), motion € LAMy (1 <w < ).

Here u = (w,p,0,L)T, Fy is a certain vector-function depending on u, the
nucleus’ inertia ellipsoid, and sublimation parameters.
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Table II. Values of &y, ®; for some comets

Comet e q d, P,
2P /Encke 0.846 0.341 0.336  0.097
46P /Wirtanen 0.652 1.063 0.068 0.039
9P /Tempel 1 0.519 1.500 0.040  0.027
19P /Borrelly 0.624 1.358 0.037 0.025
1P /Halley 0.967 0.587 0.0084 0.0040

109P /Swift-Tuttle 0.9635 0.958 0.0026 0.0016

Note: The comets orbital parameters are according to [16]

Like the initial system (5), system (6) is reversible: if

(w(r), p(7), 0(7), L(7))"
is a solution, then
(w(=7),m = p(=7),7 + o(=7), L(=7))"

is also a solution of (6).

3.4.Parameters defining the behavior of
solutions of the evolutionary equations

The parameters DS’C,D?C,Dg’C in (6) are integral characteristics of the
comet matter sublimation. If the nucleus is ellipsoidal and physical properties
of its surface do not vary too strongly (the distributed mass ejection model),
the values of these parameters satisfy

|D§*| ~ D3| < | DY
If mass ejection is localized over a small region of the surface,
|D5| > | D3, |D§| > |DS).

Parameters ®; and ®; are functions of the perihelion distance g and the
eccentricity e. In Table II, values of &y and ®; are presented for the comets
listed in Table I. At large eccentricities (e ~ 1) one can use the approximate
formulae

@0 ~ (]_ — 62)3/2\P0(q) s @1 ~ (]_ — 62)3/2\P1(q)
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Table III. Values of ¥,, ¥; for some ¢

q P, v, U, /¥,
0.5 0.6975 0.3164 2.2047
0.6 0.4465 0.2221 2.0101
0.7 0.3028 0.1632 1.8558
0.8 0.2140 0.1236 1.7305
0.9 0.1556 0.0956 1.6269
1.0 0.1155 0.0750 1.5402
1.1 0.0870 0.0593 1.4670
1.2 0.0661 0.0471 1.4048
1.3 0.0505 0.0373 1.3516
14 0.0385 0.0295 1.3061
1.5 0.0293 0.0231 1.2672
1.6 0.0222 0.0180 1.2337
1.7 0.0166 0.0137 1.2051
1.8 0.0122 0.0103 1.1806
1.9 0.0089 0.0076 1.1597
2.0 0.0063 0.0055 1.1419

where

\P(Q):lfwg( 2 ) i
0 7 Jo 1+ cosv/ (14 cosv)?

\I’()_l/‘” ( 2q ) cos vdv
19 xJo g 1+ cosv/ (14 cosv)?

Values of functions ¥y(q), U1(q) for several values of q are given in Table III. A

more detailed analysis of the properties of these functions can be found in [19].
3.5.Probabilistic interpretation of changes

in nucleus rotation mode

When ¢ # 0, changes in the mode of rotation can occur in the motions
described by (5). At w & 1 one of the following transitions can take place,
depending on initial conditions:

SAM; — SAM;, LAM; — LAMx,

SAM — LAM, LAM — SAM.

14



Fig.4. An example of change of mode at a separatrix crossing: SAM, —
SAM_ (curve 1) and SAM, — LAM, (curve 2). The initial conditions in the
motions 1 and 2 differ only in the value of ¢: ¢(0) = 120.0° in the motion
1 and ¢(0) = 0.0° in the motion 2. Values of the other parameters at 7 = 0
coincide in the both cases: L(0) = 1.000, p(0) = 45.0°,0(0) = (0) = 90.0°.
Values of A, B, C. e are equal to those given in Sec. 2 and Sec.3 for comet
Halley. Orbital parameters are also the same as for comet Halley. Intensity
distribution and position of active areas on the nucleus’ surface correspond to
the first Halley-like model nucleus discussed in Sec. 5.
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A change in the mode of rotation implies that the phase trajectory of (5)
crosses the separatrix which separates the different modes at ¢ = 0. In some
cases even a small variation in initial conditions can affect the new mode’s
type (Fig. 4). Following [18], one can define the probabilities of various modes
after separatrix crossing, but, unfortunately, methods for calculating these
probabilities in multi-frequency systems have not been developed (in [18], only
single-frequency systems were considered).

