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A.I. Neishtadt, D.J. Scheeres, V.V. Sidorenko, A.A. Vasiliev.
Evolution of comet nucleus rotation. The secular evolution of comet
nucleus rotation states is studied. The dynamical model assumes that the nu-
cleus inertia ellipsoid is axially symmetric and prolate. The outgassing torques
acting on the surface are modeled using standard cometary activity formulae.
The general rotational equations of motion are derived and separately aver-
aged over the fast rotational dynamics terms and the comet orbit. Special cases
where the averaging assumptions cannot be applied are evaluated separately.
The modification of the comet orbit due to comet outgassing is neglected.
Resulting from this analysis is a system of secular differential equations that
describe the dynamics of the comet nucleus angular momentum and rotation
state. We find that the qualitative secular evolution of the rotation state is
controlled by a single parameter that combines parameters related to the comet
orbit and parameters related to the nucleus surface geometry and activity.

AN .Henmranr, H.0x.Illuepc, B.B.Cunopenko, A.A.Bacunses.
OBoJsONUsa BpallleHUs KOMeTHOro aapa. Wsyuatorcs BekoBbie 5ddPeKTH
BO BpAIllATEIbHOM MOBUXEHUU KOMETHOTO sapa.  llpemmomaraercs, dTO
SITUTICOMM, WHEPIUU SAPa MPEACTABIAET COOOM BBITIHYTHIA SILTUIICOUIT
Bparenusa. JleiicTBUE peakK THBHEIX MOMEHTOB, BOSHUKAIOIUX MPU CyOauMannm
KOMETHOTO BEIIIECTBA TOJ ACMCTBUEM COMHEYHON PANUANUM, MONEIUPYETCS B
COOTBETCTBUH CO CTAHOAPTHHIMU GopMyiiaMu. BrIBemeHE O6Iue ypaBHEHUS
BPAI[ATEIBLHOTO OBUXKEHUS AApa. JTH YPABHEHUS YCPETHAIOTCSI HO OBICTpOMY
BPAIIEHUIO SAPa U 1O €r0 OpOUTAIBEHOMY NBUXeHU©. OTOENBHO paccMOTPEHEL
cllydam, KOT[a TakKoe yCpeOHeHHe HempuMeHuMo. V3sMeHeHUEM mapaMeTpoB
OpOUTHL BCJIENCTBUHE MCIApPEHWS KOMETHOTO BelllecTBa mpeHebperaerca. B
pe3yabTaTe MOMyYeHa CUCTEMa YPABHEHUN, OMUCHIBAIOIIAS BEKOBEIE N3MEHEHU S
COCTOSHUS BpaleHus sanpa. IlokasaHo, 4YTO Ha KaYeCTBEHHOM YPOBHE
SBOJIIOIUS BPAIEHUS sApa ONPENENIIETCS EOUHCTBEHHEIM I[IapaMeTpPOM,
SBJISIOIIMMCS KOMOMHAIIUEN TaPaMETPOB, OTHOCSIIIUXCSA K OPOUTE KOMETH U K
TEOMETPHUHU U AKTUBHOCTHU €€ SIPa.



1.Introduction

Nucleus rotation affects many processes studied in cometary physiscs at a
fundamental level [8, 17, 26]. Additionally, hypotheses on likely nucleus rota-
tion states are needed to constrain the mathematical models being developed
to simulate and analyse the navigation problems that arise in spacecraft mis-
sions to comets [10, 25, 28]. Hence, it is important to understand the long-term
dynamics of comet nucleus rotation.

To date there is only limited information on the actual rotation states of
active comets. In general, it i1s possible to evaluate the rotation period of a
nucleus using Fourier-analysis of lightcurves [30]. More detailed understanding
of the rotation state is possible if the comet has some observable peculiarities
such as jets [23]. For several comets, estimated rotation parameters were found
using additional assumptions on the properties of nongravitational forces per-
turbing their orbit motion [29]. In the future, direct observations of comet
nuclei by comet-targeted missions will become an important source of infor-
mation on their rotation. It is these future missions that has motiviated this
particular study. Up to now, however, the only precision measurements of
comet nucleus rotation that exist are for comet Halley [15, 22].

Reactive torques due to anisotropic sublimation of cometary ice will result
in slow variations of a nucleus’ rotation parameters. In [12, 21, 24, 31] the
spin evolution of comet nuclei was investigated by numerical integration of
the equations of nucleus rotation. In the present paper we seek to develop a
more systematic approach to the problem by studying the rotational evolution
of a cometary nucleus using the averaging method [1, 4]. It will allow us to
extract the relevant physical parameters that control the evolution of a comet’s
rotation state. Additionally, such an approach supplies a general theory that
can be used to predict and constrain the rotation states of active and defunct
comets.

The averaging method was used in earlier studies of nucleus spin state
evolution [13]. However, the model of reactive torque formation assumed in [13]
does not take into account more current results and ideas. Thus the averaged
equations in [13] cannot be used to study the secular effects found in [21, 24],
where sublimation processes are described more realistically. Additionally,
in [13] only principal axis rotation states were considered, while in the current
analysis we consider the space of all possible rotations.



2.Model Description

Main assumptions. We assume that the comet moves along an elliptic
orbit with an eccentricity e and a perihelion distance r,. The effects of comet
outgassing on the evolution of the orbit are beyond the scope of this paper.

We consider the comet nucleus to be a solid object which can be studied
using the methods of rigid body dynamics. We also suppose that nucleus is
mostly prolate [11, 20], and that its shape is approximated by polyhedron (for
example, using a triangulation methods [16]).

One of the stronger assumptions that we make is that the principal moments
of inertia of the nucleus A,, B,, C. satisfy the condition

A, =B,>C.. (1)

Estimates of the principal moments of inertia derived from measurements of
comet nuclei using various methods [15, 19] show that the corresponding ellip-
soids of inertia appear to be nearly axially symmetric. In future work, we plan
to also consider the general, non-symmetric case. As our analysis considers
time periods on the order of several tens or hundreds of comet apparitions,
we neglect the possible effects due to variation of the nucleus shape and its
moments of inertia, following [21, 24].

