ISSN 0361-7688, Programming and Computer Software, 2018, Vol. 44, No. 4, pp. 225—232. © Pleiades Publishing, Ltd., 2018.
Original Russian Text © B.Kh. Barladian, A.G. Voloboy, V.A. Galaktionov, L.Z. Shapiro, 2018, published in Programmirovanie, 2018, Vol. 44, No. 4.

Integration of Realistic Computer Graphics into Computer-Aided
Design and Product Lifecycle Management Systems

B. Kh. Barladian“*, A. G. Voloboy*~**, V. A. Galaktionov****, and L. Z. Shapiro®****
“Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Moscow, 125047 Russia
*e-mail: bbarladian @gmail.com
**e-mail: voloboy @gin.keldysh.ru
***e_mail: vigal @gin.keldysh.ru
***%e-mail: pls@gin.keldysh.ru
Received March 15, 2018

Abstract—Various approaches to the integration of realistic image rendering and lighting simulation into
computer-aided design systems are considered. An approach that ensures the effective integration of existing
realistic image rendering systems into a CAD system is proposed. This approach makes it possible to utilize
ready-to-use modules of a realistic image generation system, including the computation kernel and user inter-
face modules. Synchronization of the executable modules of the basic and embedded systems is described.
The proposed approaches and solutions were implemented in a project of integrating the lighting simulation
and realistic image generation system Inspirer2 with the CAD CATIA.

Keywords: CAD, PLM, realistic image rendering, lighting simulation, integrated systems

DOI: 10.1134/50361768818040047

1. INTRODUCTION

All modern manufactures use product lifecycle
management (PLM) technologies for the design,
manufacture, and maintenance of complex engineer-
ing products. These technologies support the manage-
ment of the whole bulk of data concerning the product
and related processes during its entire lifecycle, begin-
ning from its design through manufacture, mainte-
nance, and removal from service. The information
about the product is stored in a PLM system; this
information forms a digital model of the product. In
such systems, the geometric model of the product is
typically created using a CAD system. An important
part of CAD is the computer-aided engineering (CAE)
subsystem. In the architecture and design of various
optical systems, the CAE system should simulate the
light propagation in various media. This allows one to
obtain optical characteristics of objects and products,
such as illuminance, luminance in a given direction,
visibility, and legibility of devices and displays already
at design stage. The lighting simulation also makes it
possible to generate physically correct realistic images
of objects, including placing them into real images for
the visual assessment of the final product (the aug-
mented reality technology).

Presently, a large number of realistic graphics and
optical simulation computer programs are available;
these are Maxwell renderer, V-Ray, Mental Ray,

SPEOS, ASAP, LightTools, ZEMAX, and Inspirer2.
However, the independent use of such programs in the
manufacturing process is limited. This is explained by
two main factors—the need to import data concerning
the product from the CAD system (during this pro-
cess, some data can be lost or corrupted), and the need
to teach engineers to work with one more system.

For this reason, in order to be used effectively,
lighting simulation systems should be integrated into
CAD and PLM systems. The integration should
ensure a smooth interaction with the basic CAD sys-
tem in which the geometry of objects is designed and
their characteristics are stored. Ideally, the product
designer should be able to use the optical simulation
and realistic rendering module as a part of his (her)
CAD system that automatically utilizes the geometry
created in the CAD system and the attributes that must
be used for simulation. The lighting simulation mod-
ule must automatically take into account the changes
in the geometry and attributes that can be made at var-
ious stages of design. Without such an effective inte-
gration, the designers will not use the program, except
for critical cases in which the optical simulation can-
not be avoided.

A widely used CAD system in aerospace and auto-
motive industries is CATIA [1]. In the fields of archi-
tectural and interior design the most popular CAD is
Autodesk 3DS Max [2]. For this reason, we decided to

225

226 BARLADIAN et al.

(b)

Fig. 1. Realistic images of interiors produced by the mod-
ule Insight in 3DS Max.

integrate our lighting simulation and realistic com-
puter graphics program Inspirer2 with CATIA (under
the name Lumicept/CA) and with 3DS Max (under
the name Insight).