The evolutionary equations (6) in the limit w — 1 can be used to describe
the behavior of phase trajectories before and after a change in mode, but they
cannot be used to study phenomena that occur during the separatrix crossing.

3.6.Conditions for the averaging approximation.

Application of the averaging approximation rests on the assumption that
the variations in the rotational parameters over one orbit around the Sun are
small enough. This i1s certainly valid if

Q.
e =P (Q_) < 1, (7)

0

where () is the comet mean motion. The comets listed in Table I, do not meet
condition (7): all of them have . ~ 1. However, one should note that the
parameter € gives an excessive estimate of the effect of reactive torques on the
nucleus rotation. Results of computer integrations show that even at e, ~ 1
the averaged equations give a good description of the nucleus’ spin evolution,
provided that the active zones are distributed realistically.

In addition, the averaging approximation assumes that capture into
resonance does not take place. Rigorous results on the application of the
averaging method in multi-frequency systems, presented in [1, 2|, imply that
generally equations (6) describe evolution of the nucleus rotation for the
majority of initial conditions. The set of initial conditions where this is not true
(whose measure tends to 0 as € — 0) consists mainly of those corresponding to
solutions captured into a resonance. In this case a commensurability between
frequencies of the perturbed Euler-Poinsot motion is preserved for a long
time. To study solutions of (5) when a commensurability exists one can
use the approach described in [2]. Taking into account the above mentioned
“nongenerality” of resonant motions, we do not consider them in the present

paper.
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3.7.Evolutionary equations for nuclei with
nearly axisymmetric inertia ellipsoids

In [19], the rotational evolution of a comet nucleus was studied under the
assumption that its inertia ellipsoid was axially symmetric. In this subsection
we show that the equations derived in [19] can be obtained as a limiting case
of our current equations.

Here we only consider the case of a prolate nuclei:

9A—1<<1—90. (8)

Use the parameter € = 4 — 1 to describe the proximity of the inertia ellipsoid
to an axially symmetric one. If w € (1, i) ,w—1> ¢y (where ¢ is a positive
constant that can be chosen arbitrarily large), then at sufficiently small values
of € the nutation angle oscillates with a small amplitude and the period Ty
around its mean value 9:
arccos % + O(8) for LAM
9 =9+ 0(), 0 = ¢ (9).
T — arccos %%Z + O(€) for LAM_

The condition w —1 > ¢j* ensures that the polhode is far from the separatrices
bounding the SAM4 regions.

The angle ¥ can be used instead of w as a parameter in the LAM family.
Changing variables w — ¥, we rewrite (6) as follows:

dd _ _
= %[305(I)1D§ cos pcost) —2(1 — a)@ng] sint + O(eg), (10)
-
Do __£aSmP peq (0 35in?F) 4 O(cz), 2 = EX DS, cos T + O(eE)
5= 11 1D, sin €€), o~ = 57 Di®acos €E),
dL £ 270 a —
= =3 {a(I)lDl(2 — 3sin“¥) cos p — 2(1 — a)®¢ Dy cos 19} + O(e%) .

Equations (10) at £ = 0 coincide with the evolutionary equations in [19].
This implies that the conclusions about secular effects in nucleus motion made
in [19] are also valid in the case when the inertia ellipsoid is slightly different
from an axially symmetric one (2 < 1).

Equations describing evolution of SAM cannot be simplified like this at
€ < 1. Even in the absence of perturbations (¢ = 0), motions with ¥ ~ 90°
are essentially different at € =0 and & # 0.
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4.Quasi-stationary motions

An important property of (6) is the independence of its right hand side
from the variable o. This is due to symmetry of the moments applied to the
nucleus before and after passage through the perihelion. Moreover, taking the
independent variable as