To calculate the reactive torque acting on a comet nucleus due to anisotropic
sublimation we use the formula

N

M= - Q;i(R. xv;), (2)

i=1

where N is the number of faces of the polyhedron that approximates the
nucleus shape, ); is the mass ejection rate on the j-th face, R,; is the
radius vector of the face’s center in the body’s principal frame of reference,
and v; is the effective velocity of the ejected matter.

In [21, 24] it was assumed that active mass ejection takes place only on
several relatively small parts of the surface, forming narrow jets. Such jets
can be seen on pictures of the Halley comet nucleus [15]. In more recent
studies [6], jets were considered as a manifestation of the nonhomogeneity of
gas and dust flows in comet atmospheres, mostly resulting from the topography
of the nucleus rather than from differences in physical properties of its surface.
The model and analysis we use here can be applied to both of these extreme
cases, and all others that lie between them. The current formulation does
assume that the nucleus shape is described by a convex body — another strong
assumption that will be studied more closely in the future.



In simple models of the sublimation process, the mass ejection rate is de-
termined by the heliocentric distance to the comet and by the local solar
insolation:

Q; = s;f(6;)9(r)Q-. (3)

Here (), is the mass ejection rate from a plane surface with an area equal to
the total surface area of the nucleus, oriented perpendicularly to the direction
to the Sun at a heliocentric distance of 1 AU, s; is the relative intensity (the
ratio of the maximal possible mass ejection rate from the j-th face at this
heliocentric distance to Q. ), d; is the angle between the outer normal of the
j-th face (n;) and the unit vector pointing to the Sun (e, ), and r is the
heliocentric distance.
An empirical expression for g(r), suggested in [18], is

g9(r) = g0 (:—0> h [1 + (:_O>cz]_@, : (4)

c1 = 2.15, ¢y = 5.093, c3 = 4.6142, ro = 2.808, go = 0.111262.

where

This expression has been used to describe nongravitational perturbations in
numerous papers (see, for example [8, 17]). One should note that Eq. 4 does
not account for the observed asymmetry of comet activity with respect to
perihelion passage [32]. However, it will be shown in Appendix A that under
acceptable assumptions about sublimation processes this asymmetry does not
change the nucleus spin evolution dramatically.

The function f(d;) defines the dependence of the mass ejection rate on the
angle between the direction to the Sun and the normal to the j-th face. A
variety of realizations of this function can be made. For example, in [24, 31],
the hypothesis is made that the mass ejection rate on non-illuminated faces is
zero, leading to a functional form:

. COs 5j = (es,nj), 5j S
fiay = { om e s )

MIETNIE

In this paper, we use the empirical formula that takes into account the depen-
dence of mass ejection on heat transfer in the external layer of the nucleus [28]:

f(8;) =1—a(l — cosd;), 0<a§%. (6)

The magnitude of the reactive torque in Eq. 2 rapidly decreases as the cometary

solar distance grows (as ~ r72%7). Nevertheless, we consider the reactive
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torques as the only factor changing the nucleus rotation state. This approach
is quite traditional in studies of spin evolution of short-period comets, with
periods of rotation around the Sun T' < 200 years [21, 24, 31]. For long-period
comets, which spend a long time on the periphery of the Solar system, the
effects of energy dissipation due to nonstationary deformations of the rotating
nuclei by inertia forces become more significant [5, 7].

Coordinate frame definitions. To describe the rotation of the comet
nucleus, we introduce three right-hand orthogonal coordinate systems with
their origin at the nucleus center of mass:

OXY Z: The “perihelion” system, with the OZ -axis parallel to the Sun-
perihelion line, the OY -axis normal to the plane of the orbit, and the OX -axis
parallel to the tangent to the orbit at perihelion and pointing in the direction
of orbit motion;

Ozyz: The frame connected with the angular momentum vector of the
nucleus L. The Oz axis is directed along L, the Oy axis is in the plane
OXY , and the Oz axis follows from the right-hand rule;

Oén(: The body-fixed system, the axes O&, On, O( being aligned with
the principal axes of inertia.

We define the orientation of the coordinate systems Ozyz with respect to
the “perihelion”system OXY Z with the angles p (the cone angle) and o (the
clock angle), shown in Fig. 1. A turn through angle o around the OZ axis
followed by a turn through angle p around the Oy axis rotates the trihedron
Ozyz into its current position starting from an initial orientation with the
Oz,0y,0z axes coinciding with the axes OX,0Y,0Z . The corresponding

matrix has the form:

x Y z

X |mx, mx, mx, Mx, = COS O COS P
Y | my, my, my, My, = SN 0 COS p
Z|mz, mgz, mzg, My, = — sin p
My, = —SIn O Mmx, = COS 0 sln p
My, = COS O My, = sin o sin p
Mzy =0 Mz, = COS p

We define the orientation of the system O&n( with respect to the system
Ozyz by the Euler angles 9,9, ¢. Of particular interest is the angle 9 (the
nutation angle) corresponding to the angle between the angular momentum
vector and the long axis of the inertia ellipsoid. The matrix in this case is



Fig.1. Angles and coordinate systems used to describe
the comet nucleus motion.



& ¢
X | Gp¢  Gpy G Agze = COS 1 cOS p — sin 1 sin @ cos V¥
V| Qe Gy Gy aye = sIn ) cos @ + cos 1 sin @ cos ¥
Gyt Quy Gy a,¢ = sin @ sin 9
Ayy = — COS Y SIN @ — sin ¢ cos ¢ cos ¥ Ay = sind sin ¢p
Qyy = — SIN ) sin @ + cos 1 cos @ cos V¥ Ay = —sind cos
Ay, = sind cos ¢ Ay = cosv

3.Dynamical Model and Averaging
Approximations

Equations of motion. The complete set of equations for rotational motion
consists of a set of equations describing its rotation in the coordinate system
Ozyz and a set of equations for the time evolution of its angular momentum
vector.

It is convenient to use dimensionless variables and parameters in the equa-
tions of motion. Take as an independent variable 7, = {,t, where £}, is a
typical value of the nucleus initial angular velocity. The values of the parame-
ters A and C specified below are equal to the ratios of the equatorial and axial
moments of inertia A, and C. with I, = m,R?, where m, is the nucleus
mass and R, is its mean radius. The dimensionless variable L is the ratio of
the magnitude of the angular momentum vector to L, = I.Q?. Components
of the vectors R; given below are components of R,; in Eq. 2 divided by R..

Taking into account the assumptions made above, the equations of motion
can be written in the following form [3]:

v 1
o= Z[(Mgsingo—l—Mncosgo)cosﬁ — M¢sind] ,
-
d L M, M :
%:Z—Tcomﬁcotﬁ—Ty(cotp—l—snnpcotﬁ), (7)
dp 1 1 M cos o — M, sin ¢
E_LC()mg(E_Z)—I_ Lsind ’

dp M, do M, dL
dr— L’ dr Lsinp  dr

M,



where

M,

Y,2)

= Gg(y,2)e Me + Gy 20 My + Gy, M

N
Me(ne) = €9(r) D sidjeno)[(1 — @) + a(e,, n )],
j=1

dje = njmBe —nje Ry, dim = njeRje — njeRye

and

djc = njeRjy — njnRje

. ’U*Q*R*
.oz

(8)

Here v, is the velocity of ejected matter and the values M., M,, M, and
M¢, M,,., M in Eqs. 7 are the projections of reactive torques onto the corre-
sponding axes in the coordinate systems Ozyz and O¢&n( .
The parameter e determines the overall influence of the reactive torques
on the nucleus. In Table I, estimates of this parameter for several comets are
presented (we assume the velocity of ejected matter to be v, = 0.255m

sec /°

Table I.Typical parameter values derived from published

data [12, 14].

Comet Q. (2—2) R.(km) m,-107% I,.-107'2 Q. €
name (kg)  (kg-km?) (hr~1)
Jupiter comets
2P /Encke 5.1-107 2.3 53.7 294 097 94-1074
46P /Wirtanen 3.4 -10° 0.6 0.9 0.32 1 5.7-1073
Neptune comets
1P /Halley 2.3-108 5 525 13100 0.1 7.9-1073
109P/Swift- 1.3 -10° 12 7240 106 0.1 1.4-1073

Tuttle




For ¢ = 0 (an “old” comet without any signs of activity) Eqgs. 7 can be
easily integrated:

¢:w¢7—+¢07 ()0:(")¢>T+(1007
ﬂ:ﬂo,p:po,a:ao,L:Lo. (9)

Here

w¢:%, w(P:Lcosﬁ(%—%) .
The motion in this case is a regular precession: the longest axis of the nucleus
(more precisely, the symmetry axis of its inertia ellipsoid) rotates at a constant
angular velocity wy around the angular momentum vector, forming a constant
angle 9. The nucleus itself rotates around its longest axis at a constant angular
velocity w,, .

If ¢ < 1, the nucleus motion can be considered to be a perturbed regular
precession: the precession parameters, direction and magnitude of the angular
momentum vector are slowly changing under the action of the reactive torque
(%, Z—ﬁ, ‘;—Z, % ~ ¢). The averaging method [1, 4] can be used to study the
behavior of the slow variables 9, p, o, L over long time scales (on the order of
~eh).

An important property of the Eqs. 7 should be noted: if
(9(7), p(7),0(7), L(1), ¢(7), (7))

is a solution of the system, then

(m =d(=r),m = p(=7), 7+ o(=7), L(=7), 7 + ¢(=7), 7 — (7))

is also a solution. This “reversibility” of solutions is due to absence of dissi-
pation in our force model for the comet nucleus dynamics. Also, it should be
noted that the variables 9.4, ¢, p, o, L are noncanonically modified Andoyer
variables, previously used to study the rotation of comet nuclei in [27].

First-order equations of the averaging method. Evolution of the
slow variables. We will perform the averaging in two steps: first we average
over the nonperturbed nucleus motion and second over the nucleus motion
along its heliocentric orbit. These separate averagings are possible because of
the large differences between wy,,w, and the comet mean motion Qg = 27 /T,
where in general w, ~ wy > Qg .

Averaging over the motion (9) is equivalent to the change of variables (close
to the identity transformation)

W=09+4+0(), p=p+0(), c =0+ 0(), L=L+ Of¢), (10)
10



which permits us to transform the original equations for the slow variables to
equations with a r.h.s. that does not depend on ¢ and ¥ :

o dp _
=eHy(V,p,0,L,v), o _ eH,(V,

E dr — paavay)v (]‘1)
do R dL e
= eH,(9,p,0,L,v), o= eHp(9,p,0,L,v).

In the first order approximation of the averaging method we find

in 1
Hy = %[?le cos ¥ (mx,sinv + mz, cosv) — 2(1 — a)Dy],
H, = w[Dszy cos¥sinv + D1 R(¥)(mx,sinv + mz, cosv)],
_ ag(r'(l/)) [DlR(ﬂ)me sin v — Dz(sz Sin v + mz, COS 1/) cos 19] )
2Lsin p

Hi = —g(r(v))[aD1R(9)(mx,sinv + mz, cosv) — (1 — a)Dg cos ],

where v = v(7) is the true anomaly, and

1 N
R(W) = 5(2 —3sin’9), Dy = Zsjdjév
7j=1
N N
D, = Z dej(nj(, D, = Z Sj(djnnjf - djénﬂ'n)'
7j=1 j=1
If the condition
nwy = mwg (m = 1,2;n =0, £1, £2) (12)

holds, the averaging change of variables (10) does not exist and a special anal-
ysis must be performed. Equation 12 defines a family of resonant hyperplanes
in the space of (J,p,0,L):

cost = 0, cos19::|:2(1407_0) (if 2A > 3C),
v == ¢ (if A> 20C)
cost) = i
(A-C) ’
cos ) = j:(A2—CC) (if A > 3C).