2. VARIOUS VERSIONS OF INTEGRATING
THE LIGHTING SIMULATION
MODULE WITH CAD

The implementation of the simulation and realistic
computer graphics module in a CAD system is a diffi-
cult task. Attempts at such integration were made by
Discreet (Lightscape), Mental Images, and Chaos
Group (VRay) [3] for 3DS Max. In KOMPAS, the
design of units of optical devices is automated [4], but
no simulation is available. The company OPTIS
developed an embedded lighting simulation module
for CATIA—SPEOS CAA V5 Based [5] and for Solid-
Works [6]. The company Mental Images integrated its
lighting simulation program with 3DS MAX, Maya,
and CATIA (PhotoStudio).

PROGRAMMING AND COMPUTER SOFTWARE

The integration of an earlier created lighting simu-
lation program with a CAD system allows one to spec-
ify a detailed digital model of the scene to be rendered.
Modern models include hundreds of thousand or even
millions of objects, and they cannot be created with-
out sophisticated mechanisms proposed by CADs.
The integration modules for 3DS Max and CATIA
developed by the authors of this paper allow us to gen-
erate realistic images for various materials and lighting
conditions and to perform the engineering analysis of
lighting and optical design. Examples of the realistic
images produced by the Insight module for large
scenes created in 3DS Max with a large number of
components are shown in Figs. 1a and 1b.

A specific version of the integration of Inspirer2
with CATIA was proposed in [7]. A part of data is
stored in CATIA (geometry) and the other part (attri-
butes, light sources, and auxiliary parameters) in
Inspirer2. Effectively, this solution is a geometry con-
verter from internal CATIA format to the Inspirer2
format, where the realistic image is generated (Fig. 2).
However, a feature of this approach to integration is
that only the geometry that was modified in the basic
system (CATIA) could be updated. In this situation,
the entire set of data specified in Inspirer2 for the orig-
inal geometry, which contains the optical properties of
surfaces and spaces characteristics of light sources,
etc., is stored. To this end, the CATIA data model was
extended to enable it to store additional data. This
approach considerably facilitated the user work on
modifying the geometry, but it did not solve the main
integration task because the user still had to work in
two systems with different interfaces.

The direct and complete integration into a CAD sys-
tem requires at least reprogramming of the entire user
interface of the optical simulation system using the cor-
responding software development tools provided by the
basic system. For CATIA V5, this is the Rapid Applica-
tion Development Environment (RADE). In fact, such
a direct approach also requires some parts of the kernel
to be reprogrammed because RADE imposes certain
restrictions on the objects stored in the system, the
rules for their interaction, data storage, etc. Such an
approach to integration can be implemented at rea-
sonable cost only for relatively simple models of light
sources and optical properties of surfaces and media in
which the light propagates. An implementation of this
approach in 3DS Max and CATIA is described in [7, 8].

The approach of direct integration of the optical
simulation system into a CAD system gives users min-
imal functional capabilities, but it has two significant
drawbacks.

1. High cost of implementation—several man years
for the implementation of the minimal set of func-
tional capabilities.

2. The effort needed to reprogram and debug the
interface for complex models of light sources and opti-
cal properties of surfaces and media in which the light
Vol. 44

No. 4 2018

INTEGRATION OF REALISTIC COMPUTER

227

P
[

o
o|
I
o
4
3
o
)
%

Fig. 2. The initial version of integration of Inspirer2 with CATIA: only the object geometry is passed from CAD.

propagates is so high that the implementation cannot
be completed in a reasonable amount of time. The cost
of implementation of sophisticated visualization algo-
rithms, such as visualization of light propagation in an
optical system using ray tracing, is also very high.

Due to these reasons, we decided to develop an
effective and flexible integration scheme. The main
requirements for the creation of an integrated system
are as follows.