T dr’
* — ¢ —
" ‘o L
one obtains in (6) a closed subsystem for w and p:
dw 1 1
o =2 {(1 =)o [ Df{ae). (5= —w) + Di(axc)e (5= —w)| = (1)
1
—acos p®y [Df ((— - w) <a§£>e — (1 — w){a? >e> +
64 K
1
+0f (52 —w) a2 = (1= e, )|
= SRR [DS (a2 — {a)e) + DS((aZ)e — (a2,)o)]
dr, N 2 1U08z¢ /e Qonle 1085 /e Ganle)| -
If (w*, p*) is a stationary solution of (11), then (6) admits the quasi-

stationary solution

—( ,P a*(r), L* (7)), (12)
50(,/ L* —I—JO,L*()—chT—I—LZ,

where the constants ¢, and ¢z, can be easily found after substituting w*, p* into
the corresponding equations of (6). The constants o, L* are the initial values of
the angle ¢ and the dimensionless angular momentum in the quasi-stationary
motion under consideration.

The quasi-stationary motions defined in Eq. (12) can be divided into three
classes.

Class A: trivial quasi-stationary motions. For all values of the parameters
DS’C, Df’c, ®y, there exist degenerate quasi-stationary motions with the
angular momentum vector directed along the OZ axis (sinp* = 0) and a

simple SAM (w* = é) or simple LAM (w* = é) rotation mode. If
®oDf 3a

— ¢ Bo= 57—/ >

3,08 0 2(1—a)

there are simple SAM motions of Class A that are stable with respect to
variables w*, p*. If

|H’€| > Ko, ke =

|H’C| > Ko, K¢ =

18



Table IV. Stability conditions for motions of the class A

Motion Stability conditions
v — 1 simple SAM Df >0, kg > Ko
T €
le SAM_ D >0 < -
5 = 0 (L 1 1) simple I , Ke Ko
w — L simple LAM Df >0, K¢ > Ko
Oc simple LAM_ D% >0, ke < —Kog
v — 1 simple SAM Df <0, ke < —Kg
" P4 simple SAM_ DS
_ <0, ke >
= (L4 re) simple I Ke > Ko
v — 1 simple LAM D% <0, ke < —Kg
=7

simple LAM_ Df <0, K¢ > Ko

there are simple LAM motions that are stable in the same sense. More detailed
information on the stable motions of Class A are given in Table IV.

Class B: The angular momentum vector is parallel to the radius vector of
the comet at the perihelion (L 11 r; or L 1] r;). The point where the straight
line containing the nucleus’ angular velocity vector crosses its inertia ellipsoid
moves faster and faster (¢ > 0) or slower and slower (¢ < 0) along the
polhode corresponding to the unperturbed motion at w = w* (SAM at w* < 1
and LAM at w* > 1).

Quasi-stationary complex SAMs of Class B exist if

e < |ke| < KET, (13)

where

e G G alGew) ¢ XGelw)

bl K -
we(zn) (1 — a)Fe(w) fuehy  (T—a)F(w)

Gelw) = (- — w) (ale). — (1= w)lal, ).

Ge(w) = (5 = w) (a2 — (1= w)(a,)..

1 DS
) = asgl (w0 1) x= 25
e(w) = [(aze)e| (w 5.) X D

Condition (13) ensures that at sin p* = 0 and w = w* € <é, 1) the right hand
side of the first equation in (11) is zero.
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One can similarly write the condition for existence of complex LAMs of

Class B:

Ky < |re| < KT, (14)
where
Ge(w
g e of S | G (w)
K, = in , K= sup
Cuetg)  (L-e)F(w) T enny (- a)Fe(w)

Fe(w) = {az0).] (5~ w)-

Class C: The nucleus’ angular momentum vector L precesses at a constant
angle p* around the OZ axis, which is parallel to the comet’s radius vector at
the perihelion. The nucleus’” motion with respect to the angular momentum
vector (SAM at w* < 1 and LAM at w* > 1) is exactly the same as in motions
of Class B.

The value of w* in Class C motions should satisfy the condition

= —X; (15)

where
He(w) = (az¢)e — (aZ,)e, He(w) = (azc)e — (aZ,)e-
Assume it is possible to select w* to satisfy condition (15) at a certain value
of x. If w* € <é, 1), then a quasi-stationary motion of Class C exists provided

that
a|Ge(w”) + xGe(w”)|
(1—a)Fe(ws)

If w* € (1, é), then the condition of existence of Class C motion takes the
form:

|Ke| <

G + o)

(1 — @) Fe(w)

It follows that the types of quasi-stationary motions that can exist for a

al

|Ke| <

nucleus with a certain given distribution of active zones depend on the values
of parameters x, k¢, k¢ (properties of quasi-stationary SAMs depend on x, k¢;
properties of LAMs depend on , £¢).