11



The second step of our averaging procedure is to average over the orbital
motion. To do this, introduce new variables 9, p, o, L describing the secular
component in the variation of the rotation parameters. Such an averaging
makes sense if these parameters change only a little during one orbit of the
comet around the Sun.

After averaging over the orbital motion, Eqs. 11 take the form (using the

original notations for the doubly-averaged variables):

dd
= = —;L [3aD1@1 cos pcosv) — 2(1 — CK)DO(I)O] sind , (13)
-
dp  easinp . 9 do  ca
= T4l (2 —3sin”"9)D, Py, iy cos ¥V Dy @ |
dL
- = —%[QD1@1(2 — 3sin®¥) cos ) — 2(1 — a)Do®q cos V] .
-

Here

B, — (1-— 62)3/2 /Ow ( g(r(v))dv (14)

T 1—|—ecosy)27

B, — (1 — e?)3/2 /07' cos vg(r(v))dv

T (1+ecosv)?

One can consider the condition

e. = Py (&) < 1. (15)
Qo
as a formal criterion of the appliability for averaging over the orbital motion.
The comets listed in Table I, do not meet the condition (15): for all of them
we have e, ~ 1. However, one should note that the parameter ¢ gives an
excessive estimate of the effect of reactive torques on the nucleus rotation.
Results of computer integrations show that even at e, ~ 1 the averaged
equations give a good description of a nucleus spin evolution, provided that
the active zones are distributed realistically.

Initial nucleus motion. In this study we assume that the influence of
reactive torques on the nucleus dynamics dominates its rotational evolution.
This hypothesis, however, does not exclude the possibility that other physical
processes may result in certain specific modes of initial nucleus rotation. In
[21, 24], it was assumed that comet nuclei are initially rotating in a relaxed
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configuration, with their long axis perpendicular to the angular momentum

vector (¥ &~ 7). Such a mode should be typical for a comet from the Oort
cloud after its transition to a short-period orbit (perhaps as a result of a close
flyby of one of the big planets). Indeed, when the comet is far from the
Sun, dissipation caused by deformations due to inertia forces would result in
a decrease in the kinetic energy while the angular momentum holds constant.
If ¥ ~ 7, the resonance w, ~ 0 takes place in the nucleus attitude motion.
The conditions for capture into the resonance w, ~ 0 are given in Appendix
B (in particular, such a capture is impossible if the mass ejection is localized
at one small region on the nucleus surface). It is important to note that even
in the absence of reactive torques (¢ = 0) the general properties of motion at
Y ~ 7 change dramatically if nucleus inertia ellipsoid is not axially symmetric.
Therefore we will not investigate the details of the evolution near ¥ ~ 7 in
the current paper — it is more reasonable to do so under the assumption that
the main axes of the inertia ellipsoid are different (as mentioned in Sect.l, we
will consider this case in the future).

In any case, the averaged equations (13) adequately describe the evolution
of most of the “non-resonant” initial values of phase variables lying outside the
small vicinity of the resonance hyperplanes. The capture of a nucleus rotation
state in one of the resonances in Eq. 12 will be a low-probability event in

general.

4.Solutions of the averaged equations.
Secular effects.

Analysis of the averaged equations (13) can establish some qualitative prop-
erties of the evolution of cometary nucleus rotation. An important property
of (13) is the independence of the r.h.s. from the variable ¢ (a consequence
of the implied symmetry of the system before and after perihelion passage).
Thus, we can analyse the closed subsystem describing the evolution of the to-
tal angular momentum L, the nutation angle 9, and the cone angle p of the
angular momentum vector.

Evolution of the rotation state and orientation. Moreover, if we take
as an independent variable

1 pmdr
== | — 16
R 7 (16)
we obtain a closed subsystem for ¥ and p:
dp . 5a.D1 . .9
e sin p(2 — 3sin* ), (17)

13



dv
dr,

D
= 52—1[304 cospcost —2(1 — a)k]sind

where
B Dy,
- D%,

(18)

K

If |6| > k1 = ﬁ , the stationary points of Eqs. 17 lie at the vertices of the
square K = {0 < p < 7,0 <9 <}, labeled as K;, K, K3, Ky. One of these
vertices is a stable node, the opposite one is an unstable node, and the other
two are saddles. The phase portrait shown in Fig.2a represents the typical
behavior of solutions of Eqs 17 at |k| > k1. For definiteness, here and below
we consider the dynamics for positive values of D; and non-negative values
of k;if D; < 0, the motion on the phase trajectories is directed backwards;
phase portraits at negative values of x are obtained by reflection with respect
to the line p =n/2.

Based on the phase portrait in Fig.2a one can conclude that at £ >
and for arbitrary initial conditions, the effects of the reactive torque (2) results
in the monotonic decrease of the nutation angle 1, causing the nucleus to
eventually spin about its minimum moment of inertia. The angle between the
angular momentum vector L and the perihelion radius vector will decrease if
¥ < arccos L3 and 9 > w — arccos %, at other values of ¥ this angle will
increase. The stable stationary point corresponds to L and the O( axis being
directed along the radius vector of the perihelion, for motion attracted to the
stable node these vectors will align with the perihelion radius vector as time
grows large.

At £ = k; a bifurcation occurs, producing inside of the square X two new

stationary points

2(1 — o)k 2(1 — o)k
M, = (O,arccos ﬂ) , My = (77,77 — arccos ﬂ) . (19)

83 83

K

The phase portrait of the system of Eqs. 17 at x; > £ > k2 = £ is shown
in Fig. 2b. In the limit motion, corresponding to the only stable stationary
point (either M; or M,, depending on the values of D; and &), the nucleus
precesses around the angular momentum vector directed in the direction of the
perihelion vector.