(1) The maximally possible use of parts of the exist-
ing and debugged lighting simulation and realistic
image generation. In addition to the system kernel, it
is desired to use some specific and difficult to imple-
ment modules of the user interface. This can save the
development time and preserve the familiar user inter-
face.

(2) The integrated system should be perceived by
the user as a unified system; i.e., all the data needed for
simulation, such as geometry and attributes, should be
stored in the CAD system. The response time to mod-
ifications of geometry, attributes, and parameters
should be minimized.

If these two requirements are satisfied, then the
user-friendly integrated system can be developed in a
reasonable amount of time. The satisfaction of these
requirements also simplifies the support and extension
of the system during its lifecycle.

3. THE OPTICAL SIMULATION MODULE

The optical simulation system Inspirer2 [9] devel-
oped in the Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences and based on the physi-
cally correct simulation of light propagation can pro-
duce realistic images taking into account various com-
plex physical effects. The perception of generated
images is close to the perception of photos of real
objects. Such images are widely used in architectural

PROGRAMMING AND COMPUTER SOFTWARE Vol. 44

design, urban development, landscape design, and in
automotive and aviation industries. The system takes
into account such intricate optical effects as light scat-
tering from rough surfaces and regular surface
microreliefs, volumetric scattering from microparti-
cles inside a material, and a number of other phenom-
ena. The system supports various models of light
sources, in particular, light sources with a specified
scattering indicatrix (goniogram). For the skylight and
sunlight, the standard CIE model of natural daylight
lighting or a high dynamic range image can be used as
light sources. The system can make simulation in the
RGB and in spectral color spaces; it can also simulate
light propagation in scattering and fluorescent media.
As a result, it can produce realistic images and optical
characteristics, such as distribution of illuminance and
luminance (both angular and spatial ones) on various
real and virtual surfaces and scene objects.

The capabilities of the system just described
required the development of rich user interface and
the creation of special auxiliary data structures and
internal interfaces. The complete integration of such a
system into an external CAD system is extremely diffi-
cult, if possible at all.

For this reason, we proposed an approach that sat-
isfies the requirements formulated in the preceding
section and ensures the effective integration of the
optical simulation system into a CAD system. The first
results were presented in the conference [10].

4. LUMICEPT/CA INTEGRATION SCHEME

The components of the
Lumicept/CA are shown in Fig. 3.

The user interface of CATIA was developed using
MFC, and the user interface of the other components
is based on QT SDK. The combined use of these two
libraries in the same executable module is impossible.

integrated system

No.4 2018

228

Goniogram editor

CATIA

lens distortion editor

BARLADIAN et al.

I2Server—wrapper of the
basic system Inspirer2

IPython—an interpreter of
Python for Inspirer2 and CATIA

Lumivue—the visual analyzer
of results

Add-on modules
NaviView |

DistortionCorrector |

CamShapeDesigner |

Fig. 3. Basic components of Lumicept/CA.

For this reason, each component shown in Fig. 3 is
implemented in a separate executable module.

CAD CATIA is the basic CAD system. From the
viewpoint of lighting simulation, it provides capabili-
ties for the creation and modification of geometry of
scene objects and data storage. To simulate lighting,
CATIA was extended by user interfaces designed for
the description and modification of optical attributes
of surfaces, light sources, and virtual measuring
objects called observers. Based on Inspirer2 SDK, the
calculation of global lighting, measuring optical char-
acteristics of the scene using observers, and generating
realistic images using ray tracing were implemented.
These basic functions were implemented directly in
CATIA.

The user interfaces for specifying light sources and
optical attributes of surfaces are implemented as addi-
tional tabs in CATIA interfaces; some native CATIA
attributes are used. This approach facilitates CATIA
users to master new capabilities because they should
specify only the attributes that are specific for the sim-
ulation of lighting. The observers were implemented as
CATIA objects. They are linked to geometric objects
and visualized directly in CATIA windows.

The component I2 Server is implemented as a soft-
ware shell of Inspirer2 objects using Inspirer2 SDK. It
implements algorithms of realistic computer graphics
based on the physically correct simulation of light
propagation and various specific user interfaces avail-
able in Inspirer2.

Currently, this module provides such user inter-
faces as editing parameters of the light propagation
medium, access to libraries of light propagation media
available in Inspirer2, editing complex criteria used in
the visualization of rays traced by the Monte Carlo
method, and a number of user and programming
interfaces.

The component Lumivue implements the analysis
and processing of the generated realistic images and
results of lighting simulation gathered by observers

PROGRAMMING AND COMPUTER SOFTWARE

[11]. In particular, this module provides the following
capabilities.

(1) Transform the images obtained in terms of
physical quantities (high dynamic range images) into
RGB space of a graphical display using various opera-
tors for compressing the dynamic range.

(2) Render simulation results using color contours
(artificial colors).

(3) Visualize physical quantities in various cuts in
graphical and tabular form.

(4) Analyze static characteristics of rectangular and
elliptic regions of images.

(5) Visualize the representation of physical quanti-
ties in photometric and radiometric units and in vari-
ous color spaces (RGB, spectral, HSV, etc.). For the
quantities obtained using stochastic simulation meth-
ods, this module can visualize estimates of the compu-
tation accuracy.

(6) Analyze the simulation results obtained in the
RGB and spectral color spaces.

(7) Analyze the simulation results obtained by var-
ious types of observers (angular brightness distribution,
distribution of brightness or illuminance over the rect-
angle plane observer, etc.).

The component IPython is a Python interpreter
that allows one to work with Inspirer2 and CATIA
objects and procedures [12]. The object oriented
architecture of Inspirer2 allowed us to implement the
Python interpreter in the form of an independent
component IPython, which provides access to practi-
cally all functions of Inspirer2, CATIA, and LumiVue.
In particular, it makes it possible

* to specify one or more parameters of various
objects;

* solve optimization problems;

* automate regression testing;

+ create parametric objects.

The implementation of IPython is thoroughly
described in [13]. Using the package of physically cor-
Vol. 44

No. 4 2018

INTEGRATION OF REALISTIC COMPUTER

Visual Ray simulation definition

: I

Simulation Marme:| VR Simulation.2

Sources: Geometries:

Observers:

Light 1
PartBody.&
PartBody.2

Geometrical et

Plane Observer 1

229

PartBody.16
PartBody.18

Mumber of rays!ﬁ‘m @

Tirme limit| 80 s

Ray data path | C:\Users\Pbb\Docurments', =

[Use All Geornetry
4 Store Spectral Color Data :

@ 0K | @ cancell

Fig. 4. Scene objects involved in the visualization of traced rays.

rect optical simulation as an example, Inspirer2 imple-
ments an approach based on using a unified interface
of the subject area. In particular, a mechanism for
extending the package by new types of parametric
objects by writing simply structured extension classes
is proposed. Special attention is paid to providing
user-friendly application interface and to adhering to
object-oriented paradigm.

CATIA supports three embedded scripting lan-
guages [14]:

* Visual Basic;
* VBA;
» CATScript.

The support of these languages is based on the
Component Object Model (COM). COM is a stan-
dard for creating software components introduced by
Microsoft. Programs created based on the COM stan-
dard are actually not autonomous programs but rather
a set of interacting COM components. Each compo-
nent has a unique identifier (GUID) and can be
simultaneously used by many programs. The compo-
nents interact with other programs through COM
interfaces, which are sets of abstract functions and
properties. Windows API provides basic functions for
using COM components. IPython uses the Python
extension library PyWin32 [15] for accessing Windows
API functions. Thus, IPython provides access to all

objects and procedures of CATIA for which COM
interfaces are implemented.

The native objects and procedures of CATIA have
these interfaces due to the architecture of the system.
To provide access to optical simulation objects and
procedures integrated into CATIA, we implemented
COM interfaces for them where this was possible and
seemed to be reasonable. In particular, these interfaces
were implemented for two basic simulation proce-
dures—the Monte Carlo ray tracing and realistic
image generation procedures. The first procedure
computes the global lighting and simulation results on
observers, the second procedure generates realistic
images using backward tracing of the rays emanating
from the camera. We also implemented an interface
for setting various parameters in procedures for the
creation, modification, and saving the simulation
results on observers.

The integrated system Lumicept/CA includes such
auxiliary components as the editor of scattering
indicatrices (goniograms) of light sources and the lens
distortion editor. The interaction and synchronization
of components is implemented through Windows
messages and events. Data between components are
passed using shared memory of processes.

12 Server can be relatively easily extended to sup-
port new Inspirer2 capabilities in Lumicept/CA. For
example, a new model of light propagation environ-

PROGRAMMING AND COMPUTER SOFTWARE Vol.44 No.4 2018

230

BARLADIAN et al.

CATIA

—(VR SCENE LOAD)—»

Reset evl. ev2

Monte Carlo ray tracing

VR_CALCULATE

and ray storage

‘Window handle

Setevl

o |

Set evl

LUMIVUE_D ETECTOR]—

—{ VR_RAY_CRITERIA }—|
LUMIVUE_LOAD]—4(VR ANALYZE |
LUMIVUE_HIDE]_4(VR_RAY_HISTORY }—>|

Construction of criterion and analysis

Monte Carlo ray tracing
and ray storage

Fig. 5. Interaction scheme of CATIA with 12 Server and LumiVue in the visualization of light rays.

ment is added automatically because the correspond-
ing user interface, object storing data, and the simula-
tion procedure (Monte Carlo ray tracing) are imple-
mented in DLLs that are common for 12 Server and
Inspirer2. If new functionality requires the transmis-
sion of additional data between units, this is imple-
mented using relatively simple add-ons in the corre-
sponding units.

Note that the set of Lumicept/CA components can
be extended if new tasks emerge such that it is better to
implement them in a separate component. Figure 3
shows examples of three such components.

* NaviView simulates the rear view camera in a
automobile navigation system.

* DistortionCorrector provides fish eye lens image
correction in a form adapted for hardware implemen-
tation.

» CamShapeDesigner generates the geometry
restricting the camera field of view.

5. SYNCHRONIZATION OF COMPONENTS
IN LUMICEPT/CA

When an integrated system is implemented as a set
of separate units, the main problem is to efficiently
synchronize the subsystems implemented in different
executable modules. The interaction between subsys-
tems should preferably be hidden from the user to cre-
ate a comfortable work environment.

PROGRAMMING AND COMPUTER SOFTWARE

The interaction between components was imple-
mented using special Windows messages and events.
For this purpose, the main Windows procedure of 12
Server and Lumiview was replaced by a special proce-
dure that processes the messages sent by CATIA. To
synchronize the other (simpler) components, a few
Windows events turned to be sufficient: to continue its
execution, a components waits until another compo-
nent throws the corresponding event. Data between
components can be passed in two ways. Small
amounts of data are passed using the memory shared
by processes. Large amounts of data are passed using
the file system in the binary format of Inspirer2.

12 Server is implemented as an ordinary Windows
application, which starts simultaneously with CATIA.
Its main window is invisible, and its main window pro-
cedure is replaced by processing the messages sent by
CATIA. Special Windows events are used to synchro-
nize CATIA with 12 Server in the process of computa-
tions and CATIA window repaint.

By way of example, consider in more detail the syn-
chronization of the visualization component of light
propagation in an optical system in the form of traced
rays [16]. The operation of CATIA with the compo-
nent Lumivue and the goniogram and lens distortion
function editors is synchronized similarly.

At the first step, the user selects light sources, geo-
metric objects, and observers involved in the simula-
tion. Actually, at this step the user specifies a new

Vol. 44 No.4 2018

INTEGRATION OF REALISTIC COMPUTER

Fig. 6. Examples of lighting simulation results in the inte-
grated Lumicept/CA system.

scene using objects of another already existing scene.
This is done directly in the CATIA interface. The user
selects objects in the visualization window or in the
scene tree, and the names of the selected objects are
shown in a dialog. Alternatively, the user can indicate
that the entire scene will be used by selecting the cor-
responding check box. In the same dialog, the path for
saving the simulation results, the number of rays to be
saved, and a restriction on the simulation time are set.
An example of this dialog is shown in Fig. 4. After the
dialog has been closed, the specified parameters of the
simulation session are shown in the scene tree, and the
simulation can be started from the dropdown dialog by
a right-click. The user may create any number of such
simulation sessions for various needs.

The synchronization scheme of the simulation per-
formed in 12 Server is illustrated in the upper part of
Fig. 5. CATIA forms a scene description in the binary
format of Inspirer2, saves it to disk, and sends the mes-
sage VR_SCENE_LOAD to load the scene; next, it
sends the message VR_CALCULATE (ray tracing
with storing the results in a file for future visualiza-
tion). Such additional data as the path to the scene

PROGRAMMING AND COMPUTER SOFTWARE Vol. 44

231

description, simulation time restriction, and the num-
ber of rays are passed through shared memory.

The execution schemes of various I2 Server com-
mands are close to each other. Here we describe the
most complicated execution scheme of VR_CALCU-
LATE in detail.

(1) CATIA throws off the events ev] and ev2, sends
the message VR_CALCULATE, and waits for the
occurrence of evl.

(2) Having received the message VR _CALCU-
LATE, I2_Server retrieves the file from the shared
memory, loads the scene from it, places its window
handle into the shared memory, throws the event evl,
and waits for the occurrence of the event ev2.

(3) CATIA retrieves from the shared memory the
window handle, throws off the event ev], and throws ev2.

(4) After the occurrence of the event ev2, 12 Server
executes the simulation and then throws the event ev 1.
During the simulation, the progress bar shows the
progress of the simulation execution as the ratio of the
number of traced rays to the total number of rays.
Then, 12 Server writes the simulation results to disk.

(5) When waiting for the occurrence of the event
evl, CATIA repaints its window with an interval of 100
milliseconds, makes the 12 Server window active, and
places it on top of other windows. In response to the
event evl, CATIA reads from the disk the updated
scene and accordingly updates the data in its docu-
ment and the scene tree.

6. CONCLUSIONS

The approach proposed in this paper was used to
include the main functions of the system Inspirer2
(such as computation of the direct and indirect light-
ing, visualization of ray tracing, and support of com-
plex optical attributes and light sources) in the CATIA
CAD system. As a result, the users working with
CATIA can perform computational experiments with
the models they design. For example, they can test the
appearance of a paint-and-lacquer coating on the
body of a car being designed under different external
lighting as shown in Figs. 6a and 6b.

This approach enabled us to considerably speed up
the development of the integrated system and improve
its reliability because the most complicated modules
have already been debugged in the autonomous sys-
tem. As a result, the time needed for the implementa-
tion of new functions in Lumicept/CA that were
already available in Inspirer2 was drastically reduced.
This is especially important because the cost of the
CATIA programming environment (the license cost)
is high and the development requires highly skilled
experts with good working experience in this environ-
ment. The proposed approach was implemented for
CAD CATIA, but it also can be applied to other CAD
systems.

No.4 2018

232

BARLADIAN et al.

ACKNOWLEDGMENTS
This work was supported in part by the Russian

Foundation for Basic Research, project nos. 16-01-
00552 and 18-01-00569.

REFERENCES

. Dassault Systems, CATIA. http://www.3ds.com/ru/

products/catia/. Cited January 10, 2018.

Autodesk 3DS MAX. https://www.autodesk.ru/prod-
ucts/3ds-max/overview. Cited January 10, 2018.