In Fig. 5 we present the separation of the set of values of these parameters
into areas with different combinations of possible quasi-stationary motions for a
nucleus with moment of inertia ratios equal to those for comet Halley (Sec. 2).
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Fig.5. Classification of quasi-stationary SAMs (left) and LAMs (right),
existing at corresponding values of parameters k¢, k¢, x. The values of these
parameters for the first and second variants of active zones relative intensities
for model Halley nucleus (Sec.5) are marked with the symbols * and o
correspondingly.
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The type of quasi-stationary motions is important for classification. It can
be used to distinguish nuclei with different scenarios of rotational evolution.
We suppose that a more detailed description of the diversity of such scenarios
would be a formal exercise, due to very rough correspondence between the
empirical mass ejection model and the real processes. Therefore, we restrict
ourselves to consider several examples based on spacecraft observations of the
nuclei of comets Halley and Borrelly.

5.Evolutionary paths for a Halley-like nucleus

It was shown in [4] that, based on the images of the comet Halley nucleus
transmitted by the “Vega 1,27 and “Giotto” spacecraft, one can conclude that
there are five active zones. We consider the dynamics of rotation for various
intensities of mass ejection at these zones.

Suppose that the centers of the active zones are the points on the nucleus
surface presented in Table V. Within the accuracy to which the active zones
can be identified, this assumption agrees with the results in [4]. The nucleus
of comet Halley is essentially non-convex (see Fig. 1). However, for this
distribution of active zones one can neglect effects due to the shadowing of
the zones with other parts of the nucleus. Indeed, based on ideas of [8], we
take the following parameter to describe shadowing of the j-th face:

7 = min [arccos(ny, )],
ecé;

where &; 1s a set of unit vectors defining directions from the center of this face
to points of the nucleus’ surface belonging to the edges of the approximating
polyhedron. If the angle d; between the outer normal n; and the direction to
the Sun is smaller than 47, the centre of the face is lighted at any orientation
of the nucleus satisfying this condition. In particular, in the case d7 = 90° the
face belongs to the convex part of the nucleus’ surface (or, more rigorously, to
the convex hull of the approximating polyhedron), and it cannot be shadowed
for §; < 90°.

According to our calculations, for Halley nucleus model in use and accepted
positions of active zones we have

5 =65 =6 = 90°, & = 86°, &) = 87°.
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Table V. Position and orientation of the active zones
for Halley-like model nucleus

Zone 1

R, R*(—O.22059,0.28199,—1.44677)867]C

n,  (—0.32714,0.85784, —0.39936)T,, .

R,  R.(0.19626,0.39703,0.97325)%,, .
Zone 2 T 1

n,  (0.04046,0.61546,0.78713)%, .

Zone 3

ns

Ry R.(—0.46986,—0.43157,0.99487)3,, .

(—0.87622, —0.41999, 0.23632)&”(

Zone 4
Ny

R,  R.(0.17474,0.77468, —0.26201)3,, .

(0.15729,0.93500, —0.31786)g€n<

Zone 5

ns

R; R.(0.31496, —0.61161, —0.72302)%,, .

(0.24348, —0.96664, —0.07947)%,., .

Table VI. Dynamic parameters of Halley-like model nucleus

Description Variant 1 Variant 2
DS —0.30703 —0.21455

Integral D 0.17284 0.15312
mass ejection D5 —0.09872 —0.12508
parameters ¢ 0.04422 —0.00365
DS —0.01420 —0.05161

DS 0.32992 0.27154

Classificatiog ¢ — 309341 —2.91326
assfication g 47612 0.14723
parameters . ©_ ngoqy —0.33704
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Therefore, only active zones 3 and 4 can be shadowed. However, the range
of angles where (4) cannot be applied due to the shadowing effects is quite
small (less than 4°). Hence, the difference between the averaged equations
obtained with the use of (4) and its hypothetical modification taking shadowing
effects into account is insignificant. Moreover, this difference is absolutely
unimportant because of very approximate correspondence of the accepted
matter sublimation model and the real processes.

