

Д. Г. Мещанинов

О замкнутых классах k-значных функций, сохраняющих первые d-разности

Рекомендуемая форма библиографической ссылки: Мещанинов Д. Г. О замкнутых классах k-значных функций, сохраняющих первые d-разности // Математические вопросы кибернетики. Вып. 8. — М.: Наука, 1999. — С. 219–230. URL: http://library.keldysh.ru/mvk.asp?id=1999-219

О ЗАМКНУТЫХ КЛАССАХ k-ЗНАЧНЫХ ФУНКЦИЙ, СОХРАНЯЮШИХ ПЕРВЫЕ d-РАЗНОСТИ

Д. Г. МЕЩАНИНОВ

(MOCKBA)

Пусть k — натуральное число, $k \ge 2$, $E_k = \{0, 1, ..., k-1\}$, $P_k = \{f:$ $E_k^n \to E_k, \ n=0,1,\ldots\}$ — класс всех функций k-значной логики. Рассмотрим алгебру Р. с операциями суперпозиции, называемую функциональной системой, и ее подалгебры, называемые замкнутыми классами. Известно, что при $k \geqslant 3$ множество всех замкнутых классов в P_k имеет мощность континуум [16] и потому является труднообозримым. Один из путей преодоления этой трудности состоит в выделении некоторых семейств классов. допускающих лаконичное описание и позволяющих выяснить их структуру. В связи с таким подходом внимание ряда исследователей в 80-90-е годы привлекли семейства классов, содержащих полиномы по составному модулю k [2, 3, 5-14]. Известно, что при составном k функции, представимые полиномами (в дальнейшем будем рассматривать только полиномы по модулю k), образуют собственный замкнутый подкласс Pol в P_k , а при простом kимеет место равенство $Pol = P_{l}$. Анализ условий, являющихся необходимыми или достаточными для представимости k-значных функций полиномами, привел к выделению, в частности, двух свойств функций: сохранению сравнений по модулям d и сохранению конечных разностей, вычисленных с шагами d, где d — это делители числа k. Эти свойства определяют два семейства классов C(d) и R(d) соответственно (точные определения будут даны ниже). Структура замкнутых классов функций, сохраняющих сравнения по одному или нескольким модулям-делителям числа k, полностью описана А. Н. Череповым [13, 14]. В общем случае она имеет достаточно сложный вид, но конечна; в частных случаях $k=p_1^m$ и $k=p_1\dots p_s$, где p_1, \ldots, p_s — это различные простые числа, она упрощается. Так, при $k = p_1^m$ эта решетка изоморфна (m-1)-мерному единичному кубу. Позднее были получены результаты о структуре классов, находящихся между классами Pol и M(k), где M(k) — это класс функций, сохраняющих сравнения по всем модулям-делителям числа k [2, 3, 7, 8, 10-12], о структуре подклассов в Pol, содержащих все линейные функции [5], о решетке классов R(d) [11]. Было, в частности, выяснено, что для любого собственного делителя d числа k имеет место включение $R(d) \subset C(d)$ и справедливо равенство $R(k) = C(k) = P_k$. В статье [11] введено также семейство классов L(d), которые содержатся в R(d). Классы R(d) образуют решетку, изоморфную решетке делителей числа k; такую же решетку образуют классы L(d). В настоящей работе мы анализируем классы R(d), L(d), а также $R(d_1) \cap C(d_2)$ $(d_1 \text{ и } d_2 \longrightarrow \text{это взаимно простые делители числа } k). Выяв$ ленные свойства таких классов позволили построить решетку подклассов

класса Pol в $p_1 \dots p_s$ -значной логике, содержащих все линейные функции (здесь p_1, \dots, p_s — различные простые числа). Оказалось, что эта решетка изоморфна s-мерному единичному кубу. Заметим, что решетка таких классов в 4-значной логике, построенная А. А. Крохиным, К. Л. Сафиным и Е. В. Сухановым [5], намного сложнее и даже бесконечна.

Будем применять следующие обозначения: $\widetilde{x}=(x_1,\ldots,x_n),\ \widetilde{0}=(0,\ldots,0)$ — n-мерные векторы; $\{\{f_1,\ldots,f_m\}\}$ — замыкание относительно суперпозиции системы функций $\{f_1,\ldots,f_m\}$; $+,-,\cdot$ — операции кольца вычетов по модулю k; (a,b,\ldots,c) — наибольший общий делитель натуральных чисел a,b,\ldots,c . Буквами p (возможно, с индексами) будут обозначаться простые числа. Запись $\widetilde{\alpha}\equiv\widetilde{\beta}\pmod{d}$ означает, что для всех $i,i=1,\ldots,n$, выполняются сравнения $\alpha_i\equiv\beta_i\pmod{d}$. Запись $d\mid e$ означает, что натуральное число d делит число e.

Введем основные замкнутые классы, которые будут рассматриваться в работе. Если d|k, то C(d) — замкнутый класс функций, сохраняющих сравнение по модулю d, т. е. удовлетворяющих условию

$$\widetilde{\alpha} \equiv \widetilde{\beta} \pmod{d} \Rightarrow f(\widetilde{\alpha}) \equiv f(\widetilde{\beta}) \pmod{d}$$
.

Если d_1, \ldots, d_r — различные делители числа k, то $C(d_1, \ldots, d_r) = C(d_1) \cap \ldots \cap C(d_r)$. Далее, если $d \mid k$, то

$$M(d) = \bigcap_{e|d} C(e).$$

Пусть d|k. Величины

$$\Delta_i f(\widetilde{x}) = f(x_1, \ldots, x_{i-1}, x_i + d, x_{i+1}, \ldots, x_n) - f(\widetilde{x})$$

называются (первыми) d-разностями функции f по переменной x_i , вычисленными g точке \widetilde{x} . Через R(d) (через L(d)) обозначаем замкнутый класс функций, сохраняющих (абсолютно сохраняющих) d-разности, d. е. удовлетворяющих условию: для всех i, $i=1,\ldots,n$, всех $\widetilde{\mu}$ из E_d^n и всех таких векторов \widetilde{x} , что $\widetilde{x} \equiv \widetilde{\mu} \pmod{d}$, разности $\Delta_i f(\widetilde{x})$ зависят только от i и $\widetilde{\mu}$ (зависят только от i). Класс всех линейных функций будем обозначать как L. Заметим, что имеют место равенства L = L(1) = R(1).

