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Preface

The last decade was marked by highly increased interest to the study of human brain
functioning. Understanding of the human brain has been recently claimed as one
of the greatest problems of 21st century science. An integrated brain understanding
would offer great benefits for computational mathematics, medicine, and intellectual
robotics dealing with creation of intelligent machines capable of thinking, learning,
and demonstrating human reactions.

Intentions to create a complex large-scale multilevel model of the human brain,
based on physiologically accurate imitations of brain structure performance, were de-
clared repeatedly. In particular, in the frames of the famous interdisciplinary Blue
Brain Project, started in 2005, a physiologically detailed rat brain neocortical column
consisting of 1.2 x 10° neurons and 10° synapses was created in 2011. Another de-
tailed large-scale model of a mammalian brain thalamocortical system, comprising
10" spiking neurons and almost 10*° synapses, was created in 2008 at the Neuro-
science Institute, San Diego, CA, USA. These achievements in computer modeling of
the brain structures can naturally provide inspirations for new research in related ar-
eas, such as neuroinformatics, communication theory, neuroscience, medicine, and
neurorobotics. Nowadays there is a variety of programs on creation of artificial brains
for intelligent “android” robots emulating the human brain. The performance of cre-
ated artificial brains should be tested (and compared with the human brain perfor-
mance) in a representative set of tasks. The task of image recognition belongs to the
simplest type of such tasks. The aspects of human consciousness should be tradition-
ally expertized using the so-called Alan Turing test, initiated in the early 1950s. There
are claims, based particularly on quick growth trends of computer power, that the
whole brain emulation using conventional computers could be done by 2025.

Further extensive brain studies will definitely stimulate the development of new
brain-inspired parallel adaptive computational algorithms. Neuromorphic methods of
image and signal processing based on the brain visual cortex performance and its ac-
tivity-dependent plasticity are of particular interest. The scope of problems concern-
ing the brain memory also remains a challenging and interesting topic. Although it
has been understood that the source of the brain memory consists in synaptic con-
nections change, the character of memory data representation in the brain (memory
structure) continues to remain a big puzzle.

The information processing in the brain is realized via spatiotemporal dynam-
ics of patterns of excitation in neuronal ensembles arising by means of neuron in-
teractions. Learning processes, equipped with the brain memory and self-organizing
ability, modify the pattern structure and dynamics. A combination of analytical math-
ematical tools (such as approaches from statistical physics and information geome-
try) and the development of artificial neural networks (ANNs) models and associated
learning algorithms constitute the theoretical background for the investigation of the
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brain structures functioning. The design of oscillatory neural networks, a special kind
of ANN models, provides a valuable contribution into the elucidation of the basic prin-
ciples of the brain performance, because they allow us to study capabilities and limi-
tations of synchronization-based information processing.

The book is devoted to the description and analysis of various oscillatory neural
network models. Neuromorphic dynamical synchronization-based methods of infor-
mation processing can be developed based on oscillatory network models with con-
trollable synchronization. Besides, recurrent oscillatory networks of associative mem-
ory can be designed. The oscillatory associative memory networks, closely related to
analogous networks of complex-valued neurons, possess better memory characteris-
tics compared with those inherent to recurrent associative memory networks of formal
neurons, namely the higher memory storage capacity and poor extraneous memory.

The book consists of six chapters. The introductory material in the first chapter
briefly presents the necessary data on the human brain and outlines the basic types
of ANN models, the widely used classical and modern learning algorithms for ANN,
and the well-known models of oscillatory neural networks. A short overview of mod-
ern branches of ANN theory, such as complicated small-world networks, multi-agent
systems, and cognitive dynamical systems, is given, and brief information about bio-
logically accurate large-scale computer models of the brain structures is also included
into the first chapter.

The second chapter concerns oscillatory network versions of recurrent associative
memory networks (so-called attractor oscillatory networks). The computation proce-
dure executed by this type of networks is realized via network state relaxation into
the vicinity of a stable attractor of network dynamics. The original result, obtained by
the authors, related to the construction and analysis of associative memory networks
of limit-cycle oscillators is presented. Chapter 2 also contains the most significant re-
sults of the macrodynamical approach for large-scale recurrent neural networks of as-
sociative memory, including the authors’ original results. A short review of the most
important results on complex-valued neural networks of associative memory, closely
related to oscillatory associative memory networks, is also included in the chapter.

A series of oscillatory network models with synchronization-based performance
are described in Chapter 3. In particular, the famous oscillatory network LEGION, the
three-dimensional biologically plausible network model by Li imitating the brain vi-
sual cortex performance, and a three-dimensional oscillatory network model for im-
age processing tasks developed by the authors are included. Besides, the oscillatory
network models for the separation of mixed sound fluxes and for odor recognition, ex-
ploiting versions of dynamical binding principle, and two models including modeling
of visual attention are presented in the chapter.

A neuromorphic oscillatory network model with controllable synchronization and
self-organized performance, developed by the authors, for image processing tasks is
described in Chapter 4. It is a spatially distributed network of limit-cycle oscillators lo-
calized at the nodes of a two-dimensional lattice isomorphic with an image pixel array.
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Single oscillator dynamics is tunable by the brightness value of the image pixel corre-
sponding to the oscillator. A number of network coupling principles were constructed
for different image processing tasks. The model demonstrates a variety of capabili-
ties, such as brightness segmentation of real multipixel gray-level images, color image
segmentation, selective image segmentation, and the simplest version of visual scene
analysis — successive selection of spatially separated fragments of a visual scene.

Chapter 5 contains information on the photon echo effect that interestingly ad-
joins to the dynamical binding phenomenon presumably exploited in the brain func-
tioning. Photon echo is a nonlinear optical analog of the spin echo phenomenon that
accompanies nuclear and electronic magnetic resonance. The effect consists in a co-
herent response of an optical resonant medium to ultrashort pulses of laser radiation.
In contrast to nuclear and electronic magnetic resonance, photon echo admits a highly
parallel type of information processing in spatial domain (inside a nonlinear crystal of
one cubical centimeter volume about 10° radiation rays can be used simultaneously)
and is characterized by high operation speed. The principles of optical computing
based on photon echo are nowadays well developed, and experimental prototypes
of various optoelectronic devices for parallel information processing, such as opti-
cal filters and splitters, logical elements, vector-matrix multipliers, and phase optical
memory have been implemented.

Chapter 6 contains some recent authors’ results related to an attempt to incorpo-
rate a model of stochastic oscillators into the problems of optical computations. The
model of stochastic oscillators was used for simulation of the random electric field
of quasimonochromatic polarized light beams. The single stochastic oscillator is a
Ginzburg-Landau limit cycle oscillator with chaotically modulated limit cycle size and
frequency. The feedforward network of stochastic oscillators was designed for model-
ing the evolution of the electric field of a composite light beam consisting of incoher-
ent superposition of nonpolarized quasimonochromatic light beams. The oscillatory
network method allows us to see the temporal dynamics of the electric field of the
composite light beam in the setup, in which beam components undergo the external
optical device actions of typical optical devices (such as polarizer and compensator)
causing instantaneous transformation of the electrical field at discrete moments of
time. The calculation of the correlation matrix of a composite light beam permits us
to estimate the modifications of the correlation properties of the random electric field
and observe the emergence of coherence in the composite system.

We hope that the book will be interesting and helpful for researchers (both young
and proficient) who intend to deal with the problems in such areas as modeling dy-
namical ANNs and creation of parallel adaptive neuromorphic algorithms.
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1 Introduction

1.1 Brain: structure and function principles

The brain is a complex, multilevel, hierarchically organized, adaptive system com-
posed of a range of interconnected modules. The brain modules are multilayered
densely connected neural networks with complicated interconnection structure, con-
taining a great variety of feedback loops. The total number of brain neurons is about
10°-10!!, and the total number of interneuronal connections is about 10*>. There are
thousands of anatomically various biological neurons (see Figures 1.1 and 1.2). How-
ever, general morphology allows us to classify all these cells as neurons (the cells of
star-like shape). Neurons are characterized by a central cell, or soma, that may be of
different shapes. Neurons can be viewed as having an input and output poles. The in-
put pole consists of extensively branching tree-like extensions of the soma membrane
known as dendrites. The output pole, called the axon, arises as a single structure
from the soma. The length of the majority of dendrites is not greater than 1 mm, and
the length of axons varies from parts of millimeter to meters. Neurons are capable of
generating electrochemical pulses (spikes) propagating through axons and activating
other neurons. The information transmission is realized through synapses (chemical
transmission). Thus, dendrites can be considered as receptive zones, axons act as
transmission lines, and synapses are elementary structural and functional units that
mediate interactions between neurons.

A brain neuron may have about 10* different inputs and may send its output up
to 2 x 10° other neurons. As a result of massive interconnections, the brain is an ex-
clusively efficient informational structure. Although neurons are typically about five
to six orders of magnitude slower than silicon logic gates (about 107> s per operation),
the brain far exceeds modern computers in their capabilities and performance. In ad-

Fig. 1.1. Real neurons of mammal brains: (a) neuron of cat auditory cortex; (b) neurons of urchin
olfactory bulb; (c) neurons of human visual cortex [49].
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Fig. 1.2. Three examples of human brain neuron shapes: (a) Purkinje cell from cerebellum; (b) pyra-
midal cell from the visual cortex; (c) star cell from the cerebral cortex (drawings by Ramén y Cajal).

dition, the brain is energetically efficient: it consumes approximately 10™'¢ J per oper-
ation per second, whereas the corresponding value for the best modern computers is
about 107° ] per operation per second.

The brain possesses a number of striking features that make it beyond comparison
with modern computers. From the information processing point of view, the follow-
ing features are acquired by the brain nervous systems in the process of biological
evolution during 600 millions of years: (a) self-organized style of functioning (with
decentralized information processing); (b) massive parallel performance; (c) capabil-
ity of adaptation and learning; (d) reliability and fault tolerance; (e) capability to deal
with incomplete, noisy and redundant data.

Due to extreme brain complexity, the study of the brain functioning is one of the
most difficult problems. Intensive interdisciplinary research efforts to understand how
the brain works are being actively continued nowadays. Recently, international collab-
orative creation of large-scale computer models simulating functioning of real human
brain structures has begun.

Two of the most impressive research cycles aimed at the real brain study via a
detailed computer modeling are worth mentioning. The first one is the international
“Blue Brain” Project (BBP) started in 2005 and directed by H. Markram at the Brain
Mind Institute (EPFL, Switzerland). The project aims at computer simulation of the
human brain neocortical column with great biological accuracy. In 2011 a morpholog-
ically detailed, electrically accurate and synaptically precise column model consisting
of 10° neurons of 200 types and 10° synapses of 6 types was created. It is planned to
further increase the model biological accuracy and to create finally a complete and
accurate brain model capable of systematically reconstructing and eventually simu-
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lating the human brain [15, 84, 91]. The second model is a detailed large-scale model of
the brain thalamocortical system, created by Izhikevich and Edelman [52]. The model
based on the experimental brain measurements of several mammalian species con-
tains 10° spiking neurons and almost 10** synapses. It incorporates multiple cortical
regions, corticocortical connections, and synaptic plasticity of the mammalian thala-
mocortical system. The model exhibited spontaneous activity, emergence of collective
waves and oscillations, alpha and gamma rhythms, functional connectivity at differ-
ent scales and other interesting phenomena. The claimed final goal is to develop a
large-scale biologically accurate computer model of the whole human brain. In addi-
tion to the created model of the thalamocortical system, later it is planned to add the
other subcortical structures, including hippocampus, cerebellum, basal ganglia, etc.

In the opinion of researchers, working in the field of adaptive control, the brain
modeling at microscopic level should be combined with modeling at the macro-
scopic level, when the brain is viewed as a hierarchically-organized system of mod-
ules [124]. It should also be added that we do not concern here such an extraordinary
phenomenon as consciousness that is not yet completely studied and understood.
There exist only separate preliminary attempts to elucidate the basic characteristic
attributes of consciousness [3] that could permit us to formulate the problem in terms
of neuroscience, information processing, cognition and control, and to start modeling
artificial consciousness. Regular international conferences on machine consciousness
have been organized since 2001.

From the informational viewpoint, the brain can be considered as a highly dis-
tributed self-organizing system, exploiting learning and adaptation as key principles
of its functioning. All the impressive cognitive and executive functions of the brain are
realized via modifiable neuron interconnections. One of the natural and effective ways
to study parallel distributed information processing, inherent to the brain, consists in
construction of simplified neural network models and their analysis via mathematical
modeling tools.

Besides the dense interconnectivity structure of the brain neurons realized via
dendrites and axons, there exists so-called dynamical binding—temporal coherence,
realized in the form of synchronization of oscillatory neural activity. The dynamical
binding serves as an important organizing principle in the brain work [105]. Selective
extraction of certain neuron groups from spatially distributed neural networks via for-
mation of dynamically coupled neural subensembles represents an additional quick,
efficient and flexible tool, helpful in the brain performance. As was experimentally
confirmed, synchronized oscillations of neural activity accompany information pro-
cessing carried out by many brain neural structures. Various biologically motivated
oscillatory network models — networks of interconnected nonlinear oscillators with
synchronization-based performance — were designed to study the potential capabili-
ties of dynamical binding used in olfactory, auditory and visual systems of the brain.
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1.2 Artificial neural networks

One of the main of research direction in the neural network theory is the study of
general capabilities of information systems realizing the parallel and distributive type
of information processing. Construction and computer simulation of artificial neural
networks, representing the simple versions of distributed information processing sys-
tems, can be regarded as one of the possible ways to study the capabilities of these
systems.

ANN is a massively interconnected array of processing units (artificial neurons
or others) capable of information storage, processing and retrieval. The ANN mod-
els should reflect the following features inherent to the brain neural structures: the
information is stored in a distributed form, being encoded in terms of network inter-
connection architecture; new information is acquired by the brain neural networks
by means of learning. Depending on the posed problem, either artificial neurons or
neural oscillators usually figure as processing units of ANN.

1.2.1 Neuron models

An artificial neuron model most often figures as an information processing unit of a
neural network. The artificial neurons are truly primitive in comparison with those
found in the brain. However, the neuron model usually reflects three important char-
acteristics of real neurons: the weighted values of synapses, the exploitation of a non-
linear activation function, limiting the permissible amplitude of the neuron output
(see the block diagram of formal neuron, shown in Figure 1.3).

The model of an artificial neuron depicted in Figure 1.3 was suggested by McCul-

loch and Pitts in 1943 [85]. For a neuron with » inputs x;,..., x,, and input synapse
weights wy, ..., w,, the neuron output y is defined as
y(t+1) = G<Z w;x;(t) —hj>, (1.21)
=1

where ¢ is the discrete time, G(x) is an activation function of the neuron, and h ; is

a threshold. If x; € {0, 1} are used, then the most simple G(x) is the Heaviside step

Summing Activation
block function
X~ W,
n _
w
X, —2—= Y wx ——A - I
W, j=1
X

Fig. 1.3. Formal neuron by McCulloch-Pitts.



1.2 Artificial neural networks =—— 5

function, whereas at x; € {-1,1} the activation function G(x) = sgn(x) is naturally
used. Continuous sigmoid functions are used as well. A simple example of a sigmoid
activation function is the logistic function defined by

1
1+e

G(x) = (1.2-2)

Many features of real neurons (pulse character of neural activity, existence of re-
fractory period, nonlinear character of input information summing) are not reflected
in the model of the formal neuron. However, the formal neuron was fruitfully used in
a great variety of ANN models. Spiking neurons and oscillators were used for mod-
eling of more complicated ANNSs. In particular, networks of bursting oscillators were
designed [50]. Two simplest types of ANN represent feedforward neural networks and
fully connected recurrent neural networks (RNNs).

1.2.2 Feedforward networks

An open (feedforward) single-layer neural network of n identical formal neurons, not
interconnected with each other, each possessing »n inputs and a single output, is de-
picted in Figure 1.4 (a). Let G(x) be the activation function of a single neuron, Wik be
the connection weight of the input j to the neuron k and A, ..., h, be neuron thresh-
olds. Then the outputs y,, ..., y,, of the feedforward network (also called a single-layer
perceptron) are defined as

yj:G(Zijxk—hj>, j=1...,m, (1.23)
k=1
or, in the vector form

y = G(Wx - h) = Tx, (1.2-4)

where x = (x,...,x,)",y = (»--s ) > h = (By,..., k) and W = [W,] is an
m X n-matrix.

V1
V>
ym

0
N
f';\
[ |

i
ét
|

b
:'/’;
[ |
s»
M

Fig. 1.4. Perceptrons: (a) single-layer and (b) two-layer feedforward networks.
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Let a series of single-layer perceptrons be connected into a cascade — a chain of
sequentially connected single-layer networks, so that the output of the previous net-
work serves as the input of the subsequent network. Let n”’ be the number of neurons
in the layer I. Then we have dim x’ = n” and W® is an n® x n*"V-matrix. The exam-
ple of a two-layer perceptron (a cascade of two single-layer feedforward networks) is
depicted in Figure 1.4 (b).

The perceptrons were the initial neural network models for which learning algo-
rithms with a teacher (supervised learning) were applied [99]. At first, these simplest
networks were used in pattern classification problems. The simplest learning algo-
rithm (algorithm of the weights Wik adjustment), the so-called least-mean-square al-
gorithm, also known as the delta-rule, was initially implemented for perceptrons (see
Section 1.5.1).

Nowadays perceptrons are widely exploited for the development of various paral-
lel-performing computational algorithms, which often prove to be more effective than
classical grid algorithms or finite element methods. Besides, multilayer perceptrons
can be used as universal function approximators providing the exact calculation of
complicated nonlinear functions of many variables. There exists the universal approx-
imation theorem for a nonlinear input-output mapping, which is directly applicable
to a two-layer perceptron of neurons with a sigmoid activation function [41]. The theo-
rem is based on the generalization of function approximations by finite Fourier series.
Therefore, in principle, two-layer perceptron is capable of approximating the arbitrary
continuous function of many variables. The mentioned universal approximation the-
orem is an existence theorem: it provides the mathematical justification for the ap-
proximation, but provides no recipe for the construction of neuron activation func-
tions. In practice, in the case of fixed perceptron architecture more flexible learning
algorithms, admitting not only weight adjusting, but also activation function modifi-
cation, are necessary. These algorithms have also been developed.

In training a multilayer perceptron by whatever method, it is necessary to create
a nonlinear model of the physical phenomenon responsible for the generation of in-
put-output examples used to train the feedforward network. Moreover, it is necessary
to have an appropriate tradeoff between the reliability of training data for the network
and goodness of the model (see Section 1.6 on neural network learning). That is, the
network design is statistical in nature, and Tikhonov regularization of ill-posed prob-
lems is often necessary to be attracted. (The essence of the regularization consists in
introduction of some additional statistical assumptions to get a stable solution.)

1.2.3 Recurrent neural networks
Recurrent (closed) neural networks (RNN) are characterized by the existence of feed-

back connection loops in the network connectivity structure. This essentially modi-
fies network dynamical behavior and has a significant impact both on network per-
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formance and on its learning capabilities. Recurrent neural networks should be con-
sidered as nonlinear dynamical systems.

The simplest type of a recurrent network can be obtained from a one-layer per-
ceptron displayed in Figure 1.4 (a), if the network output y is fed back to the network
input x (under the natural condition dimy = dim x). The network of such connectivity
architecture can be called a one-layer fully recurrent network. When all network neu-
rons work synchronously, the dynamics of the recurrent network is governed by the
dynamical system which can be written either in the discrete time form

x(t + 1) = G(Wx - h), (1.2-5)

or in the continuous time form (in the case of a continuous activation function):

% = —x+G(Wx -h). (1.2-6)

The well-known Hopfield neural network model is an example of a fully connected
RNN. One can analogously construct a recurrent multilayer perceptron (in the case
when the dimension of perceptron output coincides with its input dimension). This
network could be viewed as a multilayer fully recurrent network — a recurrent percep-
tron). The bidirectional associative memory (BAM) network model [60] can be viewed
as a two-layer recurrent perceptron. Of course, partially recurrent network models can
also be designed.

Many different types of RNN with various connectivity architectures were con-
structed and studied. They were used in various applications, such as sequence classi-
fication, time-series prediction, feature extraction, modeling of input-output behav-
ior of dynamical systems and many others. We focus our attention mainly on single
layer fully connected RNN of associative memory.

Dynamical systems theory can be used for the analysis of RNN dynamics in the
deterministic approach (deterministic neurodynamics). In the presence of noise (sta-
tistical neurodynamics), the approaches based on the attraction of stochastic nonlin-
ear dynamical systems are needed. In either case, the governing dynamical systems
for RNNs belong to the class of multivariable multiparametrical nonlinear dissipative
dynamical systems, which can have a complicated set of attractor structures. Learning
algorithms can be formulated in terms of an additional dynamical system providing
control of attractor locations in the phase space of the main dynamical system gov-
erning network dynamics.

1.3 Recurrent neural networks of associative memory

If a RNN with a rich set of stable attractors is designed, it can be used as an associa-
tive memory network for information storage. The following characteristics of recur-
rent associative memory are implied to be held: (a) distributed character of associative
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memory (information is stored in the form of multicomponent network state vectors —
stable attractors of network dynamics); (b) good “isolation” of memory vectors from
each other (large enough and well-separated attractor basins); (c) appropriate degree
of resilience to noise and network damage (robustness with respect to network param-
eter perturbation).

If the network with a set of stable fixed points is designed, the attractor basins of
fixed points will play a crucially important role in associative memory network per-
formance. The attraction basin of a fixed point p can be defined as the largest neigh-
borhood of p, such that any vector in this neighborhood is attracted by p. For low-
dimensional dynamical systems with continuous-time dynamics, the phase portrait
of a dynamical system provides the complete picture of phase space separation into
the collection attractor basins. In the case of large-scale recurrent networks with dis-
crete-time dynamics the attractor basins usually have very complicated (fractal) form,
and statistical methods are often needed for their analysis.

Various recurrent associative memory network models were developed since 1972
(see Section 2.1.1). The well-known Hopfield model, which can be regarded as a recur-
rent associative memory network with Hebbian learning, was suggested in 1982 (see
Section 1.4). As was clarified, recurrent associative memory neural networks suffer
from so-called spurious, or extraneous memory — the set of additional stable fixed
points arising in the phase space of a dynamical system together with fixed points
prescribed by network interconnection matrix construction. The Boltzmann machine
model was introduced as an extension of the Hopfield network by incorporating
stochastic neurons and using the so-called method of simulated annealing [1]. The
Boltzmann machine with the learning algorithm of adaptive association type [53] does
not suffer from extraneous stable fixed points. However, exponential complexity (with
respect to the neuron number) is inherent to this model, restricting its applications.

1.4 Hopfield network model

The Hopfield model [47, 48] is a fully RNN with symmetric connections. If network con-
nections are trained via Hebbian learning, then the Hopfield network can be viewed
as an associative memory network with content-addressable memory. The network
memory turned out to be robust with respect to connection perturbance.

The dynamical system governing the Hopfield model can be written both in dis-
crete and in continuous time, depending on the choice of the neuron activation func-
tion. In the case of a continuous activation function, the network dynamics can be
written as

dx

= =X G(Wx - h). (1.41)
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The key advance for model analysis was introduction of energy

n
H- _é D Wi (142)
jk=1

The energy (1.4-2) can be interpreted as the Lyapunov function for the dynamical
system (1.4-1), decreasing in the process of network dynamics. The energy H corre-
sponds to a Hamiltonian in statistical mechanics, a cost function in optimization the-
ory and a fitness function in evolution biology. The network memory vectors (stable
attractors of dynamics) are located in local minima of the energy surface.

If the stochastic version of the Hopfield network of formal McCullock-Pitts neu-
rons is considered, there is a direct analogy with the statistical mechanical Ising model
of a magnetic spin system. The Hamiltonian (1.4-2) is then identical to that of infinite-
range spin glasses — spatially distributed random spin systems with competing ferro-
magnetic and antiferromagnetic interaction. Randomness and competition (or frus-
tration) are intrinsic features of spin glasses [20]. The Hopfield model corresponds to
deterministic (zero temperature) dynamics of a spin system (where all spins are up-
dated at the same time step). Asynchronous and block-sequential dynamics are also
possible for RNN.

The statistical mean-field approach was used to analyze the Hopfield model with
an infinite number of stable fixed points at nonzero temperature. The phase diagrams
were obtained, indicating phase transitions from the paramagnetic phase to the phase
of spin glass, and also from the retrieval phase (when the network is capable of per-
forming as an associative memory) into the spin glass phase. The existence of a large
number of metastable states was established, and the general bounds for storage ca-
pacity were found in the frames of the mean-field theory [28]. Much less information
was obtained concerning the sizes and the shapes of attraction basins. These proper-
ties cannot be clarified without direct treatment of a nonequilibrium dynamical pro-
cess. The Hopfield model with a small number of stored patterns was studied analyt-
ically via the master equation approach. In that way, the existence of limit cycles for
the networks with asymmetric connections was shown.

1.5 Learning of neural networks

Learning algorithms are procedures that adapt the free parameters of a neural net-
work to improve the network performance in a concrete task. Most learning algorithms
adapt the network parameters in such a way that certain error measure (called the cost
function) is minimized.

The capability of learning is one of the most significant features of biological neu-
ral networks. It ensures the modification of network functioning via learning from ex-
amples rather than any complicated externally given rules. As a rule, the modification
of the connectivity matrix W is realized during a special “learning phase.” However,
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learning processes “online” are also possible. Then network dynamics is governed by
a coupled system of equations for the network state x and the matrix W that can be
written in the form

% = —x+ G(Wx - h),

s (1.51)
— = yF(x, W),

a - W)

where 1 <« 1is the learning “intensity” (or the learning rate). So, the learning process
causes slow (compared to the relaxation time of the network state x) evolution of the
operator T(x, W) = -x + G(Wx - h), and slow (“adiabatic”) modification of T'(x, W)
corresponds to the “online” learning.

The so-called supervised learning algorithms developed for feedforward multi-
layer neural networks turned out to be directly related to approaches developed for
tasks of nonlinear global multidimensional optimization. Current components of ma-
trix W are modified in terms of the proper cost function E(y, v; W) specifying a measure
of discrepancy between actual y and desirable v network outputs:

OE(y, v; W)

AW.k =
J aVij

(1.5-2)

The unsupervised learning algorithms based on self-organized connectivity ma-
trix modifications were developed mainly for recurrent networks (see Section 1.5.2).
The well-known biologically inspired Hebbian learning algorithm belongs to the class
of self-organized learning algorithms (Section 1.5.2 A). The reinforcement learning that
can be viewed as learning via interacting with an environment also belongs to the class
of unsupervised learning algorithms (Section 1.8.2). At last, so-called genetic learning
algorithms based on modeling of the process of natural biological evolution can also
be considered as self-organized optimization algorithms (Section 1.5.2 B).

1.5.1 The simplest learning algorithms for feedforward networks

The majority of learning algorithms for feedforward networks are based on gradi-
ent descent methods. We present two simplest supervised learning algorithms — the
“delta-rule” algorithm for a single-layer perceptron and the backpropagation learning
algorithm for a multilayer perceptron.

A. The learning algorithm “delta-rule”

Let us consider a single-layer perceptron with the input-output mapping y = G(Wx),
where dimx = m, dimy = n, W is an n x m-matrix and G(x) is a continuous activation
function (e.g. G(x) = tanh(px)). Let the “training” sample, that is, the set of known
input-output pairs {u”, v"}y: , with dim v = m, dimv* = n be given.



1.5 Learning of neural networks = 11

Starting from an arbitrary W, it is necessary to construct successive approxima-
tions to connectivity matrix, satisfying the condition: given the inputs u',...,u",
the corresponding outputs y', ...,y should be asymptotically close to the target set
v',...,v". The solution can be obtained in the explicit form in the case of the simplest

cost function
. 1 M 5 1 M n 5
E(y,v; W) = i Z|vﬂ VP — Z z (U7 - y;‘) . (1.53)

The weight corrections are calculated as

AW = ’1%’ (1.5-4)
where y .
% = —% M; (vf - y}’)G' (;Wﬂuf> ul, G(x) = Z—i (1.5-5)
Finally, we can rewrite the result in the form
AW, = % gsfu;‘, 8 = (v}~ )G (é ijuZ> . (1.5-6)
Formula (1.5-6) may also be written in the vector form
AW = (84 @")hy, & = (v - GIWu"))G' (Wu"), (1.57)

where (u) = M 224:1 ut.
The generalization of the gradient-descent delta-rule algorithm to the case of mul-
tilayer perceptron gives the known backpropagation algorithm.

B. Backpropagation learning algorithm
The backpropagation algorithm, the main working algorithm that was used for feed-
forward multilayer neural networks, was initiated in 1974 [11, 89, 100, 121]. It was in-
dependently proposed by Bryson and Ho [11]. Werbos [121] proposed the algorithm as
a kind of nonlinear regression. Rummelhart with coauthors [100] used the algorithm
for neural network optimization. However, the algorithm was developed earlier by re-
searchers working in the field of optimal control in the early 1960s. Later it was de-
scribed as a multistage optimization method for dynamical systems [11], and further
summarized in the classical book on optimal control. The backpropagation algorithm,
being rediscovered by the Al community, was supplemented by the concept of func-
tions as dynamical objects that have to be evaluated by a network.

Let a multilayer perceptron of L layers be given with the numbers n,,...,n;
of neurons in the layers, the activation functions G” and the connectivity matri-
cesW®, 1 =1,...,L. Let {u*,v*}, ¢ = 1,..., M be the learning sample, and the cost
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function E(v, y; W) be defined by the same expression as in the delta-rule algorithm:

E(y,v; W) = Z (v - y]) (1.5-8)

||M§

1
2M /

Let us perform the following calculations:
(1) Calculate the outputs y(l)’”, I=1,...,L,p=1,...,M forall the layers:

y(l),M _ G(l) (W(l)uﬂ) =1m b

y(l),M -g¥ (W(l)y(lfl),u) = T(l)y(lfl),u) (1.5-9)

N IO

(2) Calculate the errors 8 for the last layer L according to the delta-rule, y(L’l)’”

being the layer input:
s _ (v* - Y(L),H) GO (W Dy -Dy. (1.510)
(3) Find the errors 87 for layers | = L - 1,L - 2,...,1 (in the opposite order)
8P = GO (O yt-DaY [(1ir D) T (1.511)

(4) Using 8, find the corrections AW for all the layers

o_ " { POMESCSVAY :
MW = i Z (y* ). (1.5-12)

As one can see, it is possible to find the outputs for all the perceptron layers by car-
rying out the calculations in the direction from the first layer to the last one, and after
that, to find the errors 8”* and matrix corrections AW, carrying out the calculations
in the opposite direction.

The backpropagation algorithm can also be extended to the case of recurrent net-
works. In this case, it is necessary to introduce a discrete time variable ¢. At the time ¢
one should recompute all the network outputs and transmit them to the time ¢ + 1.
The procedure should be continued in a step-by-step manner. This strategy converts
a recurrent network into a feedforward one, and this version of the backpropagation
algorithm for RNN is called backpropagation through time.

The following limitations of backpropagation as an iterative process are well
known: (a) the convergence of the algorithm is not guaranteed; (b) the convergence
can be very slow; (c) the algorithm can also converge to the local minima on error
surface.
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The computational complexity of an algorithm is usually measured in terms of the
number of arithmetical operations involved in its implementation. A learning algo-
rithm is said to be computationally efficient if its computational complexity is polyno-
mial in the number of adjustable parameters that are to be updated from one iteration
to the next one. In the sense, the backpropagation algorithm is computationally effi-
cient, and its computational complexity is linearin W, i.e. O(W). Also it is noteworthy
that backpropagation algorithm is equivalent to an optimal filter. The algorithm tends
to converge slowly and in a zigzag way about the true direction to a minimum on the
error surface. Another feature of the algorithm performance is related to the presence
of local minima in addition to global ones: there is a risk of being trapped in a local
minimum at every small change in W [41].

1.5.2 Learning algorithms for recurrent networks

A. Hebbian learning

Hebb in the book The Organization of Behavior [44] postulated the first rule for self-or-
ganized (unsupervised) learning motivated by neurobiological considerations. Hebb
proposed that the brain connectivity is continually changing as an organism learns
different functional tasks, and the brain neural assemblies are created by such con-
nectivity changes. Hebb was the first who introduced the learning rule for synaptic
modification. The Hebbian learning law is often shortly formulated as “neurons that
fire together, wire together.” The Hebbian learning law further inspired the develop-
ment of computational models of learning and adaptation.

The use of the Shannon information concept was relevant to deeper understand-
ing of self-organized learning and information processing in self-organized neural
networks. The so-called maximum mutual information principle [79] provided the
proper mathematical formalism permitting us to understand that information pro-
cessing is, in some sense, analogous to information transmission through communi-
cation channels. The idea of a nonlinear adaptive filter proposed by Gabor [27] allowed
us to consider learning as a stochastic process accomplished by feeding samples to-
gether with the target function into a neural network.

The simplest form of Hebbian learning can be written as a discrete-time evolution
process for the connectivity matrix W = [ij] :

Wi(t) = Wyt = 1) + AW, (t), AW () = ny;(H)x, (1), (1.5-13)

where x, (t) is the state of an input neuron, y;(t) is the state of an output neuron, and
n ( = 0) is the learning rate. The discrete-time process (1.5-13) can also be presented
in the continuous-time version: A
aw T
A . 1.5-14
ke ( )
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A series of natural modifications of the learning rule (1.5-13) was suggested to pre-
vent the exponential growth of the postsynaptical state y;(t) due to the repeated learn-
ing application to the input state x, (). For example, the continuous-time version of
the learning algorithm by Oja [88] can be written as

”;_V:’ = (yx" - yTyW). (1.515)

The competitive learning is a special type of Hebbian learning where output
neurons are said to be in competition for input neurons. During training, the output
neuron that provides the highest activation level is declared the winner, whereas
the rest neurons are left unchanged. This strategy is often called “winner-takes-all.”
The competitive learning algorithm suitable for multilayer recurrent networks can be
expressed by

AWy (t) = (1.5-16)

flx;(t) - Wi (1)] if the jth neuron wins the competition,
if the jth neuron loses the competition.

There are many versions of the competitive learning [25, 26, 38, 39, 113]. A sim-
ple modification of competitive learning gave rise to a new powerful class of neural
network models known as self-organizing maps (SOMs). These models were initiated
by Kohonen [57] and are also known as Kohonen maps. The SOMs are trained using a
special competitive learning algorithm (with neighborhood constraint for the output
neurons, which are arranged into a special lattice). As a result, the SOM networks form
a topology preserving map. The SOM networks operate in the two stages: training and
mapping. The competitive learning algorithm for SOM is called a vector quantization.
The mapping corresponding to the competitive learning algorithm is capable of au-
tomatically classifing new input states. In particular, as it turned out, this property
can be used for visualization of high-dimensional input data. The vector quantization
learning algorithm has a clear neurobiological inspiration based on the combination
of three processes: cooperation, competition and adaptation.

Differential Hebbian learning is connectivity matrix modification according to the
rule [60]:

Wi _ dy; (t)
T

The motivation for the differential Hebbian learning algorithm was that the con-
current change rather than concurrent activation more accurately captures synaptic
modifications in the brain nervous structures. The algorithm moved into the focus of
interest after 1997 in relation to the study of networks of spike-timing neurons.

The essential feature of any unsupervised learning (in particular, Hebbian learn-
ing and its natural generalizations) is an automatic, self-organizing character of net-
work connectivity structure modification. Classical Hebbian learning continues to be
popular and successfully applicable in a variety of problems. In particular, it ade-
quately “works” in problems of extraction of regularities from statistical environment.

(1.517)
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B. Another self-organized learning algorithms

Three main categories of learning algorithms for RNN can be selected: determin-
istic gradient-based algorithms, stochastic algorithms, and hybrid algorithms. The
probabilistic principles, information-theoretical approach, Bayesian inference ap-
proach [10], structural risk minimization [41], and cross-entropy error measure are
widely used for learning algorithm construction and for estimation of their perfor-
mance quality. Second-order algorithms, much more efficient than those based on
standard gradient descent, were also developed [10]. They require more calculations
but far less iterations.

The stochastic learning algorithms based on random updates of connectivity ma-
trices and providing optimization of network connectivity structure were developed
as well. In particular, a powerful class of genetic algorithms belongs to the category of
stochastic learning algorithms. In hybrid learning algorithms a gradient approach is
combined with elements of stochastic algorithms. Sometimes hybrid algorithms use
switching of a gradient algorithm to a stochastic one (when the gradient algorithm
gets stuck in a local minimum) and switching back to gradient mode after some time.

Earlier Darwinian selective learning models [19] were relied on the presupposition
that nervous systems often operate in a manner similar to natural selection in evolu-
tion. In the context of learning it means that the basic operational units of the nervous
system are not single neurons but rather local groups of strongly interconnected neu-
rons, and local competition and cooperation among the neurons are responsible for
production of local order in the network.

Modern genetic algorithms belong to the wide research field of population-based
evolutionary computations operating by models of inheritance, mutation, selection
and crossover [22]. According to Neo-Darwinism (a universally accepted nowadays
paradigm of biological evolution containing classical Darwinism combined with ge-
netics and selection rules) there are only a very few statistical processes acting on and
within populations and species. These processes are reproduction, mutation, compe-
tition and selection. Evolution is the result of these fundamental interacting stochastic
processes as they act on population, generation after generation. The idea of a model-
ing of machine learning through simulated evolution has been proposed many times
since 1932 [22]. Genetic algorithms (GA) arose as one of the alternatives of simulated
evolution. These are the population-based optimization algorithms, in which the opti-
mization process is capable of iteratively improving (via a selection model) the quality
of the solution due to modeling the biological fitness (the ability to survive and repro-
duce). They are constructed so as to asymptotically converge to globally optimal solu-
tions by properly chosen variation and selection operators and population size. The
GA can be viewed as self-adaptive search procedures that are relatively insensitive to
the specific choice of internal parameters. This robustness allows many applications.

One of the sources of difficulties of evolutionary algorithms is related to compli-
cated drifting landscapes caused by the dynamics of evolving community.
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1.5.3 Learning, function approximation, and support vector machines

Multivariable function approximation learning algorithms for feedforward networks
are equivalent to finding a surface in a multidimensional space that provides a best
fit to training data (with the fit criterion being understood in some statistical sense).
Generalization is then equivalent to the interpolation (in traditional strict sense) of
the test data with the help of a multidimensional surface. A multilayer feedforward
network performs a nonlinear mapping from the input space to the “hidden” space,
followed by a linear mapping from the hidden space to the output space. The con-
struction of so-called radial-basis function networks (RBF-networks) is a special well-
developed topic in the field of artificial neural networks. The radial-basis functions
form a proper arbitrary basis for an input vector expansion in the “hidden” space.

The RBF networks usually have three layers. The input layer consists of units that
connect the network to its environment. The second (“hidden”) layer implements a
nonlinear transformation from the input space to the hidden space. In most applica-
tions the hidden space is high dimensional. The output space realizes the response of
the network to a signal applied to the input layer. The hidden space is directly related
to the capacity of the network to approximate a smooth input—output mapping. Just
like multilayer perceptrons, the RBF-networks are universal approximators, demon-
strating good approximation properties for continuous functions defined on compact
sets. However, realization of the interpolation procedure via training of RBF-networks
(mapping reconstruction task) usually proves to be the ill-posed problem (when large
data sets contain a small amount of information about the desired solution). In these
cases the Tikhonov regularization approach for ill-posed problems should be applied.
The corresponding RBF-networks are called regularization networks [41, 94].

New approaches in multivariable function estimation and statistical inference
were inspired by supervised learning theory for multilayer perceptrons. In the way a
new class of feedforward networks — the support vector machines (SVM) — were de-
signed [110]. Based on the concept of algorithmic complexity, the essential concepts
of visual cortex (VC) dimension and VC entropy (Vapnic—Chervonenkis dimension (VC
dimension) and entropy [111]) were introduced and exploited in pattern recognition
problems, solvable via training of feedforward networks. The characteristic features
of the learning algorithm for SVM networks consist of the special choice of a proper
subset of training samples and the use of a more appropriate minimization criterion
than the mean-square error criterion used in the backpropagation algorithm. Usually
the learning of SVM-networks can be reduced to a quadratic programming problems.
This is attractive for two reasons: a global extremum of the error surface can always
be found and the computations can be performed efficiently.

The important advantage of SVM-networks is that they provide control of net-
work generalization ability while dealing with classification tasks. It was also recog-
nized [41] that the performance of the learning algorithms for SVM-networks can be
improved by incorporating prior knowledge about the task to be performed.
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1.5.4 Statistical theory of learning

Statistical theory of learning elucidates the features of supervised learning algorithms
for stochastic multilayer feedforward networks.
Consider the network with input—output mapping

y=G(Wx-h) = T(x;w), (1.5-18)

where vector w defines the full collection of internal network parameters (connectivity
matrices W components and thresholds h).

The components of the input vector x are considered as random variables speci-
fied by the conditional probability function P(y|x; w). The teacher provides the desir-
able response z for every input x in accordance with the distribution function F(x|z)
that is fixed and unknown. We can present the response as

z = R(x;§), (1.519)

where & is some noise. The problem of supervised learning consists in selecting T'(x; w)
that optimally approximates (in some statistical sense) the desirable response z. The
selection of T'(x; w) is based on a training sample Q = (x®, z(k)}kM: , — aset of M inde-
pendent identically distributed training examples. That is, the leaning problem can be
viewed as an approximation problem: to find the function T'(x; w) that would be the
best possible approximation to the desired function R(x; £). The important question is
whether a training sample Q contains sufficient information to construct a network
capable of good generalization performance. The tools suggested in [111] permit us to
answer this fundamental question.

To solve the approximation problem, a measure of discrepancy between the de-
sired response z and the actual response y = T(x; w) should be introduced. Usually
a quadratic loss function L(z, T'(x; w)) defined as the squared distance between z and
the approximation of y is introduced, and the ensemble-averaged of L(z, T(x; w)) (the
risk functional) should be minimized.

Due to mathematical difficulties related to the computation of L(z, T(x;w)) in the
case of a large number M of training samples, the minimization of the so-called em-
pirical risk functional can be used instead of the minimization the actual risk func-
tional [110]. The theory of uniform convergence of the empirical risk functional to the
actual one is based on the concept of VC dimension. As turned out, the VC dimension
is a measure of the capacity of a learning neural network. In some cases the VC dimen-
sion is defined by the set of free parameters of a neural network. However, in most of
practical cases it is difficult to estimate the VC dimension analytically. The following
two important results have been obtained:

(1) Let the activation function G(x) of the feedforward network be the Heaviside func-
tion. Then the VC dimension of the neural network is O(W log W) with W being the
total number of network free parameters.
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(2) If the network activation function G(x) is a sigmoid continuous function, the VC
dimension of the neural network is O(W?).

It should also be noted that multilayer feedforward networks have a finite VC di-
mension. Thus, the VC dimension can be regarded as a central parameter of the sta-
tistical learning theory.

Another important characteristic of learning algorithms is their computational
complexity. It concerns the computational effectiveness of a learning algorithm that
can be estimated by the worst-case “running time” needed to train a neural network
given a training sample of finite size M. The algorithm is said to be efficient if the
running time is O(n), where n = dim x (a polynomial time algorithm). Learning tasks
performed by a polynomial time algorithm are usually regarded as “easy.”

At last, one of the most informative characteristics of the learning algorithm is
the so-called learning curve that shows how a neural network performance is im-
proved as the number of training examples increases. The asymptotical properties of
learning curves were analyzed in the frames of statistical approach via a stochastic
descent method [4, 86]. Two learning curves were analyzed as functions of M (the size
of the training sample): one concerning predictive (or generalization) loss and other
the training loss. Besides, a natural definition of the complexity of the neural network
was given. It was found that the asymptotical expression for the statistical mean of
predictive loss can be written as

E[L(w)] = L(w") + % e (1.520)

where the constant C,, which can be directly calculated for a concrete network, may
be interpreted as an effective complexity of the network, w* is an optimal set of net-
work internal parameters, M is the number of pairs in the training sample and 7 is the
learning rate. The value

NIC(w) = L(w") + % (1.5-21)

can be considered as the network informational criterion for the selection of an opti-
mal network model (the network with smaller NIC can be regarded as a better model).

1.6 Oscillatory neural networks and synchronization

1.6.1 Synchronous oscillations of neural activity in the brain and neural oscillators

The brain is a highly distributed system in which numerous operations are executed
in parallel. One of the important question is how the computations occurring simulta-
neously in spatially segregated processing areas are coordinated. Dynamical binding
via synchronization of neuronal activity could play the role of a coordinating mech-
anism. The synchronization was experimentally found in various brain structures,
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such as olfactory bulb and cortex, visual cortex, hippocampus, neocortex, thalamo-
cortical system, and hypothesis about its functional significance in brain information
processing was induced since 1980 [23, 114]. Experimental discovery of synchronous
oscillations in the range of 40 Hz in the brain VC in 1988-1989 [18, 33] reinforced the
attention to oscillatory aspects of visual information processing. As was clarified, the
synchronization that accompanies the visual cortex performance in image process-
ing possesses the following features: (a) the synchronization is a stimulus-dependent
phenomenon; (b) the synchronization is achieved via neuronal interactions; (c) long-
distance neuronal connections are responsible for binding via synchronization.

The desire to elucidate the role of synchronization and the dynamical binding ca-
pabilities in visual information processing stimulated the design of oscillatory net-
work models with various types of oscillators as processing units and synchroniza-
tion-based performance [30, 59, 98, 102-104, 106, 115, 117]. The discussions on dynam-
ical binding via synchronization and elaboration of neuromorphic oscillatory network
models, providing dynamical algorithms for image processing with synchronization-
based performance, are actively continued nowadays [12, 13, 32, 34-37, 62, 66—77, 116]
(see Sections 3.3-3.5).

First of all, a proper model of a neural oscillator was necessary for oscillatory net-
work modeling. Neural oscillators in the brain are typically formed by a pair of excita-
tory and inhibitory neurons. More concretely, the following pairs of neurons can form
an oscillator in various brain structures: pyramidal cell and interneuron in the visual
cortex, mitral cell and granule cells in olfactory bulb and cortex, pyramidal cell and
thalamic interneuron in thalamocortical system; pyramidal cell and basket cell in hip-
pocampus, motoneuron, and Renshaw interneuron in the spinal cord. The first oscilla-
tor model was suggested by Freeman [23], when the prominent 40-60 Hz synchronous
oscillations were reported in the rat and rabbit olfactory bulb and cortex. Following
Freeman, Li, and Hopfield suggested the oscillator model closely imitating a real corti-
cal neural oscillator, and further used it for modeling the olfactory brain system where
oscillations and synchronization play a key role in odor recognition task [78].

We present three typical models of the neural oscillator that were successfully
used in neuromorphic oscillatory network models. The first model used in series of
papers by Wang et al. [12, 13, 116-118] is a relaxation oscillator representing a version
of the Van der Pol oscillator. The oscillator dynamics is defined by two coupled units
x and y and is governed by the two-dimensional dynamical system

x=f0o))+S+I+n,  flxy)=3x-x+2-y,

1.6-1
y =€g(x, y), g(x, y) = a(1 + tanh(x/p)) - y, ( )

where S defines the total contribution from the network oscillator coupling, I is an
external input (defined by local image characteristics), 7 is a Gaussian noise, and ¢, «
and p are positive parameters controlling the form of the oscillator limit cycle.

A biologically motivated model of a limit cycle oscillator formed by an excitatory
pyramidal neuron and inhibitory interneuron of the visual cortex was designed by Li
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and used in a series of oscillatory network models for visual image segmentation [74—
78]. The governing dynamical system of the oscillator model reflecting orientation-
selective response of simple cells of the brain visual cortex can be written as

i =—-u+ah(u) - g) + I,

~ (1.6-2)
v=-v+phu)+1,

where u and v are the membrane potentials of the excitatory and inhibitory neurons,
h(u) is an activation function of the excitatory neuron (of sigmoid form), g(v) is an ac-
tivation function of the inhibitory neuron (monotonic nondecreasing function), and
I* are external inputs on excitatory and inhibitory neurons, respectively. The dynami-
cal system possesses stable limit cycle existing under the condition that the values I*
belong to some finite interval. Otherwise the limit cycle bifurcates into a stable focus.

The features of the dynamical behavior of a biologically motivated neural oscil-
lator designed by Li were accounted for in the oscillator model based on a modified
version of the Ginzburg-Landau oscillator. The improved versions of the oscillator
were further used in series of oscillatory network models providing a synchroniza-
tion-based algorithm for image processing tasks [34-37, 66—68, 71-73]. The oscillator
state is defined by a pair of real variables (1,,u,), and a two-dimensional governing
dynamical system can be written in the form of a single equation for the complex-
valued variable u = u; +iu,

n=f)+g), f)=(p)+iw—u-c)@u-o, (1.6-3)

where p; and ¢ = ¢, + ic, are constants, defining the parameters of the oscillator limit
cycleat g(I) = 0 (the limit cycle is the circle of radius p, located at the point of the com-
plex plane (u,, u,) with coordinates (c,, cy) at g(I) = 0), and w is the natural oscillator
frequency). The function g(I), which dependends on local image characteristics, con-
trols the limit cycle size and the cycle location in the complex plane (u,, u,). The cycle
size is sufficiently large if the brightness I of the pixel that corresponds to the oscilla-
tor is greater than some predetermined threshold value I (in the case the oscillator
state is considered as “active”). Otherwise the limit cycle bifurcates into a stable focus
(“passive” oscillator state). A monotonic dependence of the limit cycle size on pixel
brightness I at I > I"* can be provided via special construction of the function g(I)
(see Section 4.2).

1.6.2 Synchronizable oscillatory networks

The first biologically motivated oscillatory network model was developed by Li
[74-78]. 1t represents a spatially three-dimensional oscillatory network, modeling
the columnar architecture of the primary VC. Although the network was composed
of neural oscillators, the system of excitatory and inhibitory connections for network
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oscillators was constructed separately, based on experimental neurobiological data
on horizontal intracortical connections in the VC. The model was tested in problems
of preattentive image processing including contour integration and texture segmen-
tation tasks. It demonstrated successful synchronization-based performance.

The second remarkable oscillatory network model for visual image segmentation
was the oscillatory network LEGION, whose initial version was designed in 1995 [117,
118]. The model was not intended for a direct imitation of the brain visual process-
ing. Nevertheless, the most perfect model version [13] provided an effective dynamical
image segmentation method based on the synchronization of an oscillatory network.
The active network unit is a relaxation oscillator with internal dynamics dependent
on image pixel brightness. Network oscillators are located in a two-dimensional spa-
tial lattice being in one-to-one correspondence with the image pixel array. In addition
to stationary local excitatory connections and global network inhibition, a kind of dy-
namical oscillator coupling in the network was designed. An algorithm of dynamical
coupling adaptation that allowed us to significantly improve the network performance
was developed. As a result, the final model version [13] provided successful segmen-
tation of real gray-level images containing more than 400 000 pixels. The comparison
of the dynamical oscillatory network algorithm with several modern traditional algo-
rithms of image processing demonstrated real advantages of the former.

The first version of our oscillatory network model of VC [66-68, 71-73] was in fact
inspired by the model by Li. However, in contrast with that model, the pure oscillatory
network model with completely dynamical interaction (without any persistent oscilla-
tor connections) was designed. The attempt to imitate image processing typical to the
low (preattentive) level of the brain vision system performance was undertaken via
the network architecture and performance. Namely, only a single step of bottom-up
VC performance in the task of image reconstruction (without recognition) was simu-
lated. The network oscillators are located in a three-dimensional spatial lattice placed
inside of a parallelepiped. The two-dimensional lattice of M x N nodes is located in
the parallelepided base corresponding to the rectangle containing an M x N image
pixel array. The three-dimensional lattice is considered as consisting of M x N one-
dimensional columns, each of K oscillators, oriented normally to the parallelepiped
base. The total number of the nodes of 3D lattice is M x N x K, and the lattice im-
itates the columnar architecture of the VC. There is the one-to-one correspondence
between the image pixel array and oscillator columns: one oscillator column repre-
sents a single pixel. The limit-cycle oscillator (1.6-3) is chosen as a network processing
unit. The proper oscillator response on pixel brightness was designed by taking into
account the main features of cortical neural oscillator dynamics constructed in [74].
The parametrical dependence of oscillator dynamics on two image characteristics —
a pixel brightness and an elementary bar orientation — was designed. The elemen-
tary bar orientation corresponding to a pixel characterizes the inhomogeneity of its
brightness and is specified by a unit vector orthogonal to the direction of local bright-
ness gradient. Nonlocal self-organized dynamical connections of the oscillatory net-
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work are constructed based on the presumable properties of the dynamical binding.
The dynamical connection of each oscillator pair depends on: (a) closeness of pixel
brightness levels corresponding to the oscillator pair and (b) closeness of oscillator
receptive field orientation (which is an internal oscillator parameter prescribed to the
lattice node where the oscillator is located) to the corresponding pixel bar orientation
of each oscillator. The reduced oscillatory network located in the two-dimensional lat-
tice of M x N nodes being in one-to-one correspondence with the image pixel array
was extracted from the initial three-dimensional network model. The reduced model
turned out to be capable of brightness image segmentation and, in addition, of texture
image segmentation in the cases of simplest texture types admitting a representation
by a collection of oriented bars.

The initial version of the 2D oscillatory network model was further significantly
improved via the construction of more convenient single oscillator dynamics and in-
troduction of more flexible principles of oscillator coupling [34-37]. The improved
model allowed us to include more complicated tasks of image processing such as (see
Chapter 4) (a) brightness segmentation of real gray-level images, (b) selective image
segmentation, (c) color image segmentation and (d) object selection in a visual scene.

On the whole, the dynamical image processing approach via the design of syn-
chronizable oscillatory networks can provide new insights into features of information
processing in spatially distributed oscillatory networks. In particular, it seems plau-
sible that the effects of the versatile synchronization phenomenon could be exploited
in information coding, different from dynamical binding [105]. Synchronization could
be used as a mechanism of acceleration of signal propagation through spatially dis-
tributed networks, and the dynamical binding strategy could help to discover various
flexible mechanisms of network processor coordination.

1.6.3 Networks of pulsed neurons

During the last decade a new generation of artificial neural network models — net-
works of spiking neurons communicating through pulses — has been designed [29, 51,
82]. The first model of spiking neuron was proposed by Hodgkin and Huxsley [46]. It
was suggested that networks of spiking neurons can provide more powerful computa-
tional tools than traditional neural networks [81]. Due to their more realistic proper-
ties, the networks of pulsed neurons can be used to study so-called biological neural
circuits. From the informational viewpoint, it would be interesting to propose models
explaining how information can be encoded and decoded by a series of pulse trains.
A number of complex computational models were created to simulate biologically re-
alistic neural networks.

From the dynamical viewpoint, pulsed (spiking) neurons belong to a class of so-
called excitable systems that possess coexisting limit cycles and stable equilibrium
points as independent attractors of dynamics. Oscillators demonstrating bursting os-
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cillations were used for modeling pulsed neuron dynamics. The bursting oscillations
represent a dynamical regime of the periodically repeated transition from a rest state
to a state of fast, almost periodical oscillations. A dynamical system demonstrating
bursting oscillations can be written in the form

X=f(xy),

. (1.6-4)
V= ugxy),

where x is a “fast” variable, y is a “slow” variable, and u is a small parameter. The
function f(x,y) specifies the fast oscillatory process, whereas g(x, y) describes a slow
modulation of the fast oscillations. A detailed analysis of several classes of dynami-
cal systems demonstrating bursting oscillations and classification of bursting oscilla-
tory regimes is given in [50]. From the viewpoint of synchronizable systems, the im-
portant feature of networks of bursting oscillators is that a complete synchronization
of fast oscillations contained in burster packets can be much harder achievable than
the synchronization of burster packets themselves. Hence, the synchronization of the
bursting oscillators is harder than the synchronization of oscillators demonstrating
strongly periodical (even complicated) oscillations [50]. Nevertheless, as theoretical
studies show, various types of complicated synchronized regimes that characterize
networks of limit cycle oscillators (partial and generalized synchronization, rich va-
riety of complex spatio-temporal types of dynamics) are inherent also to networks of
pulsed neurons [120]. It means that attractors of different types and dynamic complex-
ity can coexist for dynamical systems governing networks of spiking neurons.

1.6.4 Signal processing and communication via chaos synchronization

The discovery of chaotic dynamics in simple dynamical systems was one of most im-
portant events in the field of nonlinear dynamical systems. The idea that deterministic
nonlinear systems can behave in a chaotic manner was first noticed by Henri Poincaré.
At present, the phenomenon is investigated in detail, and chaos is now a multidis-
ciplinary field of research ranging from pure mathematical topics to chaos control.
In the phase space of a dynamical system demonstrating chaotic behavior there ex-
ists a complicated manifold named stochastic attractor. One of the simplest discrete-
time two-dimensional dynamical systems that exhibits chaotic behavior is the Hénon
map - the map of the plane R? into itself [45]
X — x'=1—ax2+y,

. (1.6-5)
y =y =bx,

where a and b are two real-valued parameters.
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a) (b)

Fig. 1.5. The examples of fractal stochastic attractor in phase space of discrete map (1.6-6) (a version
of Hénon map): (@) a = 0.766,b = 0.4; (b) a = 0.8, b = —0.995; (c) a fragment of fractal boundary of
stochastic attractor ata = 0.8, b = —0.9455.

In Figure 1.5, the examples of chaotic dynamics that exhibit a version of Hénon
map with cubic nonlinearity,
! 3
X > x =a-x-bx" +y,

, (1.6-6)
y =y =-x

are presented.

The fractal stochastic attractors in the plane (x, y) (phase space of the discrete
dynamical system) are shown in Figure 1.5 (a) and (b) at different values of parame-
ters a and b; the fragment of fractal boundary of the stochastic attractor is depicted in
Figure 1.5 (c).

The well-known Lorentz system [80] is an example of a three-dimensional con-
tinuous-time dynamical system possessing a stochastic attractor and demonstrating
chaotic auto-oscillations. At appropriately chosen variables, the trajectory of the
Lorentz system in the phase space looks like a blurred limit cycle, and temporal de-
pendences of variables resemble periodic oscillations with variable amplitude and
period [92]. The synchronization of chaotic oscillations may occur when two or more
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systems demonstrating chaotic dynamics are coupled. Both phase and complete syn-
chronization of chaotic oscillations are possible. This phenomenon has been studied
for a long time, and is now well understood theoretically [2, 24, 90, 93]. Many of pre-
dicted theoretical results were further well established in computational experiments.

The capability of chaotic systems to be synchronized can be used in problems of
signal processing and communication. Application of chaos synchronization in com-
munication is aimed at providing the security of information transmission through
telecommunication channels. Since 1990, when communication via chaotic system
synchronization was first suggested [90], a great variety of different approaches to sig-
nal transmission via chaos synchronization have been proposed [6, 8, 9, 14, 16, 17, 40].

To implement chaos communication, two chaotic systems are required as a trans-
mitter and a receiver. At the transmitter, a message signal is added to a chaotic sig-
nal, called the chaotic carrier. The undisturbed chaotic signal should be known to the
response system (receiver). Via the synchronization of both chaotic systems (trans-
mitter and receiver) the message can be decoded, and the message signal can be re-
trieved. This communication scheme is known as chaotic masking. There are a num-
ber of another communication schemes based on various ideas related to chaotic sys-
tem synchronization: switching over chaotic regimes, using chaos pass filters, chaos
frequency modulation, dual nonlinear transformation, advanced chaos control and
many others. Chaos control is implied as stabilization by means of small system per-
turbations. The perturbations should be tiny, to avoid significant modifications of sys-
tem natural dynamics [112].

Thus, the communication via chaos synchronization is a promising field of re-
search with applications in cryptography. The isochronal synchronization of two
chaotic systems provides information transmission with a small bit error rate by
using chaos pass filters. The information transmission can be even error free if the
chaos modulation approach is used. The introduction of the bidirectional coupling of
transmitter and receiver chaotic systems allows additional promising advantages [55].

The following potential advantages of information transmission via chaos syn-
chronization can be noted: chaos transmitter and receiver are easy to realize; chaos
transmission provides lower interference with other kinds of transmission; privacy of
the communication can be achieved via exploitation of chaos synchronization in in-
formation transmission.

The growing number of publications on the topic reflects permanent interest to
the development of chaotic communication systems and their application in modern
information technologies. New models provide realization of new methods of com-
munication channel separation and a variety of facilities for transmitted information
protection. Some of the research directions that are marked by experts as prospective
are the following: elaboration of chaos generators, creation of fiber optic and cable
networks, exploiting the features of chaotic systems, and development of computa-
tional methods of chaos generation.
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1.7 Complicated networks

ANNSs are currently used in a growing variety of research fields. The need to design
the networks composed of processing units with more complicated internal dynam-
ics than that of formal neurons often arises in applications. Interconnection architec-
tures different from the extreme architecture types — completely regular or completely
random — are also required. Such networks are regarded as complicated (or complex)
ANN. There are the following sources of network complexity: complexity of network
connectivity architecture (nonhomogeneity of network connections), dynamical com-
plexity (complicated internal dynamics of network processing units and diversity of
processing unit types) and gradual network evolution as a whole (under the learning
procedure, a model of Darwinian evolution, or other prescribed evolution processes).

From the mathematical viewpoint it is interesting to understand the real evolution
of a dynamical system governing network state dynamics. The subject of special inter-
est concerns the types of network collective dynamics, the ways of information spread
through the network and the influence of the network interconnectivity architecture
on network functioning. Mathematical analysis of complicated networks started only
recently, and a number of useful exactly solvable models were suggested.

As we saw above, RNNs tend to relax into stable static equilibria states if the dy-
namical system of single network processing unit has no other attractors besides sta-
ble fixed points. Many of such equilibrium network states can coexist. If the network
dynamical system possesses stable attractors, different from fixed points, the attractor
associative memory networks can be designed as well. For oscillatory networks, where
processing units display stable attractors in the form of limit cycles, stable attractors
of network dynamics are complicated stationary dynamical regimes. So, oscillatory
networks can be referred to as a class of complicated networks. Depending on spa-
tial dimension and symmetry properties, oscillatory networks can demonstrate syn-
chronization and various inhomogeneous spatiotemporal dynamical regimes: travel-
ing waves, rotating spiral waves, scroll waves, cluster states. Important strict results
were obtained for oscillatory networks of special connectivity architectures: one-di-
mensional oscillatory chains, networks localized in spatial lattices of different dimen-
sionality, networks with homogeneous all-to-all coupling. The features of collective
dynamics types inherent to some of these oscillatory networks were studied analyti-
cally.

The phenomenon of the synchronization of large-scale oscillatory systems stands
on the boundary between nonlinear dynamics and statistical physics. The analysis of
synchronization as a phase transition was first given in the papers by Kuramoto with
coauthors for oscillatory systems with global (all-to-all) homogeneous oscillator inter-
action [63-65, 101]. The macrovariable, admitting the interpretation of the self-con-
sistent mean field, acting on each oscillator of an oscillatory system, was introduced,
and dynamical equations governing microscopic dynamics of oscillatory system were
rewritten in terms of the mean field variable. It was shown analytically that the transi-
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tion into the synchronization state occurs at some critical value of interaction strength
in the oscillatory network. The bifurcation corresponding to synchronization onset re-
sembles the phase transition of second kind in statistical mechanics.

Another class of oscillatory systems is represented by networks of locally coupled
oscillators localized in d-dimensional spatial lattices. In the case of homogeneously
coupled oscillatory chains (d = 1), the critical value «,_ of interaction strength x at
which synchronization arises essentially depends on the form of the oscillator fre-
quency distribution function. In the case of the Gaussian frequency distribution, the
asymptotical dependence of x, on the number N of oscillators in the system was
shown to be k. = O(V/N), whereas in the case of a deterministic frequency distribu-
tion with linear gradient (that is, when Wi -—wj=4j=1...,N- 1) the dependence
is transformed into x, = O(N). Therefore, locally homogeneously coupled oscillatory
chains with oscillator frequencies monotonically growing along the chain belong to
oscillatory systems that are most difficult to synchronize [107].

Strict results concerning synchronization features of locally homogeneously con-
nected oscillatory networks localized in d-dimensional cubic lattices were obtained
for the case of random oscillator frequency distribution [107]. Formation and spatial
dynamics of synchronized clusters were studied at the fixed interaction strength x and
a growing number N of oscillators in the system. It was shown that synchronized clus-
ters of oscillators in a partially synchronized state possess a sponge (fractal) form.

The synchronization of oscillatory networks with special random graphs of con-
nections was also studied. Namely, the random graphs with m connections, outgoing
each graph node, were considered. It was found that at small m the network is in the
state of partial synchronization, being fragmented into a collection of small synchro-
nized clusters. As m grows, the bifurcation occurs at m = N/2: the set of separated
clusters joins into a single giant cluster which size grows as O(N) at N — oo [21].

The analytical results helped to construct a new class of networks admitting an-
alytical study — networks with regular local and sparse global random connections.
This class of networks was named “small-world” networks [87, 119]. The “small-world”
networks allowed us to elucidate the role of long-range interaction for information
processing in large-scale networks. As was found, the connectivity architecture of
“small-world” networks is dynamically advantageous: the networks demonstrate
better synchronization capabilities and facilities of fast information processing com-
pared to analogous networks with pure local coupling. Besides, “small-world” net-
works possess better noise resistance. As a result, it is possible to say that long-range
connections (even sparse) provide a global coordination of information stream in the
system.

The “small-world” network models were developed and exploited in a variety of
research areas ranging from neurodynamics and modeling of self-organization pro-
cesses to the analysis of algorithms complexity. As it turned out, many graph topol-
ogy types associated with some difficult problems are similar to the graph topology of
“small-world” networks. The “small-world” connectivity architecture ensures fast sig-
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nal propagation in the network, which cannot be achieved both for networks with reg-
ular pure deterministic connectivity and for those with pure random interconnections.
Thus, “small-world” networks permitted us to make a step toward the interconnection
architecture analysis of complicated large-scale networks and to study the influence
of the network architecture on the set of possible dynamical regimes [122].

1.8 Multi-agent systems
1.8.1 Multi-agent modeling

Multi-agent modeling is a relatively new area of research dealing with modeling of
interacting agent communities as dynamical systems. The multi-agent systems (MAS)
can be viewed as natural extension of cellular automata models [123]. They represent a
community of processors (finite automata) that function in common environment and
work together at solving a common problem. Each processor may be a complicated
system capable of changing its own state and internal dynamics to learn and to plan
the strategy of cooperation with the other processors. The environment is also usually
considered as dynamical. Cooperative solution is achieved due to various agent inter-
actions, such as coordination, cooperation, learning, and planning of mutual problem
solution. To obtain a cooperative solution, it is necessary to operate by several inde-
pendent criterions: effectiveness of resource consumption, restriction of admissible
time, safety demands, possibility of unforeseen situations, etc. The abilities to nego-
tiate with each other, to cooperate and coordinate efforts are strongly necessary for
successful work of MAS. Memory capabilities are needed to store knowledge about
the environment and the information on members of agent society.

The MAS approach provides direct computational representation of the whole sys-
tem through simulating dynamical behavior of individual agents and their interaction
and studying the system evolution. Macroscopic dynamics of the whole system then
will give information on emergent society behavior. The difference between mathe-
matical modeling in terms of the system of ordinary differential equations and di-
rect modeling via MAS can be outlined through the example of dynamics of a simple
two-population predator—prey system. The two-dimensional Lotka—Volterra dynami-
cal system describes an oscillatory behavior of the overall predator—prey population
(undamped oscillations of constant amplitude for each subpopulation). Modeling the
same system in the frames of MAS allows us to capture fluctuations: the corresponding
subpopulations demonstrate oscillations with fluctuating amplitudes.

Nowadays highly flexible MAS models are successfully used in a diversity of re-
search fields. MAS models are exploited in problems of artificial population evolu-
tion (artificial life), in modeling distributed intellectual systems (collectives of au-
tonomous mobile robots), in monitoring problems (search for resources, study of re-
source distribution, modeling extreme situations), in bio-robotics (control of intelli-
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gent robots, microrobotics), and in industry (planning, automation of plants, creation
of control systems). In medicine MAS are used for tumor detection (redundant data are
eliminated via genetic and immune algorithms). In mathