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Abstract. The paper describes our attempts to design an animat control system 
(the Animat Brain) on the basis of the Petr K. Anokhin's theory of functional 
systems. This biological theory proposes general schemes and regulatory 
principles of animal purposeful adaptive behavior. The Animat Brain is aimed 
at controlling adaptive behavior of an animat that has several natural needs 
(energy replenishment, safety, reproduction). The animat control system 
consists of a set of hierarchically linked functional systems and enables 
predictive and purposeful behavior. The paper describes: 1) the first version of 
the Animat Brain that is based on adaptive critic designs (ACDs), 2) results of 
computer simulations of these ACDs, 3) the second version of the Animat 
Brain, in which every functional system consists of two neural networks: 
controller and model. The controllers are intended to form chains of actions and 
the models are intended to predict futures events. 

1   Introduction 

In this paper we outline our attempts to design an animat control system (the 
Animat Brain) on the basis of the biological theory of functional systems. This theory 
was proposed and developed in the period 1930-1970s by Russian neurophysiologist 



Petr K. Anokhin [1] and provides general schemes and regulatory principles of 
purposeful adaptive behavior in biological organisms.  

In the first version of the Animat Brain, we use the reinforcement learning 
approach [2], namely, we propose animat control system on the base of adaptive critic 
designs (ACDs) [3-5]. ACDs are intelligent schemes that can be used as control 
systems of self-learning agents. 

In order to analyze the possibilities to use an ACD as a functional system (FS), we 
simulated evolution of population of agents that have the ACD based control system. 
We revealed several interesting features of the ACD that are due to interaction 
between learning and evolution in agent populations. In particular, we revealed that 
ACD operation can be evolutionary unstable. In order to overcome this problem, we 
propose the second (more biologically plausible) version of the Animat Brain 
architecture, in which a FS consists of two neural network (NN) blocks: the model 
and the controller. The model NN is dedicated to predict future states; the controller 
NN is intended to form animat actions.  

The paper is organized as follows. Section 2 outlines Anokhin’s theory of 
functional systems. The first version of the Animat Brain architecture that is based on 
ACD is described shortly in Section 3.  Section 4 is an overview of simulations on 
evolving population of ACD based agents. Section 5 describes the second version of 
the Animat Brain.  Section 6 concludes the paper. 

2   Anokhin’s Theory of Functional Systems  

The project “Animat Brain” is based on neurophysiological theory of functional 
systems [1]. Functional systems were put forward by Petr K. Anokhin in the 1930s as 
an alternative to the predominant concept of reflexes. Contrary to reflexes, the 
endpoints of functional systems are not actions themselves but adaptive results of 
these actions. Initiation of each behavior is preceded by the stage of afferent synthesis 
(Fig. 1). It involves integration of neural information from a) dominant motivation 
(e.g., hunger), b) environment (including contextual and conditioned stimuli), and c) 
memory (including innate knowledge and individual experience). The afferent 
synthesis ends with decision making, which results in selection of a particular action.  

A specific neural module, acceptor of the action result, is being formed before the 
action itself. The acceptor stores an anticipatory model of the required result of a 
goal-directed action. Such model is based on a distributed neural assembly that 
includes various parameters (i.e., proprioreceptive, visual, auditory, olfactory) of the 
expected result. It should be noted that performance of the acceptor of the action 
result is similar to sensorial anticipations in modern theories of anticipatory adaptive 
behavior [6]. Execution of every action is accompanied by a backward afferentation. 
If parameters of the actual result are different from the predicted parameters stored in 
the acceptor of action result, a new afferent synthesis is initiated. In this case, all 
operations of the functional system are repeated until the final desired result is 
achieved. 
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Fig. 1. General architecture of a functional system. SA is starting afferentation, CA is 
contextual afferentation. Operation of the functional system includes: 1) preparation for 
decision making (afferent synthesis), 2) decision making (selection of an action), 3) prognosis 
of the action result (generation of acceptor of action result), 4) backward afferentation 
(comparison between the result of action and the prognosis) 

3   First Version of Animat Brain Architecture: ACD Based 
Hierarchical Control System 

This section includes a short description of the first version of the Animat Brain 
architecture [7] that is based on a simple scheme of ACD. We suppose that animat 
control system is a set of hierarchically organized formal FSs; any FS is an ACD. The 
formal FS includes the following important features of its biological prototype: a) 
prognosis of the action result, b) decision making, c) comparison of the prognosis and 
the result, and d) correction of prognosis mechanism. 