Будем также использовать функции

$$g_d(\widetilde{x}) = \left\{ \begin{array}{ll} 1, & \widetilde{x} \equiv \widetilde{0} \pmod{d}, \\ 0, & \widetilde{x} \not\equiv \widetilde{0} \pmod{d}, \end{array} \right. \qquad \psi_d(\widetilde{x}) = \left\{ \begin{array}{ll} d, & \widetilde{x} = \widetilde{0}, \\ 0, & \widetilde{x} \not\equiv \widetilde{0}. \end{array} \right.$$

§ 1. Периодические функции

Напомним, что функция $f(\widetilde{x})$, удовлетворяющая условию

$$\widetilde{\alpha} \equiv \widetilde{\beta} \pmod{d} \Rightarrow f(\widetilde{\alpha}) = f(\widetilde{\beta}),$$

называется d -периодической (при этом предполагается, что $d \mid k$). В данном параграфе мы выведем некоторые вспомогательные результаты о периодических функциях.

Лемма 1. Если d_0,d_1,d_2 — делители числа k, и $d_0=(d_1,d_2)$, то d_1 -периодическая функция $f(\widetilde{x})$ принадлежит классу $C(d_2)$ в том и только том случае, когда она удовлетворяет условию

$$\widetilde{\alpha} \equiv \widetilde{\beta} \pmod{d_0} \Rightarrow f(\widetilde{\alpha}) \equiv f(\widetilde{\beta}) \pmod{d_2}.$$
 (1)

Доказательство. Достаточность условия (1) для сохранения функцией сравнения по модулю d_2 очевидна. Докажем необходимость.

Пусть $\widetilde{\alpha} \equiv \widetilde{\beta} \pmod{d_0}$, т. е. $\widetilde{\beta} - \widetilde{\alpha} = \widetilde{\gamma} d_0$. Числа d_1 , d_2 и k можно представить в виде $d_1 = ad_0$, $d_2 = bd_0$, $k = abcd_0$, причем (a,b) = 1. Тогда найдутся такие целочисленные векторы \widetilde{A} и \widetilde{B} , что $\widetilde{\gamma} = \widetilde{A} a + \widetilde{B} b$. Умножив это равенство на d_0 , получим $\widetilde{\beta} - \widetilde{\alpha} = \widetilde{A} d_1 + \widetilde{B} d_2$. В силу d_1 -периодичности функции имеем: $f(\widetilde{\beta}) = f(\widetilde{\alpha} + \widetilde{A} d_1 + \widetilde{B} d_2) = f(\widetilde{\alpha} + \widetilde{B} d_2)$. Далее, из условия $f \in C(d_2)$ следует, что $f(\widetilde{\alpha} + \widetilde{B} d_2) \equiv f(\widetilde{\alpha}) \pmod{d_2}$. Таким образом, выполнимость условия (1) доказана.

Следствие 1. Если d_1 и d_2 — взаимно простые делители числа k, то d_1 -периодическая функция принадлежит классу $C(d_2)$ в том и только том случае, когда все ее значения сравнимы между собой по модулю d_2 .

Интересно сопоставить этот результат со следующим фактом, объединяющим два утверждения статьи [11] — лемму 17 и теорему 5.

 Π е м м a 2. Если d_0 , d_1 , d_2 — делители числа k, и $d_0=(d_1,d_2)$, то d_1 -периодическая функция сохраняет (абсолютно сохраняет) d_2 -разности в том и только том случае, когда она сохраняет (абсолютно сохраняет) d_0 -разности.

Лемма 3. Пусть $d=p_1^{\alpha_1}\dots p_s^{\alpha_s},\ s\geqslant 2,\ (d,e)=1,\ k=p_1^{\beta_1}\dots p_s^{\beta_s}e\ u$ $\beta_i\geqslant \alpha_i$ при $i=1,\dots,s$. Пусть также $2\leqslant r\leqslant s,\ d=d_1\dots d_r,\ e\partial e\ d_1,\dots,d_r-$ попарно взаимно простые числа, $K=C(p_1^{\beta_1},\dots,p_s^{\beta_s},e),\ u\ f(\widetilde{x})$ — это d-периодическая функция класса K. Тогда функцию f можно представить s виде

$$f(\widetilde{x}) = f(\widetilde{0}) + \sum_{j=1}^{r} f_j(\widetilde{x}), \tag{2}$$

еде $f_j(\widetilde{x})$ — это d_j -периодические функции класса K, определяемые однозначно и удовлетворяющие условию $f_j(\widetilde{x}) \equiv 0 \pmod {k/d_j}$.

Доказательство. Положим $d_i'=p_i^{\alpha_i},\ i=1,\ldots,s.$ Покажем, что функцию $f(\widetilde{x})$ можно представить в виде

$$f(\widetilde{x}) = f(\widetilde{0}) + \sum_{i=1}^{s} f_i'(\widetilde{x}), \tag{3}$$

где $f_i'(\widetilde{x})$ — это d_i' -периодические функции класса K, определяемые однозначно.

Положим $F(\widetilde{x}) = f(\widetilde{x}) - f(\widetilde{0})$. Тогда $F(\widetilde{0}) = 0$. Определим для $i = 1, \ldots, s$ значения функций $f_i'(\widetilde{x})$ следующим образом: $f_i'(\widetilde{x}) = F(\widetilde{y}^{(i)})$, где

$$\widetilde{y}^{(i)} \equiv \widetilde{x} \pmod{d_i'},$$
 (4)

$$\widetilde{y}^{(i)} \equiv \widetilde{0} \pmod{k/d_i'}.$$
(5)

Нетрудно проверить, что если значения i и \widetilde{x} фиксированы, то в E_k^n существует ровно один вектор $\widetilde{y}^{(i)}$, удовлетворяющий условиям (4) и (5), что доказывает d_i' -периодичность функции $f_i'(\widetilde{x})$. Покажем выполнимость равенства (3), которое эквивалентно сравнениям

$$F(\widetilde{x}) \equiv F(\widetilde{y}^{(1)}) + \ldots + F(\widetilde{y}^{(s)}) \tag{6}$$

по модулям $e, p_1^{\beta_1}, \ldots, p_s^{\beta_s}$.

Во-первых, $F(\widetilde{x})$ — это d-периодическая функция класса C(e), поэтому, согласно следствию 1, все ее значения сравнимы между собой по модулю e, и сравнение (6) по модулю e выполняется.