The bifurcation at k£ = ks produces the additional stationary points

2(1 — @)k 1
N; = [ arccos ——=——, arccos —= | , 20
1 ( V3a x/§) (20)
2(1 — @)k 1
N, = | ®# — arccos —————,® — arccos — | . 21
’ ( V3a x/§) (21)

14
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uis T 0 7
Fig.2. Phase portrait?s of system (17) at different : ajg k=17 (> k1),
b) £ =142 (€ (K1,k2)), ¢) K = 0.85 (€ (ks2,k3)), d) £ = 0. In all cases
Dy > 0, a=10.5.
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The phase portrait of the system of Eqs. 17 at ks > & > kg = k11/2/3 is
shown in Fig. 2c. In this case the evolved direction of the angular momentum
vector differs from the perihelion vector, and the nucleus evolves to a nutation
angle of ~ 55° in general.

At k = k3 the type of the stationary points N; and N, change. For
k3 > K > 0 they become foci, while for £ > k3 they were simple hyperbolic
points.

In the degenerate case of k = 0 the points N; and N, become stable
centers. The corresponding phase portrait is shown in Fig. 2d.

The reversibility of the equations of motion, noted in Section 3, results in
a symmetry of the phase portraits: they are invariant with respect to change
of directions of the arrows followed by the rotation mapping K; — Kj, Ky —
Ky Ks — Ki,Ky — K.

Angular momentum. Now consider the nucleus angular momentum. The
r.h.s. of the last equation of system (13) is zero on a curve I' defined in K (see
Fig.2). This curve, together with the sides of the square, bound the areas where
the magnitude of the angular momentum grows and where it diminishes (on
the phase portraits the areas where the magnitude of the angular momentum
diminishes are shaded). At sk > k4 = ;2= the curve T' divides K into two
parts; at k4 > K # 0 the curve consists of three segments and divides K into
four parts, as shown in Fig. 2c; the case £ = 0 is shown in Fig. 2d.

In the nondegenerate case (k # 0) in the limit as 7 — 400, the angular
momentum will grow as L ~ ec¢y7, where ¢y can be found after substituting
into the third equation of the averaged system ¥y = lim,_, . ¥(7) and pg =
lim,_, o p(7) . For the case of £ =0 the angular momentum will go through
periods of increasing and decreasing magnitude.

We conclude the qualitative analysis of evolution of the nucleus rotation
parameters with a brief remark on the evolution of the angular momentum
clock angle o. It follows from the corresponding equations of system (13)
that o evolves in opposite directions according to whether ¥ < 7 or ¢ > 7.
Hence, if the initial conditions do not allow nucleus rotation around its short
axis during a certain stage of the evolution, the angle ¢ during this stage will
either monotonically increase or decrease.

Resonant motion. The averaged equations (13), formally extended onto
all the phase space (¥,p, 0, L), describe the nucleus spin evolution at ¢ < 1
for a majority of initial conditions [2]. However, these equations cannot be
used if large regions of the phase trajectories lie in the vicinity of one of the
hypersurfaces (12). Such motions are resonant and will preserve, for a long
time, a relation of the form

nwy &~ mwg (m=1,2;n=0,+1,+2). (22)
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ric ellipsoid W& main seﬂil&es s —,ZQOand Cs gﬂ{*, wher4 @ = 4kn50
its total mass is m, = 6.25 - 10'kg. Identical active zones are placed not
far from poles: R; = (0.3326,0,1.8861)R., R, = (0.302,0,—1.9066)R. ,
the jet directions are close to the external normals to the surface: n; =
(0.55,—0.1724,0.8172), n, = (0.5107,0.1600,—0.8447). The sublimation
model parameters are: a = 0.5, v, = 250 m/cek, Q. = 2.02-10®kg/hr (e =
1.8:1073). Initial magnitude of the angular momentum is 6.25-10*¢ kg-m?>/sek
(. = 0.9 hr~'), the angular momentum vector is normal to the orbital plane
(p(0) = 0(0) = 90°). The large axis of the nucleus in the initial precession
is at the angle ¥(0) = 85° from it. Motions 1 and 2 have at 7 = 0 differ-
ent values of the angle ¢ (¢(0) = 120° and ¢(0) = 85°), the precession
angle ¥(0) = 0°. The dashed line corresponds to the solution of the aver-
aged equations with above mentioned initial conditions ¥(0), p(0),o(0) and
L(0) = 1. Parameters in (13) are: Dy = 4.5-107%, D; = 4.383 - 1072, D, =
—3.07-1072, &y = 0.336, &; = 9.68 - 1072 (k = 0.356 < k3 = 0.Tlat a = 0.5) .
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An example of a capture into resonant motion is presented in Fig. 3. Here
we show the results of a computer integration of system (7). The initial con-
ditions of the two trajectories differ only in the value of the angle . It is
supposed that the comet is on an orbit similar to that of comet 2P /Encke, and
its nucleus has two active zones. At the crossing of the hypersurface w, = wy
we see a small deviation of Solution 1 from the corresponding solution of
the averaged system. This is a manifestation of the phenomenon known as
“scattering by a resonance”. Solution 2 spends a long time near the resonant
hypersurface.

Note that condition (15) is not formally valid in this case as e, = 2.5.
Nevertheless, in nonresonant areas the solutions of the averaged equations are
close to the solutions of the exact system.

For a detailed analysis of the solutions of Eqs. 7 when relations (22) take
place, one can use the approach described in [2]. In Appendix B we show how
to find the conditions for existence of solutions captured into the resonance
w, = 0. Analogous conditions for the resonances w, = fw, and 2w, =
+wy are very tedious and, unfortunately, do not allow for any comprehensible
interpretations. Either we have not analyzed the conditions of capture into
resonances w, = F2wy,. To make such a resonance possible, the nucleus
would have to be strongly prolate (¢, > \/5a*, where a, and c, are small
and the approximating ellipsoid has a long semi-major axis). Such a nucleus
would, most probably, be torn into pieces by inertial forces.