The considered ACD consists of two NNs: model NN and critic NN and serves to 
select one from several actions. For example, for movement control the actions can be 
move forward, turn left, turn right. The animat in any moment t should select one of 
these actions, t = 0,1,2,… 

The ACD operation is intended to maximize utility function U(t) [2]: 
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where r(t) is a particular reinforcement (reward, r(t) > 0, or punishment, r(t) < 0) 
obtained by the ACD at the moment t, and γ is the discount factor (0 < γ < 1).  



The role of the model is to make predictions of the next state for all possible 
actions ai, i = 1,2,…,na.  

The critic is intended to estimate the state value function V(S) [2] for the current 
state S(t) and next state predictions Spr

i(t+1) for all possible actions. The values V are 
estimates of the utility function U. Actions are selected on the base of these 
estimations by means of ε-greedy rule [2] that enables preference of actions 
corresponding to large values V(Spr

i(t+1)).  
The model is learnt by means of back-propagation algorithm [8]; the critic is learnt 

by means of temporal-difference method [2]. 
More detailed description of the ACD operation is given in the next section for the 

particular type of the adaptive critic. 
The animat control system is a hierarchically linked set of FSs. The highest level 

of the hierarchy corresponds to the main animat needs such as energy replenishment, 
safety, reproduction. Lower levels correspond to tactical goals and sub-goals of 
behavior. It is supposed that any time moment only one FS is active. 

Some FS actions are commands for effectors (real actions); another type of actions 
is control commands. Control commands are intended to transfer activity from one FS 
to another; these commands can be delivered from high levels to low levels and 
returned back.  

The more detailed description of ACD based architecture of the Animat Brain is 
given in [7].  

In order to analyze what could be features of the ACDs in such architecture, we 
simulated evolution of population of simple agents that have the ACD based control 
system [9]. The main results of simulations are described in the next section. 

4.   Simulation of Evolving Population of ACD Based Agents  

4.1   Description of the Adaptive Agent Model 

Agent Task. We consider an example of very simple agents, namely, agent-brokers 
and analyze adaptive features of these agents. In order to check the stability features 
of agents with respect to random variations of ACD neural network synaptic weights, 
we investigate evolutionary processes in populations of ACD agents. 

We suppose that any agent-broker has a capital C(t) that is distributed into cash 
and stocks. The fraction of stocks in the net capital of the agent is equal to u(t). The 
environment is determined by the time series X(t), t = 1,2,…, where X(t) is the stock 
price at the moment t. The goal of the agent is to increase its capital C(t) by changing 
the value u(t). The capital dynamics is [10]: 

С(t+1) = С(t) [1 + u(t+1) ∆X(t+1) / X(t)] ,   (2) 

where ∆X(t+1) = X(t+1) – X(t). For convenience, we use the logarithmic scale for the 
agent resource, R(t) = log C(t) [11]. The current agent reward r(t) is defined by the 
expression: r(t) = R(t+1) – R(t): 



r(t) = log [1 + u(t+1) ∆X(t+1) / X(t)] . (3) 

For simplicity, we assume that the variable u(t) takes only two values, 0 or 1. The 
value u(t+1) characterizes two possible agent actions: 1) transform all capital into 
cash, u(t+1) = 0; 2)  transform all capital into stock, u(t+1) = 1.  