Далее, фиксируем i, $1\leqslant i\leqslant s$. Заметим, что из условия (4) следует, согласно лемме 1, что $F(\widetilde{y}^{(i)})\equiv F(\widetilde{x})$ (mod $p_i^{\beta_i}$). Если же $1\leqslant l\leqslant s$ и $l\neq i$, то d_l' является делителем числа k/d_l' и $d_l'=(p_l^{\beta_l},d)$. Поэтому из условия (5) получаем соотношения

$$F(\widetilde{y}^{(i)}) \equiv F(\widetilde{0}) \equiv 0 \pmod{p_i^{\beta_i}}.$$
 (7)

Тем самым доказано, что сравнение (6) выполнено и по модулю $p_l^{\beta_l}$ и, сле-

довательно, равенство (3) имеет место.

Покажем, что $f_i'(\widehat{x}) \in K$ при i = 1, ..., s. Во-первых, $f_i'(\widehat{x}) \equiv 0 \pmod{e}$, так как $F(\widehat{x}) \equiv 0 \pmod{e}$, и, следовательно, $f_i'(\widehat{x}) \in C(e)$. Во-вторых, функция $f_i'(\widehat{x})$ является d_i' -периодической, а значит и $p_i^{\beta_i}$ -периодической (так как $d_i'|p_i^{\beta_i}$), поэтому $f_i'(\widehat{x}) \in C(p_i^{\beta_i})$. Наконец, пусть $1 \leq l \leq s$, $l \neq i$. Из условий (5) и (7) следует сравнение $f_i'(\widehat{x}) \equiv 0 \pmod{p_i^{\beta_i}}$, поэтому $f_i'(\widehat{x}) \in C(p_i^{\beta_i})$.

Для завершения доказательства осталось получить представление (2) из построенных функций $f_i'(\widetilde{x})$. Если $d_j = d_{j_1}' \dots d_{j_\ell}'$, то $f_j(\widetilde{x}) = f_{j_\ell}'(\widetilde{x}) + \dots$

 $\ldots + f_{i}'(\widetilde{x})$. Лемма доказана.

Лемма 4. Пусть выполнены условия леммы 3 и, кроме того, $f(\widetilde{x}) \in C(d_0)$, где $d_0 \mid k$ и $d_0 \notin \{p_1^{\beta_1}, \ldots, p_s^{\beta_s}, e\}$. Тогда $f_i(\widetilde{x}) \in C(d_0)$, $j = 1, \ldots, r$.

Доказательство. Пусть $e=p_{s+1}^{\beta_{s+1}}\dots p_t^{\beta_t}$. Достаточно показать, что каждая из функций $f_i'(\widetilde{x})$, определенных при доказательстве леммы 3, принадлежит классу $C(d_0)$ для делителей d_0 числа k, имеющих вид $d_0=p_l^m$, где $l=1,\dots,t$ и $m=1,\dots,\beta_l$.

Если l>s, то $f_i'(\widetilde x)\equiv 0\pmod{p_l^{\beta_l}}$, следовательно, $f_i'(\widetilde x)\in C(p_l^m)$ при $m=1,\ldots,\beta_l$.

Если l=i и $m\geqslant \alpha_i$, то функция $f_i'(\widetilde{x})$ принадлежит классу $C(p_l^m)$

в силу своей $p_i^{\alpha_i}$ -периодичности.

Пусть l=i, $m<\alpha_i$ и $\widetilde{x}\equiv\widetilde{x'}\pmod{p_i^m}$. Тогда $f_i'(\widetilde{x})=F(\widetilde{y}), f_i'(\widetilde{x'})=F(\widetilde{y'}),$ где $\widetilde{y}\equiv\widetilde{x},\ \widetilde{y'}\equiv\widetilde{x'}\pmod{p_i^{\alpha_i}}$. При этом $\widetilde{y}\equiv\widetilde{y'}\pmod{p_i^m}$. Функция $F(\widetilde{x}),$ так же, как и $f(\widetilde{x}),$ сохраняет сравнение по модулю $p_i^m,$ поэтому $f_i'(\widetilde{x})\in C(p_i^m)$.

Наконец, если $1 \leqslant l \leqslant s$ и $l \neq i$, то $f'_i(\widetilde{x}) \equiv 0 \pmod{p_l^{\beta_i}}$, поэтому $f'_i(\widetilde{x}) \in C(p_l^m)$ при $m = 1, \ldots, \beta_l$. Лемма доказана.

Следствие 2 [6, 9]. Пусть $k=k_1\ldots k_s$, где $s\geqslant 2$, а k_1,\ldots,k_s — попарно взаимно простые числа, и $f(\widetilde{x})\in C(k_1,\ldots,k_s)$. Тогда функцию f можно представить в виде

$$f(\widetilde{x}) = f(\widetilde{0}) + \sum_{i=1}^{s} f_i(\widetilde{x}),$$

еде $f_i(\widetilde{x})$ — это k_i -периодические функции класса $C(k_1,\ldots,k_s)$, определяемые однозначно и удовлетворяющие условию $f_i(\widetilde{x}) \equiv 0 \pmod {k/k_i}$. Если при этом $f(\widetilde{x}) \in M(k)$, то и $f_i(\widetilde{x}) \in M(k)$, $i=1,\ldots,s$.

Лемма 5. Пусть d и e — взаимно простые делители числа k, и $h_n(x_1,\ldots,x_n)=eg_d(x_1,\ldots,x_n)$. Тогда $h_n(\widetilde{x})\in [\{1,x+y,h_2(x,y)\}]$ при всех $n\geqslant 1$, а если $d\neq 2$, то $h_n(\widetilde{x})\in [\{1,x+y,h_1(x)\}]$ при всех $n\geqslant 1$.

Доказательство. Нетрудно видеть, что $h_1(x) = h_2(x,x)$ и при $n \geqslant 2$ справедливо равенство $h_{n+1}(\widetilde{x},y) = h_2(e-h_n(\widetilde{x}),y)$, а если $d \neq 2$, то $h_2(x,y) = h_1(2e-h_1(x)-h_1(y))$.

Замечание 1. Если k=2e и e нечетно, то $eg_2(x)=e(1+x)\in L$. В то же время, если $n\geqslant 2$, то $eg_2(x_1,\ldots,x_n)\not\in L$ (напомним, что L=R(1)), в чем легко убедиться с помощью леммы 3 статьи [11].

