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Abstract 

Here interactive software and algorithm of camera distortion 

correction is considered. Elaboration of the camera distortion 

correction is needed during car parking system design. Specific 

algorithm representation as the set of six scale coefficients tables 

is introduced. This representation takes into account specific of 

cameras used in automobile industry and possibility of hardware 

implementation of given interactively created algorithms. The 
goal of the interactive software is to provide to car parking system 

designer a tool for elaboration of camera with desirable 

(reasonable) distortion. The scale coefficient tables are transferred 
to camera manufacturer for designed camera creation. 

Keywords: parking camera design, camera distortion, distortion 
correction, lens design  

1. INTRODUCTION 

Using different cameras especially reversing cameras in the car 

parking system becomes almost standard in modern cars. There 

are a large number of manufacturers offering such system on the 
market [1, 2 and 3]. These cameras have wide-angle objective 

about 180 degree or even more to provide maximal visible area. 

Typically only horizontal extra wide angle is needed in parking 

systems. Moreover requirements to the visibility of the lower and 

upper hemispheres are different. Typically the visibility of the 

lower part of hemisphere is the most essential in parking systems 

from the driver point of view. So camera makers design cameras 

with asymmetrical view field. In common case view field may be 

asymmetrical in horizontal direction also. It is reasonable 

approach for cameras placed on the left and right bumper sides or 
on side rearview mirror. The cameras with such extra wide angles 

and asymmetrical view field unavoidable have large distortions, in 

common case asymmetrical ones, which should be corrected to 
better environment understanding by car driver. There are a 

number of algorithms about distortion correction [4-9]. Some of 

them are implemented in commercial software [10-12]. 

During design of parking system developers tune the camera 

position and orientation, taking into account the given car 
specific, select cameras with appropriate optical and electric 

specification. To provide maximally useful and effective overview 

of critical areas around the car the parking system designers 

would like to have custom distortion correction for used cameras. 
In general cases this correction can have own specific for each 

camera depending on the camera position. Some areas in the 
image should be magnified and other ones should be reduced.  

The parking systems become currently a mass product, so the 

most reasonable and effective solution becomes embedding of 
distortion correction algorithm directly in the camera electronics. 

Camera makers can now implement almost any distortion 

correction algorithm in camera image processing but the 

algorithm for given specific camera should be elaborated by 

parking system designer and passed to the camera maker company 

in acceptable form. It should be pointed that in some practical 

cases camera distortions cannot be completely corrected in 

principle. Typical example is the camera with the view angle 

more than 180 degree. So the task of parking system designer is 

elaboration of camera image in form optimized to control the car 

vicinity by car driver but not distortion correction itself. It is the 

main purpose of utility where suggested algorithm was 
implemented. 

2. SCALE ALGORITHM REPRESENTATION 

Taking into account possible asymmetric of camera distortions, 
the default image produced by camera is split from correction 

point of view on four parts by vertical and horizontal axes. The 

axes intersection point is the fixed point of distortion correction – 
the position of this pixel is not changed during correction. For rest 

pixels two type of scaling coefficients are defined. For vertical 

distortion the scale in given image point is defined as the function 

of X coordinate – ScaleY(x). These functions are defined 
separately for upper and lower sides (relatively to horizontal 

splitting axis). Addition scale function ScaleY(y) defines the scale 

coefficients as the function of coordinate y independently of x 
coordinate. Applying the scaling of the all these three functions 

does not move the pixels along horizontal splitting axis. The same 

three functions are defined for horizontal image scaling – 
ScaleX(y) for left and right image sides and ScaleX(x). Example 

of User Interface implemented in our software where these three 

functions in the table form can be set for image with resolution 
800x600 is shown on Fig.1. 

 

 
Fig.1. Example of six scale tables. 

 

Scale coefficients are defined for some set of pixels and are 

interpolated between them. By default linear interpolation is used. 
Apart linear interpolation the spline interpolation can be applied 

as well. Scale functions are displayed in the graphical form as it is 

showed on Fig. 2. Also it is possible to use the same scale 
function for both image sides (horizontal or vertical). 

Interface, presented on Fig. 1, provides edition of all six scale 

functions. So, practically arbitrary distortion correction can be 
created in this way. 



Fig.2. Scale function graphs. 

3. DIRECT IMAGE CORRECTION 

Specification of distortion correction in numerical form is not 

very convenient for parking camera system designer. It is more 
desirable to provide interface directly on image, so that user can 

move the image point from one position to another one, while the 

scale functions will be created for this correction automatically. 

This feature was provided in our software (Fig. 3).  

In direct image correction mode the auxiliary grid provides 
convenient visual control how current distortion functions affect 

on original image. A designer can select color and step of this 

grid. Green contour provides presentation of original image size. 