 
Agent Control System. The agent control system is an ACD that consists of two 
NNs: model and critic (see Fig. 2). Assuming |∆X| << |X|, we set that the ACD state 
S(t) at moment t is characterized by two values, ∆X(t) and u(t): S(t) = {∆X(t), u(t)}.  
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Fig. 2. The scheme of the ACD. The model predicts changes of the time series. The critic (the 
same NN is shown in two consecutive time moments) forms the state value function V(S) for 
the current state S(t) = {∆X(t), u(t)}, the next state S(t+1) = {∆X(t+1), u(t+1)}, and its 
predictions Spr

u(t+1) = {∆Xpr (t+1), u} for two possible actions, u = 0 or u = 1 

The model predicts changes of the stock time series. The model output ∆Xpr(t+1) is 
based on m previous values of ΔX: ΔX(t-m+1),…,ΔX(t), which are used as the model 
inputs. The model is implemented as a multilayer perceptron (MLP) with one hidden 
layer of tanh nodes and linear output. The critic is intended to estimate the state value 
function V(S). The values V approximate the utility function U in (1) for given states. 
The critic is also a MLP of the same structure as the model.  

ACD operation is as follows. At any moment t, the following operations are 
performed: 

1) The model predicts the next change of the time series ∆Xpr(t+1).   
2) The critic estimates the state value function for the current state V(t) = V(S(t)) 

and the predicted states for both possible actions Vpr
u(t+1) = V(Spr

u(t+1)), where 
Spr

u(t+1) = {∆Xpr (t+1), u}; u = u(t+1),  u = 0 corresponds to the action “transform all 
capital into cash”,   u = 1 corresponds to the action “transform all capital into stock”. 

3) The ε-greedy rule is applied [2]: with the probability 1 - ε the action 
corresponding to the maximum value Vpr

u(t+1) is selected, and the alternative action 
is selected with the probability ε (0 < ε << 1).  

4) The selected action (u(t+1) = 0 or u(t+1) = 1) is carried out. The transition to the 
next time moment t+1 occurs. The current reward r(t) is calculated in accordance with 



(3) and received by ACD. The value ∆X(t+1) is observed and compared with its 
prediction ∆Xpr(t+1). The NN weights of the model are adjusted to minimize the 
prediction error using the error backpropagation [8] with αM as the model learning 
rate.  

5) The critic computes V(t+1). The temporal-difference error is calculated [2]: 

δ(t)  = r(t) + γ V (t+1) – V (t) .   (4) 

6) The weights of the critic NN are adjusted to minimize the temporal-difference 
error (4) using its backpropagation and the gradient descent with αC as the critic 
learning rate. Such learning is dedicated to increase accuracy of approximation of 
utility function (1) for given states by means of the critic NN. 

 
Scheme of Evolution. We consider an evolving population that consists of n agents. 
Each agent has a resource R(t) that changes in accordance with values of agent 
rewards: R(t+1) = R(t) + r(t), where r(t) is calculated in (3). At the beginning of any 
generation, initial resource of all agents is equal to zero. 

Evolution passes through a number of generations, ng = 1,2,… The duration of 
each generation is T time steps. At the end of each generation, the agent having the 
maximum resource Rmax(ng) is determined. This best agent gives birth to n children 
that constitute a new (ng+1)-th generation. The initial synaptic weights of both NNs 
(the model and the critic) form the agent genome G. The genome G does not change 
during agent life; it is transferred (with small mutations) from the parent to 
offsprings. Temporary synaptic weights of the NNs W are changed during agent life 
via learning. At the beginning of (ng+1)-th generation, we set for each newborn agent 
G(ng+1) = Gbest(ng) + mutations, W0(ng+1) = G(ng+1). A normally distributed 
random value with zero mean and standard deviation Pmut is added to each synaptic 
weight at mutations.  

4.2 Results of Simulations   

General Characteristics of Evolving Agent Population. The described model was 
investigated by means of computer simulations. We used two examples of model time 
series:  
1) sinusoid:  

 X(t) = 0.5[1 + sin(2πt/20)] +1 ,  (5) 

2) stochastic time series from [10, Example 2]:  

X(t) = exp[p(t)/1200] ,   p(t) = p(t-1) + β(t-1) + k λ(t) ,  β(t) = αβ(t-1) + γ(t) ,  (6) 

where λ(t) and γ(t) are two random normal processes with zero mean and unit 
variance, α = 0.9, k = 0.3. 

The parameters of simulation were as follows. For all simulations we set: γ  = 0.9, 
ε = 0.05, Pmut = 0.1; m = 10, αM = αC = 0.01, NhM = NhC = 10, where NhM and NhC  are 
numbers of hidden neurons of the model and critic. Parameters n and T were set to 
different values, depending on the simulation, as specified below.  



We analyze the following cases: 1) case L (pure learning); in this case we consider 
a single agent that learns by means of temporal difference method; 2) case E (pure 
evolution), i.e., evolving population without learning; 3) case LE, i.e., learning 
combined with evolution, as described above. 

We compare the agent resource values attained during 200 time steps for these 
three cases of adaptation. For the cases E and LE, we set T = 200 (T is generation 
duration) and record the maximal value of agent resource in a population Rmax(ng) at 
the end of each generation. For the case L, we have just one agent whose resource is 
reset R(T(ng-1)+1) = 0 after the passing of every T = 200 time steps; the index ng is 
incremented by one after every T time steps, i.e., Rmax(ng) = R(Tng).  

The plots Rmax vs. ng  for the sinusoid (5) are shown in Fig. 3. In order to exclude 
the decrease of the value Rmax(ng) due to the random choice of actions when applying 
the ε-greedy rule for the cases LE and L, we set ε = 0 after ng = 100 for the case LE 
and after ng = 2000 for the case L.  
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Fig. 3. The plots of Rmax(ng) for the sinusoid (5). The curves LE, E and L correspond to the 
cases of learning combined with evolution, pure evolution and pure learning, respectively.  
Each point of the plots represents the average over 1000 simulations. For LE and E cases n = 
10, T = 200. See the text for details 

According to (3), there is obvious optimal policy of behavior for our simple 
agents: transform all capital into stock/cash when stock price rises/falls. Analysis of 
agent behavior demonstrates that both pure evolution (the case E) and learning 
combined with evolution (the case LE) are able to find the optimal policy. With this 
policy, the agent attains asymptotic value Rmax = 6.5 (see Fig. 3). For the pure 
learning (the case L) the optimal policy is not found, the asymptotic value of Rmax is 
only 5.4. Analysis reveals that the pure learning is able to find only the following 
satisfactory policy. The agent buys stocks when stock price rises (or falls by a small 
amount) and sells stocks when stock price falls significantly – the agent obviously 
prefers to keep the capital in stocks. 



However, searching for the optimal policy by means of pure evolution is slower 
than when combining learning with evolution, as becomes apparent when examining 
the curves E and LE in Fig. 3. So, while learning in our model is not optimal by itself, 
it helps evolution to find better policies faster. 

 
Baldwin Effect.  The role of learning in evolving agent populations can be observed 
as the Baldwin effect [12,13], or the genetic assimilation of initially learned features 
during Darwinian evolution. This effect is found in number of computer experiments, 
one of which is shown in Fig. 4. 

We examine how the best agent resource Rmax(t) changes during the first five 
generations for the sinusoid time series (5). Fig. 4 shows that during the early 
generations (generations 1 and 2), any significant increase of the agent resource 
begins only after a lag of 100 to 300 time steps. The best agent optimizes its policy by 
learning. Subsequently, the best agents find an advantageous policy faster and faster.  
By the fifth generation, a newborn agent "knows" a decent policy because it is 
encoded in its genome G, and the learning does not improve the policy significantly.  
Thus, Fig. 4 demonstrates that the initially learned policy becomes inherited (the 
Baldwin effect). 
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Fig. 4. The plots of the resource Rmax(t) of the best agent in the population for the first five 
generations. This is the case of learning combined with evolution on the sinusoid time series; n 
= 10, T = 1000. The ends of generations are shown by vertical lines. During the early 
generations (generations 1 and 2), there is an obvious delay in the increase of the agent 
resource. An advantageous policy is found only after some learning period during first 100 to 
300 time steps. By the fifth generation, the rapid increase of the resource begins at the start of 
the generation, demonstrating that the advantageous policy has become inherited 

Peculiarities of Model Prediction. ACD control system includes a model NN for 
predicting the next change ∆X(t+1) of the time series (Fig. 2). We analyzed the 
operation of the model NN in evolving agent population and revealed a very 
interesting feature. The model NN can produce incorrect predictions, yet the agent 
can still use these predictions to select appropriate actions. For example, Fig. 5 
demonstrates that the predictions ∆Xpr(t+1) approximately corresponds to real 
changes, but differs from ∆X(t+1) in both sign and scale. Detailed analysis of selected 
actions shows that these predictions ensure actually optimal agent policy. 

We believe that these peculiarities of model NN performance are mainly due to the 
dominant role of evolution over learning for the optimization of agent control systems 



and evolutionary modification of ACD operation mode. The ACD operation does not 
correspond to “correct” mode described in subsection “Agent Control System”, 
however this operation is useful. Such a modification of operation mode seems to 
favor agent control systems that are evolutionary stable. 

We can note that the observed spontaneous amplification of ∆Xpr by the model NN 
seems to be helpful to achieve stable operation of the critic NN because the real 
values ∆X(t+1) are too small (on the order of 0.001). For the cases E and LE we 
observed similar amplification of values ∆Xpr(t+1) as compared with real values 
∆X(t+1) in all simulations for given set of parameters. The reverse in sign of 
∆Xpr(t+1) with respect to ∆X(t+1) was observed in approximately 50% of computer 
experiments. 
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Fig. 5. The plots of predicted ∆Xpr(t+1) (dotted line) and real values ∆X(t+1) (solid line). This 
is the case of learning combined with evolution on the stochastic time series; n = 10, T = 200.  
The curves ∆Xpr(t+1) and ∆X(t+1) differ in both scale and sign 

Comparison with Searching Behavior of Simple Animals. For the case of 
evolution alone, an interesting type of behavior is observed in the first stages of 
evolution. The agent has a rough policy that reflects only general features of changing 
environment (Fig. 6). The agent buys/sells stocks when the stock rises/falls 
significantly, and it ignores small and short-term variations of the stock price. There 
exists inertia in switching between two tactics of behavior (sell stocks and buy 
stocks). This inertial behavior is very similar to foraging tactics in some animals, e.g. 
caddis fly larvae [14]; it helps an animal to react adaptively to only general large-
scale patterns in environment. 

 
Conclusion from ACD Simulations. Thus, the investigation of simple ACD based 
agents demonstrates that there are certain difficulties in designing evolutionary stable 
NN animat control systems using ACD. The main problem is: evolution reorganizes 
ACD performance, namely, evolutionary stable agent control systems can be found, 
but such control systems do not operate as correct ACD (e.g. see subsection 
“Peculiarities of Model Prediction”). In order to overcome these difficulties, in the 



next section we propose another structure of functional systems which is more 
biologically plausible. 
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Fig. 6. Time dependence of action selection u(t) for the best agent in the population (solid line) 
during the first stages of evolution (without learning).  Time series X(t) is also shown (dashed 
line). n = 100, T = 200. The agent has a rough policy that reflects only general features of 
changing environment 

5.   Second Version of Animat Brain Architecture 

This version of Animat Brain also includes a set of NN based formal functional 
systems (FSs). As in previous version, we suppose that the highest level of animat 
control system hierarchy corresponds to the main animat needs (energy 
replenishment, safety, reproduction). FSs of lower levels correspond to tactical goals 
and sub-goals of behavior and have no rigid hierarchy. It is supposed that at any time 
moment, only one FS is active, in which the current action is formed. The animat 
receives reinforcements (rewards and punishments) which are related to animat 
needs.  