Утверждение 1. Пусть $s\geqslant 2$, и k_1,\ldots,k_s — попарно взаимно простые числа, $k=k_1\ldots k_s$, $d_i=k/k_i$ при $i=1,\ldots,s$. Тогда система финкций

$$A = \left(\bigcup_{i=1}^{s} \{ d_{i} g_{k_{i}}(x, y) \} \right) \cup \{1, x + y\}$$

является полной в классе $C(k_1, \ldots, k_s)$, и для всех чисел $k_i \neq 2$ функции $d_i g_k(x, y)$ в этой системе можно заменить на $d_i g_k(x)$.

Включение $[A] \subseteq C(k_1, \ldots, k_s)$ нетрудно доказать индукцией по сложности формулы над A, задающей функцию из [A]. Обратное включение вытекает из следствия 2 и леммы 5.

Замечание 2. d-периодические функции k-значной логики могут найти применение при описании различных периодических процессов в конечных системах, встречающихся в живой и неживой природе, обществе, технике, а также в математике. Так, функция $g_d(x)$ оказалась подходящим дискретным аналогом «дельта»-функции Дирака при построении обратного преобразования Фурье над конечным полем [17].

§ 2. Классы $R(d) \cap C(e)$ при (d, e) = 1, k = de

Всюду в данном параграфе k = de, (d, e) = 1, 1 < d < k, 1 < e < k.

Tеорема 1. Имеет место равенство $R(d) \cap C(e) = L(d) \cap M(e)$.

Доказательство. Соотношение $L(d) \cap M(e) \subseteq R(d) \cap C(e)$ очевидно. Докажем обратное включение.

Пусть $f(\widetilde{x}) \in R(d) \cap C(e)$, тогда $f(\widetilde{x}) \in C(d,e)$. Согласно следствию 2 функцию f можно представить в виде

$$f(\widetilde{x}) = f(\widetilde{0}) + f_d(\widetilde{x}) + f_e(\widetilde{x}), \tag{8}$$

где $f_d(\widetilde{x})$ и $f_e(\widetilde{x})$ — это d-периодическая и, соответственно, e-периодическая функции класса C(d,e), определяемые однозначно и удовлетворяющие условиям

$$f_d(\widetilde{x}) \equiv 0 \pmod{e}, \qquad f_e(\widetilde{x}) \equiv 0 \pmod{d}.$$
 (9)

Тогда $f_{\epsilon}(\widetilde{x}) = f(\widetilde{x}) - f(\widetilde{0}) - f_{d}(\widetilde{x})$. Из последнего равенства следует, что $f_{\epsilon}(\widetilde{x}) \in R(d)$. Из соотношений $R(d) \cap R(e) = R(1) = L$ следует, что

$$f(\widetilde{0}) + f_{\epsilon}(\widetilde{x}) \in L.$$
 (10)

Кроме того, $f_d(\widetilde{x}) \in L(d)$ и из равенства (8) следует, что $f(\widetilde{x}) \in L(d)$. Далее, в силу (9), $f_d(\widetilde{x}) \in M(e)$, и из представления (8) заключаем, что $f(\widetilde{x}) \in M(e)$. Теорема доказана.

Заметим, что из соотношений (8) и (10) вытекает следующий факт.

Лемма 6. Если $f(\widetilde{x}) \in R(d) \cap C(e)$, то функцию f можно представить в виде $f(\widetilde{x}) = l(\widetilde{x}) + eg(\widetilde{x})$, где $l(\widetilde{x})$ — это линейная, а $g(\widetilde{x})$ — d-периодическая функции, определенные однозначно.

Следствие 3. Имеет место равенство $R(p) \cap C(e) = L(p) \cap M(k)$. Утверждение 2. Пусть

$$A = \{1, x + y, eg_d(x, y)\}, \qquad A_1 = \{1, x + y, eg_d(x)\}.$$

Тогда система функций A является полной в классе $R(d) \cap C(e)$, а система A_1 является полной в этом классе только при $d \neq 2$.

Доказательство. Обозначим для краткости рассматриваемый класс через K. Очевидны соотношения $A\subseteq K$ и $A_1\subseteq K$, и в силу замкнутости класса K получаем $[A_1]\subseteq [A]\subseteq K$. Включение $K\subseteq [A]$ следует

из лемм 6 и 5. Из леммы 5 и замечания 1 следует также, что соотношение $K \subseteq [A_1]$ справедливо только при $d \neq 2$.

Следствие 4. Если k = 2e и е нечетно, то все одноместные финкции класса $R(2) \cap C(e)$ являются линейными.

Лемма 7. Пусть k=pd, (p,d)=1, $f(\widehat{x}) \not\in C(p)$. Тогда $g_d(x,y)\in$

 $\in [\{1, x+y, pq_{x}(x, y), f(\widetilde{x})\}].$

Доказательство. Если $f(x_1,\ldots,x_n)\not\in C(p)$, то при $n\geqslant 2$ подстановкой констант на места переменных функции f из нее можно получить (см. [15, § 17]) одноместную функцию $f_1(x)$, также не принадлежащую классу C(p) (если n=1, то $f_1(x)=f(x)$). При этом найдутся такие α,β из E_k , что $f_1(\alpha)\not\equiv f_1(\beta)$ (mod p). Без ограничения общности полагаем $\beta=f_1(\beta)=0$, в противном случае применим линейные преобразования функции и переменной. Итак, $f_1(0)=0$, $f_1(ip)=\gamma$, $(\gamma,p)=1$ при некотором $i,1\leqslant i\leqslant d-1$. Построим функцию h(x), удовлетворяющую условиям h(0)=0, h(ip)=1. Если $(\gamma,d)=1$, то $(\gamma,k)=1$ и $h(x)=\gamma^{-1}f_1(x)$. Если же $(\gamma,d)>1$, то рассмотрим функцию $f_2(x)=f_1(x)-pg_d(ip-x)$. Нетрудно проверить, что $f_2(0)=0$, $f_2(ip)=\gamma-p=\delta$ и $(\delta,k)=1$. Тогда $h(x)=\delta^{-1}f_2(x)$. Наконец, $g_d(x,y)=h(ipg_d(x,y))$. Лемма доказана.

Теорема 2. Класс $L(d) \cap M(e)$ является предполным в классе L(d) в том и только том случае, когда e = p.