We consider two possible cases for the zone activity levels (values of the
integral parameters of mass ejection are shown in Table VI). The first case is
the most probable for the nucleus of comet Halley and was suggested in [4]:

81 = 84 =

|

The phase portrait of system (11) showing secular evolution of variables w
and p at such a distribution of the intensities is shown in Fig. 6. One can see
that the stable quasi-stationary modes are motions of Class A: simple LAM ,
L 1| r, and simple SAM_ ., L 11 r,. The shading denotes a decreasing angular
momentum (spin-down). If a phase point (w(7), p(7)) is in the non-shaded part
of the phase portrait, the nucleus spins up.

The second case corresponds to mass ejection primarily from active zones

1 and 2:
1 1 1

g, 32257 33:34:S5ZE.

The phase portrait of system (11) for such a nucleus is shown in Fig. 7. Together
with a stable quasi-stationary motion of Class A (simple SAM_ | L 11 r,) there
also exists a stable quasi-stationary motion of Class C, that is complex LAM_
(w* &~ 1.532). In this latter motion, the angle between angular momentum
vector L and vector r, 1s ~ 99.8°. Note, that at w* ~ 1.532 the angle ¢
between L and the axis O( of the body-fixed coordinate system varies from
~ 55.5° to ~ 56.5°.

These examples demonstrate that evolution depends not only on the
location of active zones, but on their respective intensities as well.

81 =
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Fig.6. Phase trajectories of (11) at the distribution of intensities of the
active zones according to [4]
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Fig.7. Phase trajectories of (11) for Halley-like nucleus with principal mass
ejection in the active zones 1 and 2
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6.Dynamic properties of a Borrelly-like nucleus

Detailed images of the nucleus of comet 19P/Borrelly were obtained by
the “Deep Space-1” mission [12]. Approximate reconstruction of the nucleus’
shape based on these images and observations by Hubble Space Telescope [14]
is shown in Fig. 8. The nucleus can be approximated as a combination of two
ellipsoids with major semi-axes 1.6 km, 1.8 km, 3.0 km and 0.96 km, 1.08 km,
1.8 km accordingly. The distance between the centers of these ellipsoids is 3.7
km. Assuming that the nucleus is homogeneous, one obtains:

64 =1.03038, 8¢ = 0.25886.

The images indicate the existence of three active zones in the middle region
of the nucleus. Assume for definiteness that in the body-fixed reference frame
O¢&n( the centers of these active zones are defined by radius-vectors R;, Ry, R
presented in Table VII. The parameters of mass ejection calculated for the case
of equal intensities of the zones have the following values:

D§ = 0.00211, D% = 0.00202, DS = 0.01394,

D§ = —0.00218, D$ = —0.00043, DS = —0.04985.

The main qualitative properties of secular evolution for the nucleus rotation
are determined by parameters k¢, k¢, x. In the case considered

ke = 1.55418, ke = 7.59512, y = —0.21128.

With the use of expressions obtained in Section 4, one can find that this nucleus
can perform a stable, quasi-stationary motion of Class A, that is simple SAM
with the angular momentum vector directed along the line of apsides. Such
a mode of rotation is supposed to be the most probable one for the real
P /Borrelly nucleus.

Table VII. Position and orientation of the active zones
for Borrelly-like model nucleus

R; R.(—0.36292,0.10853, —0.40400)F,, .

Zone 1 T
n; (0.95555,0.23511, 0'17789)06174

R, R*(0.35606,0.01017,—0.31896)867’4

Zone 2 T
n, (0.96787,0.03299, 024927)0617(

R; R.(0.36711,—0.08721, —0.40252)%,, .

Zone 3 T
ns (0.96978, —0.16768, 0'17722)0€n<‘
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Fig.8. P/Borrelly nucleus: rough reconstruction
based on Deep Space-1 images
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Conclusions

Using the averaging method, we obtained evolutionary equations describing
the secular effect of outgassing on the rotation of comet nuclei. We indicated
parameters that determine qualitative properties of evolution of nucleus
rotation. Classification of possible quasi-stationary modes of motion was also
given.
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