Each FS consists of two NNs: the controller and the model. At any time moment t 
(t = 1,2,…), the operation of the active FS can be described as follows. The state 
vector S(t) characterizing the current external and internal environment is fed to the 
FS input. The controller forms the action A(t) in accordance with given state S(t), i.e. 
the controller forms the mapping S(t) -> A(t). Some actions A(t) are commands onto 
effectors (actual actions), another actions are activation commands for other FSs. The 
model predicts the next state for given vectors S(t) and A(t), i.e. the model forms the 
mapping {S(t), A(t)} -> Spr(t+1). The mappings S(t) -> A(t) and {S(t), A(t)} -> 
Spr(t+1) are stored in NN synaptic weights. The activation commands are delivered 
from one FS to others in accordance with connectivity matrix Cij , the value Cij 
characterizes the probability that j-th FS is activated by i-th FS. 

It is supposed that there are primary and secondary repertoires of behaviors. The 
primary repertoire is formed by evolution: there is a population of animats and 
synaptic weights of controller and model NNs, connectivity matrix Cij , as well as a 



set of FSs are adjusted during evolutionary processes similar to those of described in 
the previous section. 

The secondary repertoire of behavior is formed by learning. There are two regimes 
of learning: 1) the extraordinary mode and 2) the fine tuning mode.  

The extraordinary mode is a rough search of behavior that is adequate to the 
current situation. This mode comes, if the predicted state Spr(t+1) in the active FS 
strongly differs from the real state S(t+1). In terms of the functional system theory 
(Section 2, Fig. 1), large difference between Spr(t+1) and S(t+1) means that 
parameters of result differ essentially from parameters stored in acceptor of action 
results.  

In the extraordinary mode, a random search for new behaviors takes place; namely, 
the connectivity matrix Cij is substantially changed, new FSs are randomly generated 
and selected. This mode is similar to neural group selection in the Edelman’s theory 
of Neural Darwinism [15]. 

In the fine tuning mode, learning is adjustment of NN synaptic weights in the FS 
that is active at the current moment of time and in the FSs that were active in some 
previous steps of time. As synaptic weights are updated in those NNs, which were 
active in previous time steps, this learning mode allows forming chains of 
consecutive actions. Synaptic weights of model NNs are modified to minimize 
prediction errors (e.g. by means of error back-propagation [8]). Synaptic weights of 
controller NNs are adjusted by Hebbian-like rule: the synaptic weights in controllers 
are modified to make the mappings S(t) -> A(t) more strong/weak at positive/negative 
reinforcements. 

 
We began computer simulations of a simple particular variant of the second 

version of the Animat Brain assuming two animat needs (safety and energy 
replenishment) and simple cellular environment. 

6.   Conclusion 

Thus, we reviewed Animat Brain architectures that are based on the functional 
systems (FSs) theory. In the first version of the Animat Brain we tried to use the 
reinforcement learning approach [2], namely we used adaptive critic design (ACD) 
based FSs. However, simulation of ACD agents demonstrates that correct ACD 
operation can be evolutionary unstable: evolution reorganizes ACD operation in some 
sophisticated manner. So, now we are developing more biologically plausible Animat 
Brain architecture, which is based on the FS that consists of the model NN and the 
controller NN. The controller NNs are intended to form chains of actions and the 
model NNs are intended to predict future events. In the case of unexpected events, 
considerable learning takes place and animat behavior is reorganized. We intend to 
find conditions in which predictions of future events (formed by model NNs) and 
generations of chains actions (formed by controller NNs) are consistent with each 
other. 
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