THE BRAIN VISUAL CORTEX AND OSCILLATORY NEURAL NETWORKS

 

1. Introduction

1.1 Traditional Methods of Visual Image Processing. Shortcomings.

1.2 Neuromorphic Methods. Advantages.

1.3 Visual Image segmentation Task: Posing of the Problem.

2. The Brain Visual System: Brief Neurophysiological Data.

2.1 The Visual Pathway: Retina, LGN, the Visual Cortex (VC).

2.2 Main Propetrties of Primary Visual Cortex: RFs, Columns, Connections.

2.3 The Role of Synchronized Oscillations in VC and in the Other Brain Structures. Experiments. Associative Binding.

2.4 Some Other Features of the Brain Visual System.

 3. Models of VC

3.1 Different Levels of Modelling. Neural Oscillator.

3.2 Models, Based on Networks of Spiking Neurons.

3.3 Oscillatory Network Models.

3.4 The Model under Development: Tunable Oscillatory Network with Self-organized Dynamical Connections and Synchronization-Based Performance.

 4. Method of Visual Image Segmentation Based on Cluster Synchronization of Oscillatory Network.

4.1 Reduced Network, Obtained from the Oscillatory Model of VC.

4.2 Method of Adaptation of Connections. Successive Cluster Synchronization of the Network.

4.3 Computer Realization of the Method. Experiments.

4.4 Advantages of the Algorithm. Futher Perspectives.

 5. Concluding Remarks. Abilities of Neuromorphic Models.

 

References

[1] Eckhorn R. Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboek H.J.: Coherent Oscillations: A mechanism of Feature Linking in the Visual Cortex? Biol. Cybern., 60 (1988), 121-130.

[2] Gray C.M., Singer W.: Stimulus-specific Neuronal in Orientation Columns of Cat Visual Cortex. Proc. Natl. Acad. Sci. USA, 86, (1989), 1698-1702.

[3] Schuster H.C., Wagner P.: A Model of Neuronal Oscillations in the Visual Cortex. 1 and 2. Biol. Cyb., 64, (1990), 77-85.

[4] Wang D., Buhman J., von der Malsburg C.:Pattern Segmentation in Associative Memory. Neur. Comp., 2, (1990), 94-106.

[5] Koenig P., Schillen T.B.: Stimulus-dependent Assembly Formation of Oscillatory Responses. I. Synchronization. Neur. Comp., 3, (1991), 155-166.

[6] Sompolinsky H., Golomb D., Kleinfeld D.:Cooperative Dynamics in Visual Processing . Phys. Rev. A, 43, (1991), 6990-7011.

[7] Wang D.L., Terman D.: Emergent Synchrony in Locally Coupled Neural Oscillators. IEEE Trans. NN, 6, (1995), 283-286.

[8] Wang D.L., Terman D.: Image Segmentation Based on Oscillatory Correlations. Neur. Comp., 9, (1997), 805-836.

[9] Chen K., Wang D.L., Liu X.: Weight Adaptation and Oscillatory Correlation for Image Segmentation. IEEE Trans. NN, 11, (2000), 1106-1123.

[10] Li Z.: A Neural Model of Contour Integration in the Primary Visual Cortex. Neur. Comp., 10, (1998), 903-940.

[11] Hubel D.H., Wiesel T.N., J. Physiol.}, 160, 1962, pp. 106-154.

[12] Freeman W.J.: Spatial Properties of an EEG in the Olfactory Bulb and Olfactory Cortex. Electroenceph. Clin. Neurophys., 44, (1978), 586-605.

[13] Li Z., Hopfield J.J.: Modeling the Olfactory Bulb and Its Neural Oscillatory Processing. Biol. Cybern., 61(5), (1989), 379-392.

[14] Kuzmina M.G., Surina I.I.: Synchronization-Based network Model for Contour Integration in Visual Processing. Proc. of AICS'99, Cork, (1999), 37-43.

[15] Kuzmina V.G., Surina I.I.: Spatially Distributed Oscillatory Networks Related to Modeling of the Brain Visual Cortex. Proc. of NOLTA'2000, Dresden, Vol.1, (2000), 335-338.

[16] Kuzmina V.G., Manykin E.A., Surina I.I.: Spatially Distributed OscillatoryNetworks Related to Modeling of the Brain Visual Cortex. Proc. of ICANN'2001, Vienna, 2001; Lecture Notes in Computer Science, v. 2130, (2001), 1013-1018 .