 $\mathring{\Pi}$ оказательство. Если $e=ab,\ a\neq 1,\ b\neq 1,$ то имеют место включения

$$L(d) \cap M(ab) \subset L(d) \cap C(a) \subset L(d)$$
,

так как, например, $ag_d(x,y) \in (L(d) \cap C(a)) \setminus C(ab), \ g_d(x) \in L(d) \setminus C(a),$ и между $L(d) \cap M(ab)$ и L(d) есть по крайней мере один промежуточный класс.

Пусть k = pd, $f \in L(d) \setminus C(p)$. Напомним, что $L(d) = [\{1, x+y, g_d(x, y)\}]$ (см. [11. следствие 5]) и в силу теоремы 1 и утверждения 2 имеем:

$$L(d) \cap M(p) = R(d) \cap C(p) = [\{1, x + y, pg_d(x, y)\}].$$

Применяя лемму 7, убеждаемся в том, что $[(L(d) \cap M(p)) \cup \{f\}] = L(d)$. Теорема доказана.

Следующее утверждение является усиленной формулировкой лемм 22 и 23 статьи [11]. Доказательство, приведенное в [11], не изменяется.

Лемма 8. Пусть $k \neq 2d$, $n \geqslant 2$, $f(x_1, \ldots, x_n) \in C(d) \setminus R(d)$. Тогда подстановкой на места переменных функции f элементов класса L можно получить одноместную функцию класса C(d), также не сохраняющую d-разности.

Теорема 3. Класс L является предполным в классе $L(d) \cap M(e)$ в том и только том случае, когда d=p.

Доказательство. Если $d=ab,\ a\neq 1,\ b\neq 1$, то имеют место включения

$$L \subset L(a) \cap M(e) \subset L(d) \cap M(e)$$
,

так как, например,

$$eg_a(x, y) \in L(a) \cap M(e) \setminus L$$
, $eg_d(x, y) \in L(d) \cap M(e) \setminus L(a)$.

Пусть k=pe, (p,e)=1. Напомним, что $L(p)\cap M(e)=[\{1,x+y,eg_p(x,y)\}]$, и если $p\neq 2$, то полной в этом классе является и система $\{1,x+y,eg_p(x,y)\}$. Пусть $f(\widetilde{x})\in L(p)\cap M(e)\setminus L$. Функцию f можно, согласно лемме 6, представить в виде $f(\widetilde{x})=l(\widetilde{x})+h(\widetilde{x})$, где $l(\widetilde{x})\in L$, а функция $h(\widetilde{x})$ является p-периодической. Вычитая из функции $f(\widetilde{x})$ линейную функцию $l(\widetilde{x})$, получим p-периодическую функцию $h(\widetilde{x})$, обладающую свойствами: $h(\widetilde{x})\equiv 0\pmod e$, $h(\widetilde{x})\not\in L$, $h(\widetilde{0})=0$. Далее рассмотрим два случая.

Случай p=2. Пусть функция h зависит от n переменных. Тогда $n\geqslant 2$, так как при n=1 функция была бы линейной (см. замечание 1). Если n>2, то применим лемму 22 статьи [11] и получим подстановкой констант двухместную функцию H(x,y) (если n=2, то H(x,y)=h(x,y)). Заметим, что H(0,1)=H(1,0)=0 (это следует из способа построения функции $l(\widetilde{x})$). Далее, 2-периодическая функция H(x,y) нелинейна, поэтому H(1,1)=ej, $1\leqslant j\leqslant e-1$. Тогда $eg_2(x,y)=j^{-1}H(x+1,y+1)$. Итак, $eg_2(x,y)\in [L\cup\{f\}]$, что доказывает предполноту L в классе $L(2)\cap M(e)$.

Случай $p \neq 2$. Если функция h зависит от n переменных и $n \geqslant 2$, то, применив лемму 8, получим одноместную функцию H(x), в противном случае (n=1) положим H(x) = h(x). Далее повторяем рассуждения, изложенные в статье [11] при доказательстве теоремы 9. Заметим только, что H(1) = 0, поэтому сложность N(H) функции H удовлетворяет неравенствам $1 \leqslant N(H) \leqslant p-2$, и случай 4 невозможен. Итак, класс L предполон в $L(p) \cap M(e)$, и теорема доказана.

§ 3. Замкнутые классы полиномов в $p_1 \dots p_s$ -значной логике

В [5] анализировалась решетка замкнутых классов, находящихся между классом Pol всех функций, представимых полиномами, и классом L. Полностью построена решетка таких классов при k=4 (4 — минимальное составное число). В данном разделе мы рассмотрим аналогичную решетку в случае $k=p_1\dots p_*$.

Всюду в данном параграфе $k=p_1\dots p_s,\ s\geqslant 2,\ d_i=k/p_i,$ индексы i,j,i_1,\dots,i_t принимают значения из множества $\{1,\dots,s\}.$

Утверждение 3[1, 11, 14]. Имеют место равенства

$$Pol = M(k) = C(p_1, \ldots, p_s).$$

Следствие 5. Система функций

$$\left(\bigcup_{i}\{d_{i}g_{p_{i}}(x,y)\}\right)\cup\{1,x+y\}$$

является полной в классе M(k), и для всех чисел $p_i \neq 2$ функции $d_i\,g_{p_i}(x,\,y)$ в этой системе можно заменить на $d_i\,g_{p_i}(x)$.

Пусть $d \mid k$. Из теоремы 1 следует равенство $M(k) \cap R(d) = M(k) \cap L(d)$. Эти классы будем в дальнейшем обозначать как ML(d).

Утверждение 4. Пусть $f(\widetilde{x}) \in ML(d_i)$. Тогда функцию f можно представить в виде

$$f(\widetilde{x}) = l(\widetilde{x}) + \sum_{i \neq i} h_i(\widetilde{x}), \tag{11}$$

еде $l(\widetilde{x}) \in L$, а $h_j(\widetilde{x})$ — это p_j -периодические функции, определяемые однозначно и удовлетворяющие условию

$$h_i(\widetilde{x}) \equiv 0 \pmod{d_i}.$$
 (12)

Доказательство. Имеем $f(\widetilde{x}) \in L(d_i)$, поэтому функцию f можно, согласно лемме 6, представить в виде суммы однозначно определенных линейной функции $l(\widetilde{x})$ и d_i -периодической функции $h(\widetilde{x})$. Далее, функцию h можно, в соответствии с леммой 3, представить в виде

$$h(\widetilde{x}) = \sum_{j \neq i} h_j(\widetilde{x}),$$

где $h_j(\widetilde{x})$ — это однозначно определяемые p_j -периодические функции, удовлетворяющие условию (12).