5.Parameters in the averaged equations

It follows from Eqs. 14 that the parameters ®; and ®; in (13) are functions
of the perihelion distance r, and eccentricity e. Values of these functions for
some values of 7, and e can be found in Tables II and III. In Table IV we
present the values of ®y, ®; for the comets mentioned in Table 1.

At large values of the eccentricity (e &~ 1) one can use approximate formulas

for @4, P, :

By ~ (1 — )2 Wo(r,), By ~ (1 — )32 Wy (1) (23)
where
1 ¢~ dv
— 24
77/0 g(l—l—cosy) (14 cosv)? (24)
1 /7T ( ) cos vdv
7w Jo g 1—|—cosy (14 cosv)?
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Table II. Values of ®,(r,,¢) at various orbit parameters.

e=03|e=05]|e=07|e=09]|e=0.96|e=0.99

r.=0.3 | 6.7100 | 3.6615 | 1.5027 | 0.2253 | 0.0542 0.0066
r.=0.6 | 1.4930 | 0.7655 | 0.2658 | 0.0427 | 0.0104 0.0013
r.=0.9 | 0.5747 | 0.2481 | 0.0898 | 0.0148 | 0.0036 0.0004
r.=1.2| 0.2426 | 0.0997 | 0.0376 | 0.0063 | 0.0015 0.0002
r.=1.5| 0.1002 | 0.0431 | 0.0165 | 0.0028 | 0.0007 0.0001

Table III. Values of ®,(r.,e¢) at various orbit parameters.

e=03|e=05]|e=07|e=09]|e=0.96|e=0.99

r.=0.3 | 0.1559 | 0.1545 | 0.1437 | 0.0677 | 0.0182 0.0023
r.=0.6 | 0.0468 | 0.0833 | 0.0913 | 0.0197 | 0.0050 0.0006
r.=0.9 | 0.0491 | 0.0836 | 0.0461 | 0.0087 | 0.0022 0.0003
rr,=1.2 | 0.0588 | 0.0532 | 0.0241 | 0.0044 | 0.0011 0.0001
rr,=1.5 | 0.0462 | 0.0288 | 0.0122 | 0.0022 | 0.0005 0.0001

Table IV. Values of ®,, ®; for some comets.

Comet e T D ¢,

2P /Encke 0.846 0.341 0.336  0.097
46P /Wirtanen 0.662 1.063 0.068 0.039
1P /Halley 0.967 0.587 0.0084 0.0040

109P /Swift-Tuttle 0.9635 0.958 0.0026 0.0016

Note: In the table we used data from the website
http://hssdc.gsfc.gov/planetary/factsheet/cometfact.html.
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Plots of the functions W¥q(r,) and U;(r,) are shown in Fig. 4a. For
7z > 1 A.U. the behavior of Uy(r,), ¥1(r.) can be described with asymptotic
formulas

T'(c; + coeqg — 2 c14cacs
Wo(re) ~ % (1 — 2) (’“_0) ’

T 4ym T (e1 + cacs — 1) (25)

Trx

\Pl(’l“‘,r) iy C1 + CoCg — 2
Uy(rr) ¢+ cecs — 1

=0.9594...

where I'() is the gamma function. If r, < 1 A.U., analogous formulas have
the form

Uo(re) ~

(26)

?
e
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—
~
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~——
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=3
=)
N—’
2

\Pl(rﬂ) ~ C1 — 2

\Ijo(’rﬂ-) C1 — 1 0130

The ratio Uy(r.)/¥o(r.) monotonically increases as 7, grows (see Fig. 4b).

Parameters Dy, D1, D, in Eqs. 13 represent integrals dependant on the
properties of comet sublimation. If the nucleus shape is close to an axially
symmetric ellipsoid, and the physical properties of its shape are mostly ho-
mogeneous (this is the model of continuously distributed mass ejection), the
parameter values satisfy

|Do| ~ |Dy| < |Dy]. (27)

If, instead, mass ejection is localized over a small portion of the surface [21, 24],
then

|Do| > | D | (28)

It should be pointed out, additionally, that the value of Do/D; can vary
strongly for the same comet shape as a function of how the active surface area
is distributed on the nucleus. To better understand this variation we computed
this ratio for a prolate ellipsoid approximated as a polyhedron with 4092 faces.
To model the statistics of the ratio Dg/D; we made a series of Monte Carlo
runs in which different portions of the surface were randomly chosen to be
active (subject to a total active surface area constraint) and the ratio Dq/D;
was computed for each case. The values of these ratios were stored for each
distribution and the percentage which were greater than 1 was stored. For
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these discretized prolate ellipsoids we found relatively constant percent of ratios
greater than 1 for fractional area distributions less than 1, with ~ 90 percent
of the possible active area distributions having a ratio greater than 1. For a
uniformly active surface this percent drops to zero, and for a very small active
area this percentage increases to 100. Figure 5 shows these statistics for a
prolate ellipsoid with shape factor 3:1:1, and for comparison shows the similar
curve computed for the “realistic” shape of asteroid Toutatis [9]. The same
computations performed for other prolate ellipsoids yielded similar statistics.
This clearly indicates that the constant distribution statistics are a function of
the shape symmetry of a prolate ellipsoid, and that for a more realistic comet
shape the statistics of this ratio would be more complex.

6.Discussion

Some general considerations of the evolution of nucleus rotation under re-
active torques were made in [24]. Whenever the differences in the models used
are not essential, our results are in good agreement with the results reported
in [24] and obtained with numerical integrations of the nucleus equations of
motion in the center of mass reference frame over long time intervals. In par-
ticular, the spinning up of the nucleus around the longitudinal axis described
in [24] corresponds to the first scenario of evolution described in Section 4. We
suppose that application of this averaging method to studies of the rotation of
a nucleus with a nondegenerate inertia ellipsoid (A. > B, > C.) will result in
other conditions that describe some of the other phenomena found in [24] (for
example, spinning up of the nucleus around the axis with the largest principal
moment of inertia.

Note that, according to modern ideas about the physical properties of the
upper layer of a comet nuclei [6, 8, 17, 26], the empirical relation given in
Section 2 is a very rough model of the real processes that occur. The realm
of applicability of such relations is unknown in general. Nevertheless, it is
remarkable that this simple model allows for a very detailed analysis of reactive
torque effects on the nucleus spin evolution. Our results can be considered to
be an indication of which physical parameters of the nucleus are relevant for
its current state of rotation.

Application of the averaging method in studies of secular variations of ro-
tation parameters is also useful when the mass ejection is described more
accurately. Even when the averaged equations are too complicated for the
analytical investigation, they still can simplify numerical studies at a basic
level.

We can find several results of interest from the current analysis. First is the
evolution of comet angular momentum as a function of time. As developed
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in Section 4 the ultimate trend in angular momentum is for it to increase
as L ~ ec,m for a rotating comet nucleus subject to reactive torques. The
evolution of a comet nucleus under this asymptotic action implies that they
will spin at increasing rates with time, which would naturally lead to the
occasional splitting or bursting of a nucleus. Such comet splitting is seen
relatively often, and is regarded as a natural occurence in the life of comets.
The spin-up phenomenon identified here, in addition to other possible physical
effects, would make such splitting a more common phenomenon by placing a
comet nucleus under an increasing load with time.

Next is the relation between comet parameters and the final evolution of a
comet nucleus. For non-resonant motion we find that the parameters of comet
orbit, outgassing properties, and shape properties are combined into a single
parameter k that controls the evolution of the rotation state. Specifically, we
recall that & = (Do/D;) (Po/P1), where the ratio ®,/®; depends only on the
comet heliocentric orbit and the ratio Dg/D; is a function of the shape of the
asteroid and its level of activity over the surface. While the orbital elements
of comets are relatively well known, the actual shapes and surface activity of
comet nuclei are not. Still, as mentioned previously it is reasonable to take
an axis-symmetric, prolate body as an analogue for a comet shape. In terms
of surface activity, there are a number of competing theories, which at their
extremes would have the entire illuminated surface active or would have only
a few isolated regions on the surface of a comet active.

We note that the ratio ®¢/®; is greater than 1 for all our cases of interest.
The magnitude of the ratio Dg/D; is not so easy to predict, however, and
can take on different values depending on the body shape and the distribution
of active regions over the surface. In Section 5 we make note that this ratio
will be much less than 1 for a uniformly active surface, and should be strictly
greater or equal to 1 for localized outgassing. These distinctions are important,
as they lead to different definite values of the parameter . In particular,
they indicate that a uniformly active surface may lead to values of & near
zero, which in general leads to a comet nucleus rotation state with nutation
angle approaching ~ 55° and angular momentum cone angle approaching 90° .
Conversely, a comet nucleus with only a few active surfaces should tend towards
a zero nutation angle and a rotation pole aligned parallel to perihelion. Some
indications of this mode were already found in [24]. We should note that their
integrations were over limited time spans and had a slightly different outgassing
torque formulation. Additionally, our current results are asymptotic, meaning
that a comet nucleus angular momentum would tend towards these limits
over long time spans. However, other phenomenon such as impacts, nucleus
splitting, or close planetary flybys could disrupt this process and reset the
nucleus rotational dynamics in a new state.
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This aspect of the analysis does not give definite results for intermediate
areas of the surface being active. It does give indications of the value of &
when the active surface area is very small (which corresponds to a large & in
all situations) and when the entire surface area is active (which corresponds
to a small value of k). For intermediate results we see that there will be a
statistical element to the final result. We do have a clear indication, however,
that the majority of cases will result in the rotational angular momentum
of a comet to become parallel to its perihelion direction. Application of this
analytical result to the analysis of comet light-curves may allow for an improved
initial constraint to be placed on comet rotation poles.

7.Conclusions

A rigorous approach to the modeling of comet nucleus rotation in the pres-
ence of reactive sublimation torques is developed, analyzed, and applied to
the rotational dynamics of comets. The approach averages over the rotational
dynamics of the body and over the comet orbital motion about the sun. The
inertia ellipsoid of the comet is assumed to be axially symmetric. The resulting
dynamical system is time-invariant and can be characterized by a single pa-
rameter which combines information about the comet orbit with information
about the comet shape and its outgassing surface activity. The main results
of the analysis are that comets subject to outgassing torques will tend to gain
angular momentum over time, and that the fraction of active surface area on
a comet may lead to certain values of nutation angle and cause its angular
momentum direction to align in specific directions related to its perihelion.
More specifically, we show that the rotational angular momentum of comets
with only a few active portions on their surface will tend to align with their
orbit perihelion and spin about their minimum axis of inertia. Conversely,
comets with uniformly active surfaces will tend to have a nutation angle of
~ 55° and have their angular momentum at a non-zero angle with perihelion.
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Appendix A. Effects of the postperihelion
comet activity increase on nucleus spin
evolution

To study the effects of possible activity growth after passing the perihelion
we use, instead of (4), the formula

g(r,v) = g(r)(1 + f(v)),

to describe the dependence of the mass ejection on the solar distance. Here
f(v) is an odd 2= -periodic function of v positive over v € (0,7). Suppos-
ing that the activity asymmetry w.r.t. perihelion passage is small enough, we
assume that |f(v)| < 1. We do not need the explicit expression for f(v) in
the following.

The evolution equations averaged over unperturbed nucleus motion around
its mass center and over the orbit motion in this case have the form:

3—19 = %[3&1)1((1)177122 + ®amx,)cos ) — 2(1 — a)PgDy]sin (A1)
-
d e
d_f_ = ﬁ[pl(élmh + ®ymx,)R(V) + Dy®amxy, cos ],
do e
= m[DlR(ﬁ)me — Dy(®1mz, + Pamx,) cos V),
dL

= —elaD(®1mz, + ®amx,)R(V) — (1 — a)Dy®q cos I].