Osinev, A., V-Ray: Appreciate your time, SAPR
Grafika, 2010, no. 9, pp. 88—89.

Kolpakov, A. and Tostoba, N., Automating the design
of a unit of an optical devise, SAPR Grafika, 2012,
no. 12, pp. 68—70.

Gol’dovskii P. and Kokova, A., Simulation of optical
phenomena and properties of various products, SAPR
Grafika, 2004, no. 8, pp. 46—47.

Alyamovskii, SolidWorks/OptisWorks—An integrated
environment for the analysis anb synthesis in optics:
Optical analysis and software structure, SAPR Grafika,
2006, no. 4, pp. 73—79.

. Barladian, B. Kh., Voloboy, A.G., and Shapiro, L.Z.,

Integration of illumination simulation by ray tracing
method into CAD systems, in Proc. of the 23rd Int. Conf-
GraphiCon’2006, Novosibirsk, Russia, 2006, pp. 275—
278.

Barladian, B. Kh., Voloboy, A.G., Galaktionov, V.A.,
and Shapiro, L.Z., Integration of illumination simula-
tion software into CAD and CAM systems, Proc. of the
Int. Conf. and Exhibition CAD/CAM/PDM-2006, Mos-
cow, 2006, pp. 16—20.

PROGRAMMING AND COMPUTER SOFTWARE

9.

10.

11.

12.

13.

14.

15.

16.

Zhdanov, D.D., Potemin, I.S., Galaktionov, V.A., Bar-
ladyan, B. Kh., Vostryakov, K.A., and Shapiro, L.Z.,
Spectral Ray Tracing in Problems of Photorealistic

Imagery Construction, Program. Comput. Software,
2011, vol. 37, no. 5, pp. 236—244.

Barladian, B. Kh., Voloboy, A.G., and Shapiro, L.Z.,
Generating realistic images in CAD systems, in Proc. of
the 23rd Int. Conf. GraphiCon’2013, Vladivistok, Russia,
2013, pp. 186—190.

Barladian, B.K., Potemin, 1.S., Zhdanov, D.D., Volo-
boy, A.G., Shapiro, L.S., Valiev, 1.V., and Biru-
kov, E.D., Visual analysis of the computer simulation
for both imaging and non-imaging optical systems, in
Proc. of the Society of Photographic Instrumentation
Engineers 10021, Optical Design and Testing VII, 2016.

Deryabin, N.B., Sokolov, V.G., Zhdanov, D.D. and
Kopylov, M.S., Automating the generations of series of
realistic images using Python scripting language, in
Proc. of the 25th Int. Conf. GraphiCon’2015, Protvino,
Russia, 2015, pp. 132—136.

Deryabin, N.B., Zhdanov, D.D. and Sokolov, V.G.,
Embedding the script language into optical simulation,
Program. Comput. Sofiware, 2017, vol. 43, no. 1, pp 13—23.

Introduction to CATIA V5 Automation. http://cat-
iav5automation.blogspot.ru/2013/05/ introduction-to-
catia-v5-automation.html. Cited February 5, 2018.

Python for Windows Extensions. https://sourceforge.
net/projects/pywin32/. Cited February 7, 2018.

Barladian, B., Shapiro, L., and Voloboy, A., Ray maps
technique for effective interrogation of results of
MCRT simulation, in Proc. of the 21th Int. Conf. on
Computer Graphics and Vision GraphiCon’2011, Mos-
cow, 2011, pp. 46—49.

Translated by A. Klimontovich

Vol. 44 No.4 2018

	1. INTRODUCTION
	2. VARIOUS VERSIONS OF INTEGRATING THE LIGHTING SIMULATION MODULE WITH CAD
	3. THE OPTICAL SIMULATION MODULE
	4. LUMICEPT/CA INTEGRATION SCHEME
	5. SYNCHRONIZATION OF COMPONENTS IN LUMICEPT/CA
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