Утверждение 5. Система функций

$$A_i = \left(\bigcup_{j \neq i} \{d_j g_{p_j}(x, y)\}\right) \cup \{1, x + y\}$$

является полной в классе $ML(d_i)$, и для всех чисел $p_j \neq 2$ функции $d_i g_n(x,y)$ в этой системе можно заменить на $d_i g_n(x)$.

 \Breve{L} о к а з а т е л ь с т в о. Индукцией по сложности формулы над A_i , задающей функцию из $[A_i]$, нетрудно проверить, что $[A_i] \subseteq ML(d_i)$. Докажем обратное включение. Всякая функция f класса $ML(d_i)$ допускает представление (11), а каждую из функций h_i можно представить в виде

$$h_j(\widetilde{x}) = \sum_{\widetilde{\mu} \in E_{p_j}^n} a(\widetilde{\mu}) d_j g_{p_j}(\widetilde{x} - \widetilde{\mu}),$$

где $a(\widetilde{\mu}) \in E_{p_j}$. Согласно лемме 5 при любом $n \geqslant 1$ имеем $d_j g_{p_j}(x_1, \ldots, x_n) \in [A_i]$, а если $p_j \neq 2$, то $d_j g_{p_j}(x_1, \ldots, x_n) \in [\{1, x+y, d_j g_{p_j}(x)\}]$. Утверждение доказано.

Пусть $I \subseteq \{1, ..., s\}$. Введем замкнутые классы

$$ML(I) = \bigcap_{i \in I} ML(d_i).$$

Следствие 6. Справедливы следующие соотношения.

1. $Ecnu\ I = \{i_1, \ldots, i_t\}, mo\ ML\ (I) = ML\ (d), \ e \partial e\ d = (d_{i_1}, \ldots, d_{i_t}) = \prod_{i \in I} p_i.$

2. $ML(\{1,\ldots,s\}) = ML(1) = \hat{L}$.

3. $ML(\emptyset) = M(k) = Pol.$

4. $Ecnu I_1 \subseteq I_2$, mo $ML(I_2) \subseteq ML(I_1)$.

Эти факты вытекают из теорем 4 и 5 статьи [11] и утверждения 3.

Аналогично утверждениям 4 и 5 доказываются следующие результаты.

Утверждение 6. Если $f(\widetilde{x}) \in ML(I)$, то функцию f можно представить в виде

$$f(\widetilde{x}) = l(\widetilde{x}) + \sum_{j \notin I} h_j(\widetilde{x}), \tag{13}$$

где $l(\widetilde{x}) \in L$, а $h_j(\widetilde{x})$ — это p_j -периодические функции, определяемые однозначно и удовлетворяющие условию (12).

Утверждение 7. Система функций

$$\left(\bigcup_{j\notin I}\{d_jg_{p_j}(x,y)\}\right)\cup\{1,\,x+y\}$$

является полной в классе ML(I), и для всех чисел $p_j \neq 2$ функции $d_j g_{p_i}(x,y)$ в этой системе можно заменить на $d_j g_{p_i}(x)$.

Теорема 4. Пусть $I' = I \cup \{i'\}$. Тогда класс ML(I') является предполным в классе ML(I).

Доказательство. Пусть $f(x_1,\ldots,x_n)\in ML(I')\setminus ML(\{i'\})$. Учитывая утверждение 7, достаточно показать, что $d_{i'}g_{p_{i'}}(x,y)\in [ML(I')\cup\{f\}]$. Функцию f, согласно утверждению 6, можно представить в виде (13). При этом линейная функция $l(\widetilde{x})$ и p_j -периодические функции $h_j(\widetilde{x})$ принадлежат классу ML(I') (так как $p_j|d_{i'}$). Следовательно, вычитая из функции f функции класса ML(I'), получим $p_{i'}$ -периодическую функцию $h_{i'}(x_1,\ldots,x_n)$, все значения которой кратны $d_{i'}$. Из условия $f\not\in ML(I')$

следует, что $h_{i'}(\widetilde{x}) \not\in ML(I')$. Далее, $h_{i'}(x_1,\ldots,x_n) \in C(d_{i'}) \setminus R(d_{i'})$ согласно теореме 1. Если n > 2, то применяя лемму 22 статьи [11], из функции $h_{i'}$ подстановкой констант получим функцию H, зависящую не более чем от двух переменных и удовлетворяющую условию $H \in C(d_{i'}) \setminus R(d_{i'})$. Очевидно, функция H нелинейна, т. е. $H \not\in R(1)$. Далее из функции H построим функцию $d_{i'}g_{p_i}(x)$, если $p_{i'} \neq 2$, или $d_{i'}g_2(x,y)$ таким же образом, как при доказательстве теоремы 9 в статье [11] построены функции $\psi_d(x)$ и $\psi_d(x,y)$ в случаях $k \neq 2d$ и k = 2d соответственно. Разница имеется только в следующих деталях доказательства

1. Условие $H \notin R(d)$ заменяется условием $H \notin R(1)$.

- 2. Вместо d-периодических функций используем линейные, вместо $\chi_d(x)$ функцию $d_{i'}x$.
 - 3. В качестве S берем множество $\{0, 1\}$. 4. Значения функции кратны не d, а d_{ii} .
 - 5. Вместо леммы 23 применяем лемму 8 настоящей статьи.
 - 6. *d*-решеточное ограничение функции не выделяется.

Итак, если $p_{i'}=2$, то нами построена требуемая функция $d_{i'}g_2(x,y)$. Если $p_{i'}\neq 2$, то нами построена функция $d_{i'}g_{p_{i'}}(x)$, и доказательство завершается применением леммы 5.

Следствие 7. Между классами M(k) и L находится ровно 2^s-2 замкнутых класса. Каждый из них имеет вид ML(I), $I \subset \{1, \ldots, s\}$. Эти классы (вместе с M(k) и L) образуют решетку, изоморфную s-мерному единичному кубу. Атомами решетки являются классы $ML(p_i)$, коатомами — классы $ML(d_i)$, $i=1\ldots, s$.

Следствие 8. Система полиномов, содержащая все линейные функции, полна в классе Pol тогда и только тогда, когда она содержит функции, не сохраняющие d_i -разности для $i=1,\ldots,s$.

Замечание З. В классе Роі имеются универсальные (шефферовы) функции. Примером может служить предложенная В. Ш. Дарсалия функция xy - yz + y + 1, являющаяся также универсальной в более обширном классе всех полиномов с целыми коэффициентами [4].

§ 4. О сложности задания функций

О пределение. Минимальное количество числовых значений, достаточное для однозначного определения n-местной функции $f(x_1, \ldots, x_n)$, будем называть сложностью задания функции f и обозначать как $I_n(f)$.

Сложность задания функции характеризует объем памяти, достаточный для хранения всей информации о функции.

Следствие 9. Имеют место следующие оценки сложности задания финкций.

- 1. Для любой функции f из P_k справедливо неравенство $I_n(f) \leqslant k^n$.
- 2. Если функция f является d -периодической, то $I_n(f) \leqslant d^n$.
- 3. Ecau $f \in L$, mo $I_n(f) \leq n+1$.
- 4. Ecau $f \in R(d)$, mo $I_n(f) \leq d^n(n+1)$.
- 5. Ecau $f \in L(d)$, mo $I_n(f) \leq d^n + n$.
- 6. Если $k = k_1 \dots k_s$, где $s \geqslant 2$, числа k_1, \dots, k_s попарно взаимно простые, $f \in C(k_1, \dots, k_s)$, то $I_n(f) \leqslant k_1^n + \dots + k_s^n + 1$. 7. Если $k = p_1 \dots p_s$, $s \geqslant 2$, $I \subseteq \{1, \dots, s\}$, $f \in ML(I)$, то

7. Ecau
$$k = p_1 \dots p_s$$
, $s \geqslant 2$, $I \subseteq \{1, \dots, s\}$, $f \in ML(I)$, mo $I_n(f) \leqslant n + 1 + \sum_{j \in \{1, \dots, s\} \setminus I} p_j^n$.

\S 5. Классы L(d) и R(d)

Пусть d — собственный делитель числа k. В данном параграфе мы найдем условия, при которых класс L(d) является предполным в классе R(d).

Как было отмечено выше, система функций $\{1, x+y, g_d(x,y)\}$ полна в классе L(d). Введем функции

$$\chi_d(\widetilde{x}) = x_n g_d(\widetilde{x}), \qquad \delta_d(x) = d |x/d|$$

(через $\lfloor r \rfloor$ обозначаем целую часть рационального числа r). Установлено (см. $[11, \S 3]$), что $\chi_d(\widetilde{x}) \in R(d) \setminus L(d)$, $\delta_d(x) \in L(d)$, и система функций $\{1, x+y, g_d(x,y), \chi_d(x,y)\}$ полна в классе R(d), причем при $d \neq 2$ функцию $g_d(x,y)$ в этой системе можно заменить на $g_d(x)$. Мы покажем, что и функцию $\chi_d(x,y)$ можно заменить одноместной функцией $\chi_d(x)$ при любом d. Обозначим количество переменных функции верхним индексом в скобках у функционального символа. Нетрудно проверить справедливость следующего факта.

Лемма 9. Имеет место соотношение

$$\chi_{\lambda}^{(2)}(x,y) = \chi_{\lambda}^{(1)}(x + \chi_{\lambda}^{(1)}(y)) - \chi_{\lambda}^{(1)}(x).$$

Следствие 10. Система функций $\{1, x+y, g_d(x,y), \chi_d(x)\}$ является полной в классе R(d), а если $d \neq 2$, то функцию $g_d(x,y)$ можно заменить на $g_d(x)$.

 Π е м м a 10. Π усть $n \geqslant 1$ u (n+1)-местная функция сохраняет d-разности, но не абсолютно. Тогда с помощью элементов класса L(d) из нее можно получить одноместную функцию h(x) такую, что $h(x) \in R(d) \setminus L(d)$.

Доказательство. Рассмотрим (n+1)-местную функцию $f(\widetilde{x},y)$ такую, что $f \in R(d) \setminus L(d)$. Без ограничения общности можно считать, что не абсолютно сохраняются d-разности по последней, (n+1)-й переменной y, т. е. величины $\Delta_{n+1}f(\widetilde{x},y)$ зависят от \widetilde{x} и y. Рассмотрим эти разности как функцию переменных \widetilde{x} и y.

Если $\Delta_{n+1}f(\widetilde{x},y)$ существенно зависит от y, то требуемая функция h(y) получается из $f(\widetilde{x},y)$ подстановкой констант вместо переменных \widetilde{x} .

Пусть $\Delta_{n+1}f(\widetilde{x},y)$ не зависит существенно от переменной y, а зависит только от \widetilde{x} , точнее, от наименьших неотрицательных вычетов $\widetilde{\mu}$ компонент вектора \widetilde{x} по модулю d. Можно считать что $\Delta_{n+1}f(\widetilde{0},y)=0$ (в противном случае, если $\Delta_{n+1}f(\widetilde{0},y)=Ad\neq 0$, этого добьемся, рассматривая вместо $f(\widetilde{x},y)$ функцию $f(\widetilde{x},y)-Ay$). Пусть при некотором $\widetilde{\mu},\ \widetilde{\mu}\in E_d^n\setminus\{\widetilde{0}\}$, имеем $\Delta_{n+1}f(\widetilde{\mu},y)=Bd\neq 0$. Положим $h(x)=f(\mu_1g_d(x),\ldots,\mu_ng_d(x),x)$. Заметим, что $h(x)\in R(d)$ в силу замкнутости класса R(d). Далее,

$$\Delta h(0) = h(d) - h(0) = f(\widetilde{\mu}, d) - f(\widetilde{\mu}, 0) = \Delta_{n+1} f(\widetilde{\mu}, 0) = Bd,$$

$$\Delta h(1) = h(1+d) - h(1) = f(\widetilde{0}, d+1) - f(\widetilde{0}, 1) = \Delta_{n+1} f(\widetilde{0}, 1) = 0$$

в силу того, что функция $\Delta_{n+1}f(\widetilde{x},y)$ не зависит существенно от переменной y. Таким образом, $h(x) \in R(d) \setminus L(d)$. Лемма доказана.

Теорема 5. Класс L(d) является предполным в классе R(d) в том и только том случае, когда k=pd.