Also it is possible to directly move selected pixel to the new 

position by mouse drag and drop. Application provides 
appropriate changes of scale tables and real time image correction.  

Additional slider provides convenient control of scale along X or 

Y axis according selected line in appropriate ScaleY(y) or 
ScaleX(x) table.  

 

 
Fig.3. Direct image correction. 

 

But this feature elaboration was rather complex because automatic 
creation of scale functions has various reasonable solutions. The 

image scale in horizontal and vertical directions can be considered 

independently due to selected correction algorithm representation, 
but scale in each direction in general case depends on two 

functions. In horizontal direction, for example it is ScaleX(y) and 

ScaleX(x). It is hard to find reasonable and transparent for a user 

proportion between these two functions of given image pixel 

moving. Moreover the new X position of pixel is determined by 

integral of ScaleX(x) from zero (Y axis) till its initial X 

coordinate (see details of algorithm below). So the movement of 

pixel can be achieved using different ScaleX(x) function. Only 

corresponding integral is essential. Due to this reason the direct 

image correction in our system affects on ScaleX(y) and 

ScaleY(x) functions only. Even with this restriction the task is not 
trivial as it is described in algorithms details below.  

4. CORRECTION ALGORITHM DETAILS 

4.1 Smoothing algorithm 

The third order polynomial was used for smooth interpolation of 
scale coefficients between points of definition. To provide really 

smooth interpolation it is desirable that extreme points 

(maximal/minimal scales) in linear interpolation are to be extreme 

points of spline interpolation. In another words the interpolation 

should be monotony between node points. This requirement is 

provided in described below algorithm by special definition of 
derivations in knot points.  

The segment of the original polyline between all the pairs of 

"knots" (xi, yi) and (xi+1, yi+1) is smoothed by the third order 
polynomial qi(x), where 

qi(xi+1) = qi+1(xi+1) = yi+1 

q'
i(xi+1) = q'

i+1(xi+1) 

The third order polynomial q(x) for which 

q(x1) = y1 

q(x2) = y2 

q'(x1) = k1 

q'(x2) = k2 

can be written in symmetrical form 

q = (1-t) · y1 + t · y2 + t · (1-t) · (a (1-t) + b t) 

where 

t = (x - x1) / (x2 - x1) 

a = k1 · (x2 - x1) - (y2 - y1) 

b = - k2 · (x2 - x1) + (y2 - y1) 

The derivatives in the knots are defined as followed: 

1. For the first knot: 

k1 = (y2 - y1) / (x2 - x1)                (1) 

2. For the last knot: 

kn = (yn - yn-1) / (xn - xn-1) 

For intermediate knots: 

ki = 0 if yi  ≤ yi-1 and yi  ≤ yi+1                                                (2.1) 

ki = 0 if yi  ≥ yi-1 and yi  ≥ yi+1                                                 (2.2) 

ki = (yi+1 - yi-1) / (xi+1 - xi-1) for all other cases.      (2.3) 

The derivations definition 2.1 and 2.2 provides that extreme 

points of linear interpolation remain extreme one for smooth 
interpolation also. 

4.2 Output image smoothing 

The scale tables described above describe transformation of any 
point from original image to the corrected one, but both images 

are discretized ones, i.e. consist of pixels. So we have some 

freedom how pixels of output image will be constructed from 

original ones. The described below algorithm was constructed to 

provide relatively smooth image and minimize moiré and aliasing 
effects. 



In general case the original image pixel will change its form in 

output image. It will be scaled depending on its X and Y 

coordinates. Scale of any pixel which don’t have its own value in 

the table is calculated as a linear or smooth (see p. 4.1) 
interpolation between the nearest lower and higher values.  

 
Fig.4. Scaling a pixel 

Calculated coordinates of each pixel vertex after scaling and its 

bounding box drawn by red color are shown on Fig.4. We 

consider this bonding box as scaled original pixel which color 

should be put to the all pixels of new (output) image, which it 
covers as it is shown on Fig. 5. 

 
Fig.5. Color setting for a new image pixel. 

 

It should be taken into account that scaled pixels (initial, “old” 
pixels on the Fig.5) can have overlapping due to extension by 

bounding box described above. Finally, the color of output is 

calculated as the weighted sum of initial pixels colors with weight 
of intersection area of old pixel with new one. 

The result of image scaling for some test example is shown on 
Fig.6. 

 
Fig. 6. Result of image scaling. 

5. DIRECT IMAGE CORRECTION ALGORITHM 

The procedure assumes that the user will move any pixels from 
one position (start position) to another one (end position). And the 

algorithm should calculate such scale transformations so that 

original pixel (correspondent pixel of non-scaled picture) will be 
moved to the selected end position. This task includes two sub-
tasks: 

• determination of initial pixel position by its start 

position on the current scaled image; 

• calculation of new scale table described in  p.2. (or 

correction of the current one) which moves pixel from 
initial position to the end one. 