-

The physical sense of parameters Dy, Dy, Dy, @, ®; was discussed in Section
5; ®, is an integral parameter of the mass ejection asymmetry:

B, — (1-— 62)3/2 /:T sin I/g(’l‘(l/))f(l/)dl/. (42)

T (1 + ecosv)?

As g(r(v)) is rapidly decreasing as v grows (for typical values of orbit pa-
rameters e,r, ), the value of the integral in (A2) is determined by a small
part of the integration interval, corresponding to a vicinity of the perihelion.
Therefore,

0< ¥, < 1.

To describe the evolution of the angular momentum L, introduce the aux-
iliary system of coordinatest OXY Z:; this system is obtained by a turn of
the perihelion system OXY Z at the angle p. = arctg i—f around the OY -
axis. Orientation of the angular momentum vector w.r.t. trihedron OXY 7 is
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determined by the angles p. &, like the angles p, o determine its orientation
w.r.t. trihedron OXY Z (see Fig 1). Below are several relations between the
angles p,o and p,o:

COS ) = COS P COS p + sin p, sin p cos @,

SIIL P COS T = COS Py SIN P COS @ — SIN P, COS p, SIIL PSIN G = sin p sin 0.

After changing the variables (p,0) — (p,) system (A1) can be written in
the form:

dv
= %[3&1)1\/(1)% + @3 cos pcost) — 2(1 — a)Do®g] sin 9, (A3)
-

dp easin p ) do  ea
ﬁ =~ '0(2 — 3sin’ ¥)Dyy/ B2 + B2, 2 = 37 8 ¥ Dqy/ D3 + D2,

dL
= —%[aDl\/(I)% + ®3(2 — 3sin® ) cos p — 2(1 — a)Dy®q cos V).
-

Except for the notations, system (A3) is similar to system (13). Thus, small

asymmetries in mass ejection rates do not significantly affect the scenarios of
nucleus rotation evolution considered in Section 4. The main difference is that,
when describing the orientation of the angular momentum vector at 7 — oo,
one should use the direction of the nucleus radius-vector at v = p, instead of
the direction from the Sun to the perihelion.

Appendix B. Resonance at w, ~ 0.

As mentioned in Section 3, this resonance is found for those motions where

the longest axis of the nucleus is perpendicular to the angular momentum
vector L ( R~ g) .

To study phenomena occuring at the resonance w, = 0, we introduce in (7)
a new variable ¢ = w, instead of ¥. This new variable describes deviations
from the resonant surface. We average the r.h.s. of the equations for slow
variables p, o, L over the nonperturbed nucleus motion and over the orbital
motion. We do the same averaging also in the equation for ¢, which is a
"semi-fast” variable in a 4/¢-neighborhood of the resonant surface w, = 0
(i.e. dp/dr ~ /). Note, that averaging over the nucleus motion in this case
is averaging over the fast variable . Changing the variables (7,q) — (v, %),
where v = \/eT and x = ¢//¢ we rewrite the system in the “pendulum-like”
form:
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d do
_,0 = \/EKp(p,L,X,(,D,g), - = \/EKO-(P7L7X7‘1075)7 (Bl)
dv dv
dL de
—:\/EKL(p,L,X,(p,E), —:X‘|‘\/EK¢(,07L7X7(107£)7
dv dv
dx B

d’U E(P,SD)+\/EKX(P,L,X,(P,5)

The explicit expression for =(p, ¢) in (B1) is:

E(p, p) = Zo + Ersin(p + ),

1 1
=g = (1—CK) (6— Z) q)oDo,

E1(p) = a®y]cos p| (% - %) V(D% + (D7,

Oy = % [1 — sign (cos pr)} + arctg (ll;_g) )

N N
Di =Y s;djenge, DY =Y s;djengy,.

We do not need the expressions for K,, K,, K1, K,, K, in the following con-
siderations.
At ¢ =0 in (B1) the closed subsystem arises:

do _ dx _

dv X dv

[1]

o+ E1(p)sin(p + ¢y), (B2)

This subsystem coincides with equations of motion of a pendulum under the a
constant torque (variable p in (B2) is a parameter). If |Zy| > =;, the “pen-
dulum” rotates, and the velocity of the rotation either monotonically grows or
monotonically decreases depending on the sign of Z. In this case, capture of
solutions of the original system (7) into the resonance w, = 0 is not possible.

If |Z0| < =1, the system (B2) possesses oscillatory solutions. This implies
existence of resonant motions of the comet nucleus, such that w, ~ 0 for a
long time. Denote the set of values of the angle p that satisfy the condition
|Z0| < E1(p) as Dy.

At ¢ # 0, projections of some phase trajectories of (B1) onto the plane
(x,®) cross the separatrix of the phase portrait of the pendulum-like system
(B2). Trajectories entering the oscillatory domain correspond to the solutions
of (7) captured into the resonance. Exit from the oscillatory domain corre-
sponds to escape from the resonance.
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Like the original system (7), system (B1) is reversible: if

(p(v), o (v), L(v), ¢ (v), x(v)) (B3)

is a solution, then

(1 = p(=v), 7+ o(=v), L(=v), 7 + p(—v), =x(-v)) (B4)

is also a solution. Projections of the phase trajectories (B3) and (B4) onto
the plane (p,x) cross the separatrices of (B2) in opposite directions. Hence,
solutions of (7) captured into the resonance w, = 0 can be found among those
reaching the resonant surface when p = p* € Dy, or among those reaching it
when p = 7 — p*. Capture into this resonance are impossible only if Dy = 0.
One can show, using the expressions for Zy and Z;, that Dy # 0 if

(1—a)®yDy < a®y\/(D5)? + (D7)2. (B5)

Inequality (B5) is certainly violated if mass ejection is localized on a small
spot of the nucleus surface. Indeed, if N =1, we find

(D§)* + (DY) = Dj — Di.

At any initial conditions, the rotational evolution of such a nucleus evolves
without being captured into the resonance w, = 0.
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