
Out-of-core GPU Ray Tracing of Complex Scenes

Kirill Garanzha (KIAM RAS) Alexander Bely (CentiLeo) Simon Premoze Vladimir Galaktionov (KIAM RAS)

Abstract

Increased demand for global illumination, image based-lighting and

simplified workflow have pushed raytracing into mainstream. Many

rendering and simulation algorithms that were considered strictly

offline are becoming more interactive on massively parallel GPUs.

Unfortunately, the amount of available memory on modern GPUs is

relatively small. Scenes for feature film rendering and visualization

have large geometric complexity and can easily contain millions of

polygons and a large number of texture maps and other data attributes.

In this talk, we describe a general purpose out-of-core ray tracing

engine for the GPU where we address data management, ray-

intersection and shading. We utilize a GPU data cache that enables

efficient access of out-of-core data. We develop a novel ray intersection

algorithm built around acceleration structure that brings needed data on

demand using page-swapping. We further reduce memory usage by

using a simple geometry quantization. The ray tracing engine is used to

implement a variety of rendering and light transport algorithms.

Data Management

Modern GPUs have enormous computational power (1 Tflops) and
large memory bandwidth (150 Gb/s). Relatively small amount of
memory and a lack of virtual memory system forced us to design a
GPU data cache that increases the virtual GPU memory size by an
order of magnitude. An application that works on a large dataset
creates a GPU data manager and processes data using request and
process data kernel() in the following loop:

void out_of_core_data_processing()

{

 available_new_data = 1

 while(available_new_data) {

 // Process in-core data

 // Request out-of-core data

 request_and_process_data_kernel(data);

 // Bring missing data into GPU memory

 available_new_data = swap_requested_pages(gpu_data_manager);

 }

}

We first make a data request to the data manager. If some desired data
blocks are out-of-core, we mark them as requested. The data manager
brings requested data blocks into the GPU memory
(swap_requested_pages()). On subsequent loop iterations, needed data
is in the GPU memory and the kernel can do computation. This process
of requesting, computing and transferring data is repeated until no
more out-of-core data is requested by the application. The virtual data
manager allows us to access large data sets and arbitrary arrays.

Out-of-Core Intersection

Efficient raytracing requires an acceleration data structure to compute

ray intersections with the scene geometry. Since the scene does not

necessarily fit into the GPU memory, we create a multi level Bounding

Volume Hierarchy. We implement a very fast BVH builder on the GPU

that produces high quality BVHs suitable for fast ray tracing of out-of-

core geometry and fully animated scenes. We traverse this acceleration

structure knowing that requested geometry may not be available in

memory. The intersection algorithm successfully hides data transfer

latency by performing intersections on in-core geometry. We also use a

simple geometry quantization scheme to reduce geometry size and

further reduce expensive memory transfer size (description is available

in supplemental paper).

Shading

We support programmable shaders: ray generation, materials and light
transport. Sophisticated shading and global illumination computation
may require an arbitrary amount of data. We use the GPU data cache to
access large number of textures and geometry attributes (normals,
texture coords, etc…). The shaders can generate arbitrary number of
new rays to compute lighting and shadowing. We organize rays in a
ray queue that helps with improving ray coherency, hides latency
(overlap computation with data transfers) and provides simple ordering
and synchronization mechanism. Shaders submit rays to a global ray
queue from which rays are consumed by the out-of-core ray-
intersector. We use a large ray queue (32M rays) to increase the
rendering pipeline throughput. The implementation of texture on
demand (Peachey) is almost completed and we can potentially support
large textures which are stored on the disc (some data is available in
supplemental document). The work in progress is implementing
Metropolis Light Transport algorithm where large number of rays may
be active simultaneously.

Summary

We have implemented a general purpose out-of-core ray tracer for
rendering complex scenes on the GPU. Figure 1 shows several frames
from a Boeing 777 animation sequence. The model has 360 million
polygons. Using a single Nvidia GTX 480 graphics card, it takes 15
seconds to render a full converged final frame (1024x768) with global
illumination (path tracing, three bounces, 100 progressive image
iterations). Path tracing demonstrates a stress test for GPU Virtual
memory manager because path tracing can be formulated as the
number of sparse memory access to the scene geometry.

Figure 1: Frames from Boeing 777 animation sequence. It takes

15 seconds to render a fully converged final frame with global

illumination on a single NVIDIA GTX 480 GPU. The final image

accumulates 100 progressive path tracing refinements (i.e. 100

Monte Carlo samples / pixel are computed in 15 seconds).