5.1 Calculation of initial pixel 

The new (transformed) pixel coordinates (xn, yn) are calculated 
from the original (xo, yo) ones by the following formulae: 
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���������
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      (3) 
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        (4) 
Here: 

• xo,yo are original pixel coordinates; 

• xn,yn are transformed (scaled)pixel coordinates; 

• Sxy, Sxx, Syx, Syy are scale functions defined in p.2; 

• xa  – Y axis position 

• ya  – X axis position 

5.1.1 Area subdivision and scales description. 

The scale functions definition in table form described in p.2 

subdivides the initial pixel image into rectangular cells. The 

horizontal bounds of these cells will be y-lines passed throw the 
pixels where scale functions Sxy(y) (left and right) and Syy(y) are 

defined. The vertical bounds of these cells will be x-lines passed 

throw the pixels where scale functions Syx(x) (upper and low) and 

Sxx(x) are defined. 

Let the bounds of i-th rectangle are xmini, xmaxi, ymini and ymaxi 

Inside this rectangle we can represent integrals in (3) and (4) as: 
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Taking into account that the Sxy(y0) is constant for given y0 and 

the Syx(x0) ) is constant for given x0 the scale transformation of 

initial pixel (x0, y0) to the scaled one (xn, yn) has the two following 
properties: 

Property 1. 

If yo = const and xo1 < xo2 then xn1 < xn2. If yo = const and xo1 > xo2 
then xn1 > xn2. So in this case xn(xo) is monotone increasing 
function. If follows from (3) and (5). 

Property 2. 

If xo = const and yo1 < yo2 then yn1 < yn2. If xo = const and yo1 > yo2 
then yn1 > yn2. So in this case yn(yo) is monotone increasing 
function. If follows from (4) and (6). 

From properties 1 and 2 follow that the maximal and minimal 

values of scaled coorfinates xn and yn will be achieved on the 
scaled boundaries of original rectangular boundaries. 

Moreover the maximum and minimum of xn will be achieved on 

the rectangle vertices. If we set xo = xmini then from (3) and (5) we 
have: 



xn(xmini, yo) = xa + K1 · Sxy(yo)               (7) 

where 

�� = ������ − �	� · � 
������������
�� , 

and the Sxy(y0) is monotone function of y0 inside the given cell 

(see p.4.1).  So the minimum and maximum of (7) will be 

achieved on the segment ends. The same statement is true for x0 = 

xmaxi and finally for yn. 

Taking into account all these properties of scale transformation 

we implement the following algorithm for calculation initial (x0, 
y0) pixel from (xn, yn) scaled one: 

5.1.2 Initial pixel finding algorithm. 

1. Create the list of bounding boxes of scaled rectangular cells 

described above. Transformed original rectangular cells will be 

curved one in general case (see Fig. 3, for example) and so 
bounding boxes of scaled rectangular cells will be overlapped. 

Due to this reason the given scaled pixel can belong to the several 
bounding boxes simultaneously. 

2. For each cell from list try to determine initial pixel by the 
following way: 

3. If the given bouning box does not include (xn,yn) then go to the 
next one. 

4. Calculate scaled (xn1,yn1) pixel for center of original cell. If the 

distance from (xn1,yn1) pixel to the (xn,yn) one is lesser than 1 then 
original pixel is found, (xo,yo) is center given original cell. 

5. If width and height of original box is lesser than 1 then original 

pixel can not be found in the given cell. Go to the next bounding 
box. 

6. Divide given original box on two ones by division of width or 

height in half. For each half calculate box of scaled cell. For each 
half cells execute pp. 3-6. 

In the result we have calculated the initial pixel position. 

5.2 Scale table correction 

As it was pointed above the correction will not touch the Sxx(x) 

and Syy(y) functions and so the correction will be done for Sxy(y) 
and Syx(x) only. Corrections for Sxy(y) and Syx(x) can be applied 

independently. So consider the Syx(x) only. Firstly consider only 

the linear interpolation between node points. One scale segment 
for Syx(x) is represented on the Fig. 7. 

 
Fig. 7. Segment of scale function. 

 

Here the movement pixel along x = a coordinate is considered. 

The point a belongs to the (x0,x1) segment. Let us denote the 

scale values and its variation at the ends of the segment as s0, s1, 

ds0 and ds1 correspondingly. The scale and scale variation in the 

point a  denote as  s and ds. We want to determine correspondent 

changes ds0 and ds1 which provide ds changing in the point a in 

the linear interpolation case. 

For simplicity, we will use the dimensionless coordinates.  

Let x0 = 0 and x1 = 1, a1 = (a - x0) / (x1 - x0). 

Due to the linear interpolation we have: 

s0 · (1-a) + s1 · a = s 

(s0+ds0) · (1-a) + (s1+ds1) · a = s+ds 

So 

ds0 · (1 - a) + ds1 · a = ds                               (8) 

We should determine ds0 and ds1 via ds and a. Let us will find 
solution in form: 

ds0 = ds · f0(a);    ds1 = ds · f1(a).                   (9) 

From (8) and (9) we have 

f0(a) · (1-a) + f1(a) · a = 1;                           (10) 

From (9) and (10) we have the following boundary conditions: 

f0(0) = 1;     f1(1) = 1. 

f0(1) = 0;      f1(0) = 0. 

We also naturally suppose functions symmetry: 

f0(a) = f1(1-a)                              (11) 

From (10) and (11) also followed that  

f0(0.5) = f1(0.5) = 1 

So finally we have the following conditions 

����0� = 1;    ���0.5� = 1;   ���1� = 0;
���0� = 0;    ���0.5� = 1;   ���1� = 1;#          (12) 

There are many functions which satisfy to these conditions. For 

example we can determine f0(a) on [0.5, 1.0] as any function 

decreasing from 1.0 to 0.0. In this case f1(a) will be determined on 

[0, 0.5] by (11). Then we can determine f0(a) on [0, 0.5] by 

substituting f1(a) in equation (10) and solving it for f0(a). We 
conider the following two variants of solution: 

5.2.1 1st variant of solution. 

Let 

f0(a) = 2 · (1 - a) on [0.5, 1]                          (13) 

and so from (11) 

f1(a) = 2 · a on [0, 0.5]                                  (14) 

From (10) and (13) we have 

f1(a) = (1 - 2 · (1 - a)2) / a   on [0.5, 1] 

and from (10) and (14) we have 

f0(a) = (1 - 2 · a2) / (1 - a)  on [0, 0.5] 

And finally: 

���$� = ��1 − 2 · $&�/�1 − $�, () [0, 0.5]
                   2 · �1 − $�, () [0.5, 1]# 

���$� = � 2 · $,                                        () [0, 0.5]
 �1 − 2 · �1 − $�&�/ $, () [0.5, 1]# 

 

Both functions has the same maximum ~1.172 in points 1 − ,0.5 

and ,0.5 appropriately. 

5.2.2 2nd variant of solution. 

Let us will find the solution in the parabola form f0(a) = k2 · a2 + 

k1 · a + k0 on [0, 1]. According (12) this parabola should pass 

through the points (0, 1), (0.5, 1) and (1.0). These restrictions 
completely define parabola coefficients: 

f0(a) = -2 · a2 + a + 1   on     [0, 1] 



 From (11) 

f1(a) = -2 · a2 + 3 · a   on     [0, 1] 

 f0(a) decreases from 1.0 to 0.0 on [0.5, 1.0] 

It is easy to check that f0 and f1 satisfy the (10) equation. 

Both functions has the same maximum 1.125 in the points 0.25 

and 0.75 appropriately. 

The less the function maximum the less will be scale values 

variations in the nodes and so the resulted curves will be more 
smooth. So we selected parabola for f0() and f1() functions. 

5.2.3 Spline case. 

Described above in p.5.2.2 solution works in linear interpollation 

case only. In spline case the task become nonlinear one and can 
not be solved analitically. In this case the solution from p.5.2.2 is 

used as initial approximation. Let us linear interpollation for given 

ds gives (ds0, ds1) solution. Then the non linear solution (ds0n, 

ds1n) we will find by using the following equation: 

ds1n =K · ds0n, where  K = ds1 / ds0;                     (15) 

Let us denote the function which calculate the scale variation in 

point a by using spline interpollation between scale table nodes as 

Fspl(x), where x is scale variation in left segment point and the 

scale variation in the right sement point is defined by (15). Then 
ds0n can be found by solving the following non linear equation: 

Fspl(ds0n) = ds 

We solve this equation by founding the solution inside segment. 

The one boundary is defined by linear interpollation 

approximation and for the second one is the maximal acceptable 
scale if Fspl(ds0)> ds and minimal one in oposite case. 

6. RESULTS 

Described interactive software was implemented as additional 

application (plugin) for CATIA [13, 14] CAD/PDM system. It can 

process both with images produced by real cameras and with ones 
simulated in CATIA by our products [14]. The plugin provides 

real time design of distortion correction algorithm in form of both 

scale tables and interactive resulting image modification. 
Corrected image is re-drawn during fraction of a second after 
parameters changing (Intel Core 2 Q9550 2.83Ghz).  

The scale tables described above contains distortion correction 

information in a form acceptable for camera creation by the 

camera manufacturer. And implemented algorithms take into 
account parking system cameras manufacturing specific. In the 

result the implemented software provides effective and convenient 

tool for car park system designers to develop reasonable 

correction of camera images. 
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