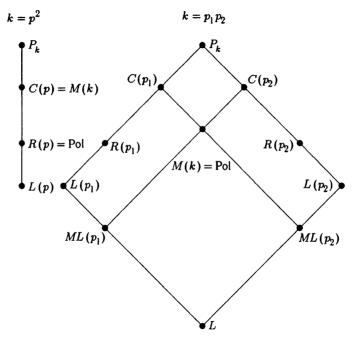
Доказательство. Пусть k = abd. Тогда имеют место включения $L(d) \subset L(ad) \cap R(d) \subset R(d)$, так как, например,

$$b\chi_d(x) \in L(ad) \cap R(d) \setminus L(d), \qquad \chi_d(x) \in R(d) \setminus L(ad).$$

Пусть теперь k=pd и $f\in R(d)\setminus L(d)$. Можем считать функцию f одноместной, в противном случае применим лемму 10. Вычитая d-периодическую функцию из функции f(x), получим функцию h(x), такую, что h(x)=0 на множестве E_d и $h(x)\equiv 0\pmod d$. Пусть h(d)=Ad. Положим $h_1(x)=h(x)-A\delta_d(x)$. Тогда $h_1(x)=0$, если $x\equiv 0\pmod d$. Так как f(x), h(x), $h_1(x)\not\in L(d)$, то при некотором i, $1\leqslant i\leqslant d-1$, имеем $h_1(d+i)=Bd\neq 0$. Заметим также, что $h_1(x)\in R(d)$, поэтому $h_1(ld+i)=lBd$ при $l=0,1,\ldots,p-1$. Далее, положим $h_2(x)=h_1(\delta_d(x)+ig_d(x))$. Нетрудно проверить, что $h_2(x)=B\chi_d(x)$. Очевидно, (B,p)=1. Пусть $C\equiv B^{-1}\pmod p$. Тогда $\chi_d(x)=Ch_2(x)\in [L(d)\cup\{f\}]$ и $[L(d)\cup\{f\}]=R(d)$. Теорема доказана.

Замечание 4. Условие k=pd является также необходимым и достаточным для того, чтобы класс R(d) был предполным в C(d) (см. [11, теорема 9]). Классы C(d) являются предполными в P_k при любых k и $d \neq 1$. $d \neq k$ (см. [15]).

Полученные результаты позволяют построить следующие фрагменты решетки замкнутых классов в P_k при $k=p^2$ и $k=p_1\,p_2$.



Замечание 5. В статье [5] для случая k=4 указана полная система $\{1, x+y, x^2y^2\}$ в классе, совпадающем в наших обозначениях с L (2). Нетрудно проверить, что

$$x^2y^2 = g_2(x+1, y+1).$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Айзенберг Н. Н., Семйон И. В. Некоторые критерии представимости функций k-значной логики полиномами по модулю k // Многоустойчивые элементы и их применение. М.: Сов. радио, 1971. С. 84—88.
- 2. Гаврилов Г. П. О надструктуре класса полиномов в многозначных логиках // Дискретная математика. 1996. Т. 8, вып. 3. С. 90–97.
- 3. Гаврилов Г. П. О замкнутых классах многозначной логики, содержащих класс полиномов // Дискретная математика. 1997. Т. 9, вып. 2. С. 12-23.

- 4. Ларсалия В. Ш. Условия полноты для полиномов с натуральными, целыми и рациональными коэффициентами // Фунд. и прикл. матем. — 1996. — Т. 2. Вып. 2. — C. 365-374.
- 5. Крохин А. А., Сафин К. Л., Суханов Е. В. Остроении решетки замкнутых
- классов полиномов // Дискретная математика. 1997. Т. 9, вып. 2. С. 24—39. 6. Ме щанинов Д. Г. Некоторые условия представимости функций из P_k полиномами по модулю // Докл. АН СССР. — 1988. — Т. 299, № 1. — С. 50-53.
- 7. Мещанинов Д. Г. О некоторых свойствах надструктуры класса полиномов в P_k // Матем, заметки. — 1988. — Т. 44. № 5. — С. 673-681.
- 8. Мещанинов Д. Г. О вторых p-разностях функций p^{α} -значной логики // Дискретная
- о. м е щанинов д. 1. О вторых p-разностях функции p⁻-значной логики // Дискретная математика. 1992. Т. 4, вып. 4. С. 131–139.
 9. М е щанинов Д. Г. Метод построения полиномов для функций k-значной логики // Дискретная математика. 1995. Т. 7, вып. 3. С. 48–60.
 10. М е щанинов Д. Г. О классе Кузнецова в p⁻-значной логике // Тез. докл. XI Междунар. конф., Ульяновск, 10–14 июня 1996 г. М.: Изд-во РГГУ, 1996. С. 142–143.
- 11. Мещанинов Д. Г. О первых d-разностях функций k-значной логики // Математические вопросы кибернетики. Вып. 7. М.: Наука, 1998. С. 265—280.
- 12. Ремизов А. Б. О надструктуре замкнутого класса полиномов по модулю k // Дискретная математика. 1989. Т. 1, вып. 1. С. 3–15. 13. Черепов А. Н. Описание структуры замкнутых классов в P_k , содержащих класс
- полиномов // Проблемы кибернетики. Вып. 40. М.: Наука, 1983. С. 5–18.
- 14. Черепов А. Н. Надструктура класса сохранения отношений сравнения в к-значной логике по всем модулям-делителям к: Автореф, дис. канд. физ.-мат. наук. — М., 1986.
- 15. Яблонский С. В. Функциональные построения в k-значной логике // Тр. МИАН СССР. 1958. Т. 51. С. 5–142.

 16. Янов Ю. И., Мучник А. А. О существовании k-значных замкнутых классов,
- 16. Янов Ю. И., Мучник А. А. О существовании к-значных замкнутых классов, не имеющих конечного базиса // Докл. АН СССР. 1959. Т. 127, № 1. С. 44-46.

 17. Reed I. S., Truong T. K. The use of finite fields to compute convolations // IEEE Trans. on Inform. Theory. 1975. V. IT-21, № 3. Р. 208-213. [Русский перевод: Рид И. С., Труонг Т. К. Применение конечных полей для вычисления сверток // В кн.: Макклеллан Дж. Х., Рейдер Ч. М. Применение теории чисел в цифровой обработке сигналов. М.: Радио и связь, 1983. С. 207-216.]

Поступило в редакцию 29 VI 1998