

<u>ИПМ им.М.В.Келдыша РАН</u> • <u>Электронная библиотека</u> <u>Препринты ИПМ</u> • <u>Препринт № 26 за 1970 г.</u>

Китаев Л.В., Молчанов А.М.

К теории нелинейного взаимодействия спиновых волн

Рекомендуемая форма библиографической ссылки: Китаев Л.В., Молчанов А.М. К теории нелинейного взаимодействия спиновых волн // Препринты ИПМ им. М.В.Келдыша. 1970. № 26. 27 с. URL: <u>http://library.keldysh.ru/preprint.asp?id=1970-26</u>

ОРДЕНА ЛЕНИНА ИНСТИТУТ ПРИКЛАДНОЙ МАТЕМАТИКИ АКАДЕМИИ НАУК СССР

Л. В. Китаев, А. М. Молчанов

К ТЕОРИИ НЕЛИНЕЙНОГО ВЗАИМОДЕЙСТВИЯ СПИНОВЫХ ВОЛН

Препринт № 26

Москва, 1970 г.

Китаев, Л. В. К теории нелинейного взаимодействия спиновых волн : препр. № 26 / Л. В. Китаев, А. М. Молчанов ; ИПМ АН СССР. – М. : [б. и.], 1970. – 27 с. : 6 рис. – Библиогр.: с. 27 (2 назв.).

Реферат

Исследуется запороговое поведение феррита, помещенного в объемный резонатор. Строится асимптотическая модель коллектива спиновых колебаний. Обсуждаются некоторые предельные режимы. Схема применяется к анализу нелинейных явлений в мелкозернистых ферритах.

§ 1. Введение

Исследование запорогового поведения феррита, помещенного в объемный резонатор, посвящена работа [1]. В ней рассмотрен случай сильного заполнения резонатора ферритом. Показано, что малое превышение высокочастотной мощности порогового уровня не приводит к росту стационарной амплитуды резонатора. В этом случае для описания установившегося состояния системы достаточно рассмотреть взаимодействие электромагнитного колебания с одним спиновым, а именно тем, которое раньше других оказывается нестабильным. Высокие уровни мощности или малое заполнение резонатора ферритом приводит к необходимости оценки влияния спиновых колебаний с более высоким значением порогового поля. В тех случаях, когда для правильного описания запорогового поведения системы достаточно учесть несколько спиновых колебаний, можно использовать электронно-вычислительные машины. Рост числа нестабильных спиновых колебаний довольно быстро ставит предел такому подходу. Естественна попытка подойти к задаче с другого конца, рассмотрев предельную ситуацию бесконечно большого числа спиновых колебаний.

Настоящая работа посвящена изучению именно такой модели запорогового поведения резонатора с ферритом. При этом мы ограничимся рассмотрением случая, когда частота высокочастотного сигнала ω в два раза больше частоты нестабильных спиновых колебаний $\tilde{\omega}_k$. Перейдем теперь к математической постановке задачи.

§ 2. Постановка задачи. Вывод исходной системы уравнений

Рассмотрим малый, однородный, изотропный, намагниченный до насыщения ферритовый эллипсоид вращения, помещенный в объемный резонатор. Постоянное магнитное поле направлено вдоль оси вращения эллипсоида. Резонатор настроен на частоту высокочастотного сигнала, среди спиновых колебаний ферритового образца есть колебания с частотой $\varpi_k \approx \frac{\omega}{2}$ и отсутствуют спиновые колебания с частотой $\varpi_k \approx \frac{\omega}{4}$, а частота однородной прецессии сильно отличается от частоты сигнала. Требуется исследовать запороговое поведение системы феррит-резонатор. Решение так поставленной задачи сводится к совместному интегрированию уравнений Максвелла и уравнения Ландау–Лифшица, дополненных соответствующими граничными и начальными уравнениями [1].

$$\operatorname{rot}\overline{H} = \frac{\widetilde{\varepsilon}}{c}\frac{\partial\overline{E}}{\partial t} + \frac{4\pi}{c}\overline{j}_{e}, \quad \operatorname{rot}\overline{E} = -\frac{1}{c}\frac{\partial\overline{H}}{\partial t} - \frac{4\pi}{c}\frac{\partial\overline{M}}{\partial t} - \frac{4\pi}{c}\overline{j}_{m},$$

$$\frac{\partial\overline{M}}{\partial t} = -\gamma \left[(\overline{z}_{0}M_{=} - \overline{M}) \times (\overline{z}_{0}H_{=} + \overline{H}^{i} + \frac{H_{_{\mathcal{H}\mathcal{B}}}l^{2}}{M_{=}}\nabla^{2}\overline{M}) \right],$$
(1)

здесь $c, \gamma, H_{_{3K6}}, l$ – постоянные; j – заданные функции, зависящие от времени по гармоническому закону; $M_{=}(\bar{r}), H_{=}(\bar{r}), \tilde{\epsilon}(\bar{r})$ – заданные функции координат; H, \bar{E}, \bar{M} – искомые функции; H^{i} – высокочастотное поле внутри эллипсоида.

Решение системы записывается в виде суммы электромагнитного колебания, однородной прецессии и нестабильных спиновых колебаний ферритового образца

$$\overline{E} = l_{v}(t)\overline{E}_{v}(\bar{r}), \quad \overline{M} = \overline{m}_{0}(\bar{r}, t) + \sum_{s=1}^{s=n} \overline{m}_{k,s}(t) 2\cos\bar{k}_{s}\bar{r},$$

$$\overline{H} = h_{v}(t)\overline{H}_{v}(\bar{r}),$$

$$\overline{H}^{i} = h_{v}(t)\overline{H}_{v}(\bar{r}) - \overline{N}4\pi\overline{m}_{0}(\bar{r}, t) - \sum_{s=1}^{s=n} \frac{4\pi\bar{k}_{s}(\bar{k}_{s}m_{ks}(t))}{k_{s}^{2}} 2\cos\bar{k}_{s}\bar{r}.$$
(2)

Подставляя решение в исходные уравнения и производя обычные преобразования [1], приходим к системе нелинейных дифференциальных уравнений относительно искомых амплитуд колебаний

$$\frac{da_0}{dt} = i(\omega_0 + i\eta_0)a_0 + \varepsilon F_1^3 b_v - \varepsilon F_1^3 b_{-v}^k + \sum_{r=1}^{r=n} (F_1^{2r+3,2r+3} b_{kr}^2 + F_1^{2r+3,2r+4} b_{kr} b_{-kr}^* + F_1^{2r+4,2r+4} b_{-kr}^{*2} + F_1^{1,2r+3,2r+4} a_0 b_{kr} b_{-kr}^*)$$

к.с.

$$\frac{db_{\nu}}{d\tau} = l(\omega_{\nu} + i\eta_{\nu})b_{\nu} + \frac{\delta}{\eta_{k nop}}(F_{3}^{1}a_{0} - F_{3}^{1*}a_{0}^{*}) - \sum_{r=1}^{r=n}\frac{\delta}{\eta_{knop}}F_{3}^{2r+3,2r+3}b_{kr}^{2};$$

$$\begin{aligned} \frac{db_{kj}}{d\tau} &= i(\omega_{kj} + i\eta_{kj})b_{kj} + F_{2j+3}^{1,2j+3}a_0b_{kj} + F_{2j+3}^{1,2j+4}a_0b_{-kj}^* + F_{2j+3}^{1,2j+3}a_0^*b_{kj} + F_{2j+3}^{1,2j+4}a_0^*b_{-kj}^* + \\ &+ \varepsilon F_{2j+3}^{3,2j+4}b_{\nu}b_{-kj}^* + \sum_{r=1}^{r=n}F_{2j+3}^{2r+4,2r+3,2r+3}b_{-kj}^*b_{kr}^2 + \sum_{r=1}^{r=n}F_{2j+3}^{2j+3,2r+3,2r+4}b_{kj}b_{kr}b_{-kr}^*; \ j = 1,2,...,n; \end{aligned}$$

(3)

к.с.

к.с.

где

$$\begin{split} \tau &= \omega t, \varepsilon = \eta_{k \ nop} = \frac{1}{2} \frac{\gamma \Delta H_{k \ nop}}{\omega}, \ \eta_{v} = \frac{1}{2} \frac{\gamma \Delta H_{v}}{\omega}, \ \eta_{0} = \frac{1}{2} \frac{\gamma \Delta H_{0}}{\omega}, \ \delta = \frac{V_{\phi}}{V_{p}}, \\ b_{kr} &= \frac{1}{M_{=}} \left(\frac{1}{2} m_{krx} + i \frac{1}{\chi_{r}} m_{kry}\right), b_{v} = l_{v} - ih_{v}, a_{0} = \frac{1}{M_{=}} (m_{0x} + im_{0y}), \\ b_{-kr}^{*} &= (b_{kr})^{*}, b_{-v}^{*} = (b_{v})^{*}, \\ \omega_{M} &= \frac{\gamma 4 \pi M_{=}}{\omega}, \ \omega_{o \delta u} = \frac{\gamma H_{3K\theta}}{\omega}, \ \omega_{0} = \frac{\gamma H_{=}}{\omega} + \omega_{M} N_{r}, \ \theta_{r} = \arctan \frac{\sqrt{K_{rx}^{2} + K_{ry}^{2}}}{K_{r}}, \\ \aleph_{r} &= \frac{\omega_{kr}}{\frac{1}{2} \omega_{M} \sin^{2} \theta_{r} + \sqrt{\frac{1}{4} \omega_{M}^{2} \sin^{4} \theta_{r} + \omega_{kr}^{2}}}{\int \mu_{v}^{2} dV}, \ \omega_{o \delta u}^{2} \frac{1}{2} \frac{\rho}{\omega^{2}} \frac{1}{\sqrt{H_{v}^{2} dV}}, \ N_{v} = \int_{V_{p}} H_{v}^{2} nop dV, \\ \omega_{o \delta u}^{2} l^{2} k_{r}^{2} &= -\frac{\gamma H_{=}}{\omega} - \frac{1}{2} \omega_{M} \sin^{2} \theta_{r} + \sqrt{\frac{1}{4} \omega_{M}^{2} \sin^{4} \theta_{r} + \omega_{kr}^{2}}, \\ \omega_{kr}^{2} &= \frac{\omega_{kr}}{\omega^{2}} = \left(\frac{\gamma H_{=}}{\omega} - \frac{1}{2} \omega_{M} \sin^{2} \theta_{r} + \sqrt{\frac{1}{4} \omega_{M}^{2} \sin^{4} \theta_{r} + \omega_{kr}^{2}}, \\ \omega_{kr}^{2} &= \frac{\omega_{kr}}{\omega^{2}} = \left(\frac{\gamma H_{=}}{\omega} + \omega_{o \delta u} l^{2} k_{r}^{2}\right) \left(\frac{\gamma H_{=}}{\omega} + \omega_{o \delta u} l^{2} k_{r}^{2} + \omega_{M} \sin^{2} \theta_{r}\right), \\ J &= \frac{1}{2} J_{0} [\exp(i\tau) + \exp(-i\tau)], \ J &= -\frac{4\pi}{\omega N_{v}} \int_{V_{p}} (\bar{j}_{l} \overline{E}_{v} - i - \bar{j}_{m} \overline{H}_{v}) dV, \\ F_{1}^{2r+3,2r+3} &= -i 2 \omega_{M} \sin \theta_{r} \cos \theta_{r} (1 + \aleph_{r}), \qquad F_{1}^{2r+3,2r+4} &= -i 4 \omega_{M} \sin \theta_{r} \cos \theta_{r}, \\ F_{1}^{2r+4,2r+4} &= -i2 \omega_{M} \sin \theta_{r} \cos \theta_{r} (N_{v} - 1), \ F_{1}^{3} &= \frac{\gamma}{2\eta_{k \ nop}, \omega} (H_{vx} + iH_{vy}); \\ F_{3}^{1} &= \eta_{k \ nop}, \frac{2\pi M_{-}V_{p}\omega_{0}}{N_{v}} (-H_{vx} + iH_{vy}), \end{split}$$

 $F_{3}^{2r+3,2r+3} = \eta_{k \text{ nop.}} \frac{8\pi M_{=}V_{p}}{N_{v}} \cdot (-\aleph_{r}\omega_{M}\sin\theta_{r}\cos\theta_{r}H_{vx} + i\omega_{M}\sin\theta_{r}\cos\theta_{r}H_{vy} + \aleph_{r}\omega_{M}\sin^{2}\theta_{r}H_{vz}),$

$$\begin{split} F_{2j+3}^{1,2j+3} &= F_{2j+3}^{2,2j+3} = -i\frac{1}{2}\omega_{M}\sin\theta_{j}\cos\theta_{j}\frac{1}{\aleph_{j}}, \qquad F_{2j+3}^{1,2j+4} = -i\frac{1}{2}\omega_{M}\sin\theta_{j}\cos\theta_{j}(1+\frac{1}{\aleph_{j}}), \\ F_{2j+3}^{2,2j+4} &= i\frac{1}{2}\omega_{M}\sin\theta_{j}\cos\theta_{j}(1-\aleph_{j}), \quad F_{2j+3}^{3,2j+4} = \frac{\gamma H_{\nu_{z}}}{\eta_{k\,nop,\omega}}\frac{\omega_{M}}{4\omega_{k}}\sin^{2}\theta_{j}, \\ F_{2j+3}^{2,j+3,2j+4} &= i\frac{1}{2}\left[\omega_{M}N_{z}\left(3\aleph_{j}^{3}+2\aleph_{j}+\frac{3}{\aleph_{j}}\right) + \omega_{o\delta\mu}l^{2}k_{j}^{2}\left(\frac{3}{2}\aleph^{3}+\aleph_{j}+\frac{3}{2\aleph_{j}}\right)\right], \\ -\frac{3}{2}\omega_{M}\sin^{2}\theta_{j}\left(\aleph_{j}+\frac{3}{\aleph_{j}}\right) + \omega_{M}\cos^{2}\theta_{j}\left(\frac{3}{2}\aleph_{j}^{3}+\aleph_{j}+\frac{3}{2\aleph_{j}}\right)\right], \\ F_{2j+3}^{2j+4,2r+3,2r+3} &= i\frac{1}{2}\left\{\omega_{M}N_{z}(1-\aleph_{r}^{2})\left(-1+\frac{1}{\aleph_{r}}\right) + \omega_{o\delta\mu}l^{2}[2k_{j}^{2}\left(\aleph_{j}\aleph_{r}^{2}+2\aleph_{r}+\frac{1}{\aleph_{j}}\right) + 2k_{r}^{2}\left(\aleph_{r}+\frac{1}{\aleph_{j}}\right) + \\ + \omega_{M}\left[\frac{(k_{jz}+k_{rz})^{2}}{(k_{j}+k_{r})^{2}} + \frac{(k_{jz}-k_{rz})^{2}}{(k_{j}-k_{r})^{2}}\right]\left(\aleph_{j}\aleph_{r}^{2}+2\aleph_{r}+\frac{1}{\aleph_{j}}\right) - \omega_{M}\left[2\sin^{2}\theta_{r}\left(\aleph_{r}+\frac{1}{\aleph_{j}}\right) + \sin^{2}\theta_{j}\left(\frac{1}{\aleph_{j}}-\frac{\aleph_{r}^{2}}{\aleph_{j}}\right)\right]\right\} \\ F_{2j+3}^{2j+3,2r+3,2r+4} &= i\left\{\omega_{M}N_{z}(1+\aleph_{r}^{2})\left(\aleph_{j}+\frac{1}{\aleph_{j}}\right) + \omega_{o\delta\mu}l^{2}k_{j}^{2}\left(\frac{3}{2}\aleph_{j}\aleph_{r}^{2}-\aleph_{r}^{3}-\aleph_{r}+\frac{1}{2}\aleph_{j}-\frac{\aleph_{r}^{2}}{\aleph_{j}}\right)\right\} \end{split}$$

$$+ \omega_M \left[\frac{(k_{jz} + k_{rz})^2}{(k_j + k_r)^2} + \frac{(k_{jz} - k_{rz})^2}{(k_j - k_r)^2} \right] \left(\aleph_r^2 \aleph_j - \frac{1}{\aleph_j} \right) - \omega_M (2\sin^2 \theta_r + \sin^2 \theta_j) \frac{1}{\aleph_j} \right\}$$

 ΔH_k , ΔH_0 , ΔH_v – ширина резонансной кривой спинового колебания, однородной прецессии и электромагнитного колебания соответственно. $\varepsilon = \eta_k$ – малый параметр системы. Для наших целей удобно выбрать норму собственного колебания резонатора N_v равной $N_v = 8 \pi W_{nop}$, где W_{nop} – пороговое значение энергии, запасаемой в резонаторе, выше которого одно из спиновых колебаний становится нестабильным.

Здесь и в дальнейшем мы не будем выписывать комплексно сопряженных уравнений. При выводе этой системы для учета потерь действительные частоты заменены на комплексные. В правой части (3) оставлены только те слагаемые, которые после применения метода вариации произвольных постоянных порождают члены, медленно меняющиеся во времени и имеющие наинизший порядок малости. Для упрощения выкладок плоскость *XOZ* совмещена с вектором \bar{k}_{nop} нестабильного спинового колебания, имеющего наинизший порог. Предполагалось, что векторы \bar{k} всех нестабильных спиновых колебаний лежат в одной и той же плоскости *XOZ* и не

связаны между собой соотношением $\pm \bar{k}_1 \pm \bar{k}_2 \pm \bar{k}_3 = 0$. Все спиновые колебания пронумерованы в порядке роста величины порогового поля, спиновое колебание индекса r = 1 раньше других становится нестабильным. Решение системы ищем в виде:

$$b_{v} = x_{3,0}x_{3} \exp(i\tau_{0}\tau), \ b_{kr} = \sqrt{\varepsilon}x_{2r+3,0}x_{2r+3} \exp(i\frac{1}{2}\tau_{0}\tau),$$

$$a_{0} = \varepsilon x_{1} \exp(i\omega_{0}\tau_{0}\tau) + \frac{F_{1}^{3}}{i(1-\omega_{0})}x_{3,0}x_{3} \exp(i\tau_{0}\tau) + \frac{F_{1}^{3}}{i(1+\omega_{0})}x_{3,0}^{*}x_{4} \exp(-i\tau_{0}\tau) +$$

$$+ \varepsilon \sum_{r=1}^{r=n} \left[\frac{F_{1}^{2r+3,2r+3}}{i(1-\omega_{0})}x_{2r+3,0}^{2}x_{2r+3}^{2} \exp(i\tau_{0}\tau) + \frac{F_{1}^{2r+3,2r+3}}{-i\omega_{0}} \left| x_{2r+3,0} \right|^{2}x_{2r+3}x_{2r+4} +$$

$$+ \frac{F_{1}^{2r+4,2r+4}}{-i(1+\omega_{0})}x_{2r+3,0}^{*2}x_{2r+4}^{2} \exp(-i\tau_{0}\tau) \right],$$

$$x_{4} = x_{3}^{*}, \ x_{2} = x_{1}^{*}, \ x_{2j+4} = x_{2j+3}^{*}.$$
(5)

Подставляя (5) в (3), приходим к искомой системе дифференциальных уравнений

$$\frac{dx_1}{d\tau} = -\beta_0 x_1 + i \sum_{r=1}^{r=n} C_r^0 x_1 x_{2r+3} x_{2r+4}, \ j = 1, 2, \dots, n,$$

K.C. (6)

к.с.

$$\frac{dx_3}{d\tilde{\tau}} = (i\Delta\omega_v - \beta_v)x_3 + d - \sum_{r=1}^{r=n} \sigma_r x_{2r+3}^2,$$

к.с.

$$\frac{dx_{2j+3}}{d\tau} = (i\Delta\omega_j - \beta_j)x_{2j+3} + C_j^1 x_3 x_{2j+4} + i\sum_{\substack{r=1,\\r\neq j}}^{r=n} C_{jr}^2 x_{2j+4} x_{2r+3}^2 + i\sum_{\substack{r=1\\r\neq j}}^{r=n} C_{jr}^3 x_{2j+3} x_{2r+3} x_{2r+4},$$

где $\tau_0 = \frac{1}{\eta_{knno.}}, |x_{3,0}| = \frac{1}{|A_5^{3,6}|}, \arg x_{3,0} = 0,$

$$\left|x_{2j+3,0}\right| = \frac{1}{\sqrt{\left|A_{2j+3}^{2j+3,2j+3,2j+4}\right|}}, \arg x_{2j+3,0} = \frac{1}{2}\arg A_{2j+3}^{3,2j+4},$$

$$\beta_{0} = \frac{\eta_{0}}{\eta_{k \text{ nop.}}}, \quad \Delta \omega_{0} = \frac{\delta}{\eta_{k \text{ nop.}}} \frac{2}{1 - \omega_{0}^{2}}, \quad C_{r}^{0} = \frac{A_{1}^{1,2r+3,2r+4}}{i \left| A_{2r+3}^{2r+3,2r+4} \right|},$$

$$\sigma_{2} = \frac{\left| A_{5}^{3,6} \right| \left| A_{3}^{2r+3,2r+3} \right|}{\left| A_{2r+3}^{2r+3,2r+4} \right|}, \quad \Delta \omega_{v} = \frac{\omega_{v} - 1}{\eta_{k \text{ nop.}}}, \quad \beta_{v} = \frac{\eta_{v}}{\eta_{k \text{ nop.}}}, \quad d = \frac{J_{0} \left| A_{5}^{3,6} \right|}{2\eta_{k \text{ nop.}}},$$

При выводе (6) отброшены быстро осциллирующие члены и члены более высокого порядка малости. Структура полученной системы позволяет исключить одну из переменных, а именно x_1 . Эта переменная входит только в первое уравнение. Поэтому достаточно изучить поведение остающейся системы. Можно, впрочем, показать, что x_1 затухает со временем.

§ 3. Получение модельной системы уравнений

В нашем случае исходная система дифференциальных уравнений относительно искомых амплитуд колебаний (3) содержит два неявно заданных малых параметра. Первый возникает за счет того, что потери системы много меньше частоты

высокочастотных колебаний $\left(\frac{\frac{1}{2}\gamma\Delta H_k}{\omega} << 1\right)$. Поэтому нелинейные эффекты возникают

при малых амплитудах колебаний, когда переменная составляющая намагниченности много меньше постоянной составляющей. Наличие этого параметра позволяет оставить в правых частях дифференциальных уравнений лишь резонансные (медленно меняющиеся) члены наинизшего порядка малости. Второй возникает за счет наличия большого числа дифференциальных уравнений и является величиной порядка $\frac{1}{\sqrt{n}}$, где

n – число нестабилъных спиновых колебаний. Наличие второго малого параметра позволяет резко уменьшить число дифференциальных уравнений, которые необходимо исследовать для описания поведения системы (6). Это уменьшение достигается следующим приемом. К системе уравнений добавляем несколько уравнений для некоторых функций, описывающих общие свойства системы. Затем на основании общих идей Хинчина [2], точные уравнения заменяются приближенными. Обсуждение трудного вопроса о характере аппроксимации выходит за рамки настоящей работы.

Схема Хинчина выглядит следующим образом. Рассматриваются сумматорные функции большого числа переменных $X = (x_1, x_2, ..., x_n,)$

$$A(X) = a(x_1) + a(x_2) + \dots + a(x_n).$$

Все функции в правой части одинаковы, меняется только номер аргумента. Для таких функций справедлива теорема Хинчина: любая сумматорная функция представима в виде суммы двух функций

$$A(X) = A(H) + F(X).$$

Первое слагаемое A(H) называется доминантой, зависит от одного переменного H, имеет величину порядка n, где n – число компонент X и сохраняет постоянное значение на поверхности H(X) = E. Второе слагаемое F(H) называется флуктуантой, зависит от всех переменных $\{x_1, x_2, ..., x_n\}$ и может меняться вдоль этой поверхности, но относительно мала на ней в том смысле, что

$$\frac{\int_{H(X)=E} F^2(X) d\sigma}{\int_{H(X)=E} A^2(H) d\sigma} \sim \frac{1}{n}$$

Здесь интегрирование идет по поверхности E = H(X). Иными словами, из любой сумматорной функции можно выделить главную часть порядка *n* (доминанту), зависящую от одного переменного. Отброшенный член (флуктуанта) вносит малый вклад в том смысле, что его среднее квадратичное значение имеет порядок \sqrt{n} . Выбор функции H(X) произволен и определяется тем, какие стороны явлений необходимо

исследовать в исходной системе. В нашем случае необходимо учесть обратную реакцию нестабильных спиновых колебаний на электромагнитное колебание резонатора. Поэтому в качестве новых переменных можно выбрать сумму квадратов амплитуд и сумму квадратов модулей нестабильных спиновых колебаний. Последующее исследование сводится к выводу дифференциальных уравнений относительно этих переменных, отбрасыванию флуктуант и изучению поведения решений полученной модельной системы уравнений. Перейдем к реализации намеченной программы.

Выпишем уравнения для следующих дополнительных переменных

$$y_{3} = \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^{2}$$

$$y_{4} = \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+4}^{2}$$

$$y_{3} = \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3} x_{2j+4}$$
(8)

Дифференцируя эти выражения в силу точных уравнений системы, получим

$$\frac{dy_1}{d\tau} = (i\Delta\omega_v - \beta_v)y_1 + d - \sum_{j=1}^{j=n} \sigma_j x_{2j+3}^2 ,$$

к.с.

$$\frac{dy_3}{d\tau} = \frac{2}{n} \sum_{j=1}^{j=n} (i\Delta\omega_j - \beta_j) x_{2j+3}^2 + \frac{2}{n} y_1 \sum_{j=1}^{j=n} C_j^1 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_{jr}^2 x_{2j+3} x_{2j+4} \sum_{r=1}^{r=n} x_{2r+3}^2 + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3}^2 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} \sum_{r=1}^{r=n} x_{2r+3}^2 + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3}^2 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+3} x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}{n} \sum_{\substack{j=1, \ j \neq r}}^{j=n} C_j^3 x_{2j+4} + i \frac{2}$$

$$+i\frac{2}{n}\sum_{j=1}^{j-n}C_{jr}^{3}x_{2j+3}^{2}\sum_{r=1}^{j-n}x_{2r+3}x_{2r+4}$$

к.с.

$$\begin{aligned} \frac{dy_5}{d\tilde{\tau}} &= -\frac{2}{n} \sum_{j=1}^{j=n} \beta_j x_{2j+3} x_{2j+4} + \frac{1}{n} y_1 \sum_{j=1}^{j=n} C_j^1 x_{2j+4}^2 + \frac{1}{n} y_2 \sum_{j=1}^{j=n} C_j^1 x_{2j+3}^2 + i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+4}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+3}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+3}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+4}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+4}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+4}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+4}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+3}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+3}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+4}^2 - i \frac{1}{n} \sum_{j=1}^{j=n} x_{2j+3}^2 \sum_{r=1, j \neq r}^{r=n} C_{jr}^2 x_{2r+4}^2 - i \frac{1}{n} \sum_{r=1, j \neq r}^{r=n} x_{2r+4}^2$$

где $y_1 = x_3$, $y_2 = x_4$.

Важный момент состоит в переходе к приближенным уравнениям, которые получаются осреднением правых частей по поверхности

$$y_{3} = const$$

$$y_{4} = const$$

$$y_{5} = const$$
(10)

Эта процедура соответствует разложению правых частей (9) на доминанту и флуктуанту в духе теоремы Хинчина (обобщение на случай бисумматорных функций и функций от небольшого числа аргументов). Отбрасывая флуктуанту, получим окончательно

$$\frac{dy_1}{d\tau} = (i\Delta\omega_v - \beta_v)y_1 + d - \sigma y_3,$$
K.C.

$$\frac{dy_3}{d\tau} = (i\Omega - \beta)y_3 + C_1y_1y_5 + iC_2y_3y_5,$$
K.C.

$$\frac{dy_5}{d\tau} = -\alpha \ y_5 + C_4y_1y_4 + C_4^*y_2y_3 + iC_5y_3y_4,$$
(11)

где

$$\begin{aligned} \sigma &= n\overline{\sigma} = \frac{1}{\overline{y_3}} \sum_{j=1}^{\overline{j=n}} \sigma_j x_{2j+3}^2, \quad \beta = \frac{2}{n\overline{y_3}} \sum_{j=1}^{\overline{j=n}} \beta_j x_{2j+3}^2, \quad \Omega = \frac{2}{n\overline{y_3}} \sum_{j=1}^{\overline{j=n}} \Delta \omega_j x_{2j+3}^2, \\ C_2 &= \frac{2}{n\overline{y_3}\overline{y_5}} \left(\sum_{j=1}^{\overline{j=n}} x_{2j+3} x_{2j+4} \sum_{r=1, r\neq j}^{r=n} C_{jr}^2 x_{2r+3}^2 + \sum_{j=1}^{\overline{j=n}} x_{2j+3}^2 \sum_{r=1}^{r=n} C_{jr}^2 x_{2r+3} x_{2r+4} \right), \\ \alpha &= \frac{2}{n\overline{y_5}} \sum_{j=1}^{\overline{j=n}} \beta_j x_{2j+3} x_{2j+4}, \quad C_1 = \frac{2}{n\overline{y_5}} \sum_{j=1}^{\overline{j=n}} C_j^1 x_{2j+3} x_{2j+4}, \quad (12) \\ C_4 &= \frac{2}{n\overline{y_4}} \sum_{j=1}^{\overline{j=n}} C_j^1 x_{2j+4}^2, \\ C_5 &= i \frac{1}{n\overline{y_3}\overline{y_4}} \left(\sum_{j=1}^{\overline{j=n}} x_{2j+4}^2 \sum_{r=1, r\neq j}^{r=n} C_{jr}^2 x_{2r+3}^2 - \overline{\sum_{j=1}^{\overline{j=n}} x_{2j+3}^2 \sum_{r=1, j\neq r}^{r=n} C_{jr}^2 x_{2r+4}^2} \right), \\ y_3 &= \frac{1}{n} \sum_{j=1}^{\overline{j=n}} x_{2j+3}^2, \quad y_4 = \frac{1}{n} \sum_{j=1}^{\overline{j=n}} x_{2j+4}^2, \quad y_5 = \frac{1}{n} \sum_{j=1}^{\overline{j=n}} x_{2j+3, 2j+4}^2. \end{aligned}$$

Черта сверху означает операцию осреднения по поверхности (10). Отброшенные члены растут в \sqrt{n} раз медленнее, чем главные члены.

Заметим, что для случая одинаковых спиновых колебаний

$$\sigma_j = \sigma_1, \ \Delta \omega_j = \Delta \omega_1, \ \beta_j = \beta_1 = 1, \ C_j^1 = C_1^1 = 1, \ C_{jr}^2 = C_{1,2}^2, \ C_{jr}^3 = C_{1,1}^3.$$
(13)

Полученная система является точным следствием исходной системы (6). Это служит дополнительным контролем разумности системы (11). В последнем случае постоянные коэффициенты в правых частях вычисляются по формулам:

$$\sigma = n\sigma_1, \ \beta = 2, \ C_1 = 2, \ C_2 = C = C_{1,1}^3 + 2(n-1)(C_{1,2}^2 + C_{1,1}^3), \ \Omega = 2\Delta\omega_1,$$

$$\alpha = \beta = 2, \ C_4 = 1, \ C_5 = 0.$$
 (14)

С учетом (14) уравнения (11) записываются в виде:

$$\frac{dy_1}{d\tau} = (i\Delta\omega_v - \beta_v)y_1 + d - \sigma y_3,$$
K.C.

$$\frac{dy_3}{d\tau} = (i2\Delta\omega_1 - 2)y_3 + 2y_1y_5 + iCy_3y_5,$$
K.C.

$$\frac{dy_5}{d\tau} = -2y_5 + y_1y_4 + y_2y_3.$$
(15)

Перейдем к исследованию полученной системы уравнений.

§ 4. Стационарный режим модельной системы

При любых значениях параметров система (11) имеет стационарную точку

$$y_1 = \frac{d}{i\Delta\omega_v - \beta_v}, \ y_3 = 0, \ y_5 = 0.$$
 (16)

Исследование на устойчивость, проводимое обычными приемами линеаризации, показало существование критического значения амплитуды колебания резонатора $|y_{1 nop.}|$. Ниже этого порога стационарная точка устойчива, выше – неустойчива. Вычисления дают для порогового значения следующую формулу

$$|y_{1 nop.}|^{2} = \min \begin{cases} \frac{\alpha \left(\Omega^{2} + \beta^{2}\right)}{C_{1} \left[C_{4} \left(-i\Omega + \beta\right) + C_{4}^{*} (i\Omega + \beta)\right]} \\ \frac{2\alpha\beta + \left(\Omega^{2} + \beta^{2}\right)}{C_{1} \left(C_{4} + C_{4}^{*}\right)} \\ \frac{\beta \left(\Omega^{2} + \beta^{2}\right) + 2\alpha\beta \left(\alpha + 2\beta\right)}{C_{1} \left(C_{4} + C_{4}^{*}\right) + i\Omega C_{1} \left(C_{4} - C_{4}^{*}\right)}. \end{cases}$$
(17)

В частности, при $\Omega = 0$

$$\left|y_{1 \text{ nop.}}\right| = \frac{\alpha\beta}{2C_1 |C_4| \cos\psi_4}.$$
(18)

При $|y_3| \neq 0$, $y_5 \neq 0$ и действительных С₁ и С₂ система имеет стационарные точки

$$y_{5} = S_{1} \pm \sqrt{S_{1}^{2} - S_{2}}, \quad y_{5} > 0,$$

$$S_{1} = -\frac{\Omega}{C_{2}} + \frac{C_{1}|y_{1}|^{2}}{\alpha(C_{2})^{2}} \left(\frac{1}{2}C_{1}C_{5} + C_{2}|C_{4}|\sin\psi_{4}\right), \quad C_{4} = |C_{4}|\exp(i\psi_{4}),$$

$$S_{2} = \frac{1}{(C_{2})^{2}} + \left[\beta^{2} + \Omega^{2} - \frac{2}{\alpha}|y_{1}|^{2}C_{1}|C_{4}|(\beta\cos\psi_{4} + \Omega\sin\psi_{4})\right],$$

$$|y_{3}| = \frac{C_{1}|y_{1}|y_{5}}{\sqrt{\beta^{2} + (\Omega + C_{2}y_{5})^{2}}},$$

$$tg\phi_{1} = \frac{\Delta\omega_{\nu}|y_{1}| + \sigma|y_{3}|\sin(\phi_{1} - \phi_{3})}{\beta_{\nu}|y_{1}| + \sigma|y_{3}|\cos(\phi_{1} - \phi_{3})}, \quad tg(\phi_{1} - \phi_{3}) = -\frac{\Omega}{\beta} - \frac{C_{2}}{\beta}y_{5},$$

$$d = \sqrt{[\Delta\omega_{\nu}|y_{1}| + \sigma|y_{3}|\sin(\phi_{1} - \phi_{3})]^{2} + [\beta_{\nu}|y_{1}| + \sigma|y_{3}|\cos(\phi_{1} - \phi_{3})]^{2}},$$

$$|\phi_{1} - \phi_{3}| \leq \frac{\pi}{2}, \quad |\phi_{1}| \leq \frac{\pi}{2}$$

$$(19)$$

Для расчета искомых величин следует задаться значением модуля электромагнитного колебания резонатора $|y_1|$, после чего последовательно вычислить y_5 , $|y_3|$, $\varphi_1 - \varphi_3$, φ_1 , φ_3 , d. Зависимость установившихся значений амплитуд колебаний от параметров d, β_V , Ω , вычисленных с помощью (19), изображена на рис. 1. Пунктиром отмечены точки, когда у системы имеет место жесткий режим возбуждения колебаний.

Рис. 1. Зависимость установившихся амплитуд колебаний от степени превышения сигналом порогового уровня.

Сумма квадратов модулей амплитуд спиновых колебаний y_5 является положительной величиной. Поэтому в фазовом пространстве $|y_3| \neq 0$, $|y_5| \neq 0$ у системы нет стационарных точек, если либо $S_1^2 - S_2 < 0$, либо $S_1 < 0$, $S_2 > 0$. При $S_1 > 0$, $S_2 < 0$, $S_1^2 - S_2 > 0$, а также при $S_1 < 0$, $S_2 < 0$ система имеет единственную стационарную точку. При $S_1 > 0$, $S_2 > 0$, $S_1^2 - S_2 > 0$ система имеет две стационарные точки.

В частности при $\Omega = -C_2 y_5$, $\Delta \omega_v = 0$, $C_5 = 0$ система имеет единственную стационарную точку

$$y_1 = \sqrt{\frac{\alpha\beta}{2C_1|C_4|\cos\psi_4}}, \ y_3 = -\frac{\beta_v}{\sigma}y_1 + \frac{d}{\sigma}, \ y_5 = \frac{\beta y_3}{C_1 y_1}$$
 (20)

§ 5. Стационарный режим модельной системы при одинаковых спиновых колебаниях

В случае одинаковых спиновых колебаний система (15) имеет стационарную точку

$$y_1 = \frac{d}{i\omega_v - \beta_v}, \ y_3 = 0, \ y_5 = 0.$$
 (21)

Исследование на устойчивость этой точки показало существование критического значения амплитуды колебания резонатора

$$|y_{1 nop.}| = 1 + (\Delta \omega_1)^2.$$
 (22)

Ниже этого порога стационарная точка устойчива, выше – неустойчива.

При $y_3 \neq 0$, $y_5 \neq 0$ система (15) имеет не более двух стационарных точек

$$y_{5} = a_{1} \pm \sqrt{a_{1}^{2} - a_{2}}, \quad a_{1} = -\frac{1}{2g} \left[2 \left(\Delta \omega_{1} \frac{\Delta \omega_{\nu}}{\beta_{\nu}} + 1 \right) \left(\frac{1}{2} C \frac{\Delta \omega_{\nu}}{\beta_{\nu}} + \frac{\sigma}{\beta_{\nu}} \right) + C \left(\Delta \omega_{1} - \frac{\Delta \omega_{\nu}}{\beta_{\nu}} \right) \right],$$
$$g = \frac{1}{4} C^{2} + \left(\frac{1}{2} C \frac{\Delta \omega_{\nu}}{\beta_{\nu}} + \frac{\sigma}{\beta_{\nu}} \right)^{2}, \quad a_{2} = \frac{1}{g} \left[\left(\Delta \omega_{1} \frac{\Delta \omega_{\nu}}{\beta_{\nu}} + 1 \right)^{2} + \left(\Delta \omega_{1} - \frac{\Delta \omega_{\nu}}{\beta_{\nu}} \right)^{2} - \frac{d^{2}}{\beta_{\nu}^{2}} \right],$$

$$|y_3| = |y_5|, \ |\varphi_1| \le \frac{\pi}{2}, \ |\varphi_3| \le \frac{\pi}{2}, \ tg\varphi_3 = \frac{\Delta\omega_1 - \frac{\Delta\omega_\nu}{\beta_\nu} + \frac{1}{2}Cy_5}{\Delta\omega_1 \frac{\Delta\omega_\nu}{\beta_\nu} + 1 + \left(\frac{1}{2}C\frac{\Delta\omega_\nu}{\beta_\nu} + \frac{\sigma}{\beta_\nu}\right)y_5},$$
(23)

$$|y_{1}| = \frac{1}{\sqrt{\beta_{\nu}^{2} + (\Delta \omega_{\nu})^{2}}} \sqrt{[d \cos \varphi_{\nu} - \sigma]y_{3} |\cos(\varphi_{3} - \varphi_{\nu})]^{2} + [d \sin \varphi_{\nu} + \sigma]y_{3} |\sin(\varphi_{3} - \varphi_{\nu})]^{2}},$$

$$tg\varphi_1 = \frac{d\sin\varphi_{\nu} + \sigma|y_3|\sin(\varphi_3 - \varphi_{\nu})}{-d\cos\varphi_{\nu} + \sigma|y_3|\cos(\varphi_3 - \varphi_{\nu})}, \ tg\varphi_{\nu} = -\frac{\Delta\omega_{\nu}}{\beta_{\nu}}.$$

Исследование на устойчивость этих точек показало, что они при σ = 0 устойчивы тогда и только тогда, когда

$$\sin(\varphi_1 - \varphi_3)\Delta \omega_1 > \frac{|y_1|^2 - 1}{|y_1|}$$
 (24)

В качестве примера на рис. 2 изображена зависимость суммы квадратов модулей амплитуд нестабильных спиновых колебаний $|y_5|$ от расстройки $\Delta \omega_1$ при $\sigma = 0$, рассчитанная с помощью (15), (17). Пунктиром отмечены неустойчивые стационарные точки.

расстройки системы, $tg\psi = -\frac{2}{C}$.

При $\Delta \omega_{v} = 0$ нетрудно получить из (14) выражение, связывающее модуль амплитуды электромагнитного колебания резонатора $|y_1|$, с амплитудой сторонних токов, возбуждающих резонатор

$$\left(\frac{d}{\beta_{\nu}}\right)^{2} = |y_{1}|^{2} + \left[1 + \frac{2\sigma}{C\beta_{\nu}}\left(-\Delta\omega_{1} + \sqrt{|y_{1}|^{2} - 1}\right)\right]^{2} - 1.$$
(25)

§ 6. Подпороговый режим модельной систем

Перейдем в (15) к действительным переменным

$$y_{1} = \rho_{1} \exp(i\varphi_{1}), \quad y_{3} = \rho_{3} \exp(i\varphi_{3}), \quad y_{5} = \rho_{3}\rho_{5} = |y_{3}|\rho_{5}, \quad (26)$$
$$y_{2} = \rho_{1} \exp(-i\varphi_{1}), \quad y_{4} = \rho_{3} \exp(-i\varphi_{3})$$

В новых переменных системах запишется

$$\frac{d\rho_{1}}{d\tau} = -\beta_{\nu}\rho_{1} + d\cos\varphi_{1} - \sigma\rho_{3}\cos(\varphi_{1} - \varphi_{3}),$$

$$\rho_{1}\frac{d\varphi_{1}}{d\tau} = \Delta\omega_{\nu}\rho_{1} - d\sin\varphi_{1} + \sigma\rho_{3}\sin(\varphi_{1} - \varphi_{3}),$$

$$\frac{d\rho_{3}}{d\tau} = \rho_{3}\left[-\beta + C_{1}\rho_{1}\rho_{5}\cos(\varphi_{1} - \varphi_{3})\right],$$

$$\frac{d\varphi_{3}}{d\tau} = \Omega + C_{1}\rho_{1}\rho_{5}\sin(\varphi_{1} - \varphi_{3}) + C_{2}\rho_{3}\rho_{5},$$

$$\frac{d\rho_{5}}{d\tau} = -(\alpha - \beta)\rho_{5} + 2C_{4}\rho_{1}\cos(\varphi_{1} - \varphi_{3} + \psi_{4}) + C_{5}\rho_{3} - C_{1}\rho_{1}\rho_{5}^{2}\cos(\varphi_{1} - \varphi_{3}).$$
(27)

Подпороговыми мы будем называть процессы, протекающие в системе при $\rho_3 = 0$. Полагая в (27)

$$\rho_3 = 0 \tag{28}$$

получим систему уравнений

$$\frac{d\rho_1}{d\tau} = -\beta_1\rho_1 + d\cos\varphi_1,$$

$$\rho_1 \frac{d\varphi_1}{d\tau} = \Delta\omega_v\rho_1 - d\sin\varphi_1,$$

$$\frac{d\rho_3}{d\tau} = 0,$$

$$\frac{d\varphi_3}{d\tau} = \Omega + C_1\rho_1\rho_5\sin(\varphi_1 - \varphi_3),$$

$$\frac{d\rho_5}{d\tau} = -(\alpha - \beta)\rho_5 + 2C_4\rho_1\cos(\varphi_1 - \varphi_3 + \psi_4) - C_1\rho_1\rho_5^2\cos(\varphi_1 - \varphi_3).$$
(29)

В нашу задачу входит исследование поведения этой системы. Поведение первых двух уравнений не зависит от остальных. Уравнения имеют единственную устойчивую стационарную точку

$$\widetilde{\rho}_{1} = \frac{d}{\sqrt{\beta_{\nu}^{2} - (\Delta \omega_{\nu})^{2}}}, \qquad tg \widetilde{\varphi}_{1} = \frac{\Delta \omega_{\nu}}{\beta_{\nu}}, \tag{30}$$

к которой при $\tilde{\tau} \rightarrow \infty$ стремятся все траектории системы.

Изучим теперь процессы, протекающие в системе, когда она находится в стационарной точке (30). В этом случае система записывается в виде

$$\frac{d\varphi_3}{d\tau} = \Omega + C_1 \tilde{\rho}_1 \rho_5 \sin(\tilde{\varphi}_1 - \varphi_3),$$

$$\frac{d\rho_5}{d\tau} = -(\alpha - \beta)\rho_5 + 2C_4 \tilde{\rho}_1 \cos(\tilde{\varphi}_1 - \varphi_3 + \psi_4) - C_1 \tilde{\rho}_1 \rho_5^2 \cos(\tilde{\varphi}_1 - \varphi_3),$$

$$\frac{d\rho_1}{d\tau} = 0, \quad \frac{d\varphi_1}{d\tau} = 0, \quad \frac{d\rho_3}{d\tau} = 0.$$
(31)

Для удобства исследования двух последних уравнений введем масштабную замену переменных

$$\rho_5 = r_0 r, \ \tilde{\tau} = t_0 \tilde{t}, \ \phi = \phi_3 - \tilde{\phi}_1, \ r_0 = \sqrt{\frac{2C_4}{C_1}}, \ t_0 = \frac{1}{\sqrt{2C_1C_4}} \ \tilde{\rho}_1$$
(32)

В новых переменных система запишется

$$\frac{dr}{d\tilde{t}} = -\mu r + \cos(\phi - \psi) - r^2 \cos\phi, \quad \mu = \frac{\alpha - \beta}{\sqrt{2C_1C_4}}, \quad \nu = \frac{\Omega}{\sqrt{2C_1C_4}} \qquad (33)$$
$$\frac{d\phi}{d\tilde{t}} = \nu - r\sin\phi.$$

Исследуем поведение этой системы, когда $\mu = 0, \ \psi = 0, \ \nu < 0.$

$$\frac{dr}{d\tilde{t}} = \cos\phi(1 - r^2), \qquad (34)$$
$$\frac{d\phi}{d\tilde{t}} = v - r\sin\phi.$$

Из (34) видно, что фазовые траектории симметричны относительно начала координат. При малых $\tilde{\rho}_1$, когда |v| > 1 $\left(\tilde{\rho}_1 < \frac{|\Omega|}{\sqrt{2C_1C_4}} \right)$, система является негрубой и имеет две и

только две стационарные точки типа центра

$$r = |v|, \quad \phi = -\frac{\pi}{2}; \qquad r = -|v|, \quad \phi = \frac{\pi}{2}.$$
 (35)

Прямые $r = \pm 1$ являются фазовыми траекториями нашей системы

$$\frac{dr}{d\phi} = \frac{\cos\phi(1-r^2)}{v - r\sin\phi}.$$
(36)

Прямые $\phi = -\frac{\pi}{2}$, $\phi = \frac{\pi}{2}$ являются изолиниями с горизонтальными касательными, а кривые $v - r \sin \phi = 0$ – изоклинами с вертикальными касательными. Фазовые траектории системы (36) рассчитываются по формуле

$$\sin \phi = v r + C \sqrt{1 - r^2}, \ r < 1;$$

$$\sin \phi = v r + C \sqrt{r^2 - 1}, \ r > 1,$$
(37)

где С – произвольная постоянная. На рис. 3 построены фазовые траектории системы.

Рис. 3. Фазовые траектории системы при v = -1,5.

Пунктиром проведены изоклины с горизонтальными и вертикальными касательными. С уменьшением параметра |v| стационарные точки смещаются по прямым $\phi = \pm \frac{\pi}{2}$, приближаясь к фазовым траекториям $r = \pm 1$. При $|v| = |v_{\kappa p}| = 1$ рождаются еще четыре стационарные точки (два устойчивых и два неустойчивых узла)

$$r = 1, \quad \phi_1 = -\arcsin v(ycmo \ddot{u}u b b \ddot{u} y s e n), \quad \phi_2 = \arcsin v - \pi(heycmo \ddot{u}u b b \ddot{u} y s e n);$$

(38)
$$r = -1, \quad \phi_3 = \arcsin v(heycmo \ddot{u}u b b \ddot{u} y s e n), \quad \phi_4 = \pi - \arcsin v(ycmo \ddot{u}u b b \ddot{u} y s e n).$$

Стационарные точки (35) теряют устойчивость и оказываются точками типа седла. При |v| < 1 система становится грубой. В качестве примера на рис. 4 построены фазовые траектории системы при v = 0. Жирными линиями выделены сепаратриссы. Пунктиром отмечены изоклины с горизонтальными и вертикальными касательными.

Рис. 4. Фазовые траектории системы при v = 0.

Интересно отметить, что порог возбуждения спиновых колебаний всегда выше критического значения параметра

$$|v_{\kappa p}| = 1$$
 $(\rho_{1 \kappa p.} < \rho_{1 nop.}, \rho_{1 \kappa p.} = \frac{|\Omega|}{\sqrt{2C_1C_4}}, \rho_{1 nop.} = \sqrt{\frac{\Omega^2 + \beta^2}{2C_1C_4}}).$

Это обстоятельство затрудняет экспериментальное изучение подпорогового поведения системы при |v| > 1, когда система за счет малых возмущающих членов может качественно менять свое поведение. При $\rho_1 > \rho_{1 \kappa p}$ система является грубой и картина подпороговых явлений не претерпевает качественного изменения при учете угла ψ и члена « - μr », если $|\psi| <<1$, $|\mu| <<1$.

Для выяснения вопроса о возможности аппроксимации нелинейных процессов в феррите с помощью рассматриваемой необходимо модели, провести экспериментальное исследование поведения феррита, помещенного в объемный резонатор, в переходном режиме. Исследование переходных процессов можно проводить как при импульсном перемагничивании образца, так и при воздействии на него высокочастотных импульсов. При этом необходимо обеспечить бо́льшую крутизну переднего и заднего фронта импульса, чем время затухания амплитуд колебаний. Сопоставление экспериментальных и теоретических данных позволит определить постоянные, входящие в (27), и оценить пределы применимости рассматриваемой системы.

19

§ 7. Зависимость ширины резонансной кривой спиновых волн от размера ферритовых зерен

В последние годы в технике СВЧ для работы на высоких уровнях мощности нашли применение ферриты с мелкозернистой структурой. Такие ферриты обладают повышенным значением пороговой мощности, начиная с которой наблюдается заметный рост нелинейных потерь, вносимых нестабильными спиновыми колебаниями. Некоторые общие закономерности поведения таких ферритов удается описать с помощью стационарного режима модельной системы. Однако ряд параметров, недоступных непосредственному вычислению, приходится брать из экспериментальных данных. В основном это касается параметров Ω , σ , C_2 , C_5 .

Заменим ферритовый образец совокупностью малых, одинаково ориентированных, однородных, намагниченных до насыщения, ферритовых сфероидов вращения с осью вращения, направленной вдоль постоянного магнитного поля. Пусть феррит расположен в области с однородным высокочастотным магнитным полем. Тогда уравнения (11) не изменяются за исключением коэффициента σ , который увеличивается в N раз, где N – число ферритовых сфероидов.

Пусть начало пороговых явлений отмечается при заданном отклонении закона роста амплитуды поля резонатора от линейного закона

$$S = -\left|y_{1 \text{ nop.}}\right|^2 + \left(\frac{d_{\text{nop.}}}{\beta_{\text{v}}}\right)^2.$$
(36)

Выражение (25) при $y_1 = y_{1nop.}$ записывается в виде

$$S = \left[1 + \frac{2\sigma}{C\beta_{\nu}} \left(-\Delta\omega_{1} + \sqrt{\left|y_{1 \text{ nop.}}\right|^{2} - 1}\right)\right]^{2} - 1.$$
(37)

Разрешая его относительно $|y_{1 nop.}|^2$, получим

$$\left|y_{1 \text{ nop.}}\right|^{2} = 1 + \left[\Delta\omega_{1} + \frac{C\beta_{\nu}}{2\sigma}\left(\sqrt{1+S} - 1\right)\right]^{2}.$$
(38)

Подставляя (38) в (36) будем иметь

$$\left(\frac{d_{nop.}}{\beta_{v}}\right)^{2} = 1 + S + \left[\Delta\omega_{1} + \frac{C\beta_{v}}{2\sigma}\left(\sqrt{1+S} - 1\right)\right]^{2}.$$
(39)

Из выражения (39) видно, что S = 0 («идеальная чувствительность установки для

измерения ширины резонансной кривой нестабильного спинового колебания ΔH_k ») минимальная пороговая амплитуда источников, возбуждающих резонатор, имеет место

при
$$\Delta \omega_1 = 0$$
, когда $\frac{d_{nop.ucm}}{\beta_v} = 1$. Поскольку $d_{nop.} \sim \Delta H_k$, а $d_{nop.ucm.} \sim \Delta H_{k.ucm.}$, формулу

(39) можно записать в виде

$$\left(\frac{\Delta H_k}{\Delta H_k \, ucm.}\right)^2 = 1 + S + \left[\Delta \omega_1 + \frac{C\beta_v}{2\sigma} \left(\sqrt{1+S} - 1\right)\right]^2.$$
(40)

Преобразуя ее, получим окончательно

$$\frac{\Delta H_k}{\Delta H_k \, ucm.} \cdot \frac{1}{\sqrt{1+S}} = \sqrt{1+(\Delta \Omega)^2}, \qquad \Delta \Omega = \frac{\Delta \omega_1}{\sqrt{1+S}} + \frac{C\beta_v}{2\sigma} \left(1 - \frac{1}{\sqrt{1+S}}\right). \tag{41}$$

На рис. 5 построена зависимость $\frac{\Delta H_k}{\Delta H_{k \text{ ucm.}}} \cdot \frac{1}{\sqrt{1+S}}$ от $\Delta \Omega$.. Пунктиром проведена

асимптота к этой кривой.

Величина ΔΩ зависит от параметров ферритового материала и геометрии электродинамической системы. В ряде случаев зависимость ΔΩ от размера ферритовых зерен удовлетворительно описывается выражением

$$\Delta \Omega = \begin{cases} 0, npu \ l_3 > l_{3 \ \kappa p}, \\ g \ln \frac{l_{3 \ \kappa p.}}{l_3}, npu \ l_3 < l_{3 \ \kappa p} \end{cases}$$
(42)

В качестве примера на рис. 6 приведена зависимость приращения ширины резонансной кривой нестабильного спинового колебания от размера зерна (сплошные линии), рассчитанная по формуле

$$\frac{\Delta H_k(l_3)}{\Delta H|_{l_3=8,9\mu}} = \sqrt{1 + \left[\Delta \Omega(l_3)\right]^2},$$

где величина $\Delta\Omega(l_3)$ вычислялась с помощью формулы (42), а параметры $\Delta\Omega$, $l_{3 \kappa p.}$ определялись из экспериментально снятых зависимостей $\Delta H_k = \Delta H_k(l_3)$ (пунктирные линии). Экспериментальные кривые любезно предоставлены нам А. И. Образцовым, М. А. Харинской и А. Н. Пузаковым.

Рис. 6. Зависимость ширины резонансной кривой спиновой волны от размера зерна.

Из рисунка видно, что развитая теория в состоянии описать зависимость порогового поля от размера зерна, наблюдаемую у мелкозернистых ферритов.

Следует отметить, что развитая теория, описывающая запороговое поведение

мелкозернистых ферритов, легко обобщается на случай, когда параметры ферритовых зерен различны, учитывается поле анизотропии, а феррит расположен в области неоднородного постоянного высокочастотного магнитного поля с произвольной поляризацией.

§ 8. Заключение

В заключение перечислим основные результаты, полученные в настоящей работе:

- 1. Построена математическая модель коллектива спиновых колебаний. Она описывает не только стационарный режим, но и переходные процессы в системе.
- 2. Вычислены установившиеся значения амплитуды электромагнитного колебания резонатора и суммы квадратов амплитуд спиновых колебаний.
- 3. Построена теория, позволяющая изучать особенности запорогового поведения мелкозернистых ферритов.

Литература

Л. В. Китаев. ФТТ, 10, 3385, 1968.

А. М. Молчанов. Об одной теореме А. Я. Хинчина (Препринт). ИПМ АН СССР. М. 1968.

Электронную версию препринта подготовили:

Т. И. Грохлина, Н. М. Панкратова, И. В. Флоринский (Институт математических проблем биологии РАН)

Редактирование не проводилось (за исключением опечаток)

Проект «Электронные ИПМ-препринты А. М. Молчанова» Координатор проекта: И. В. Флоринский iflorinsky@yahoo.ca

> Пущино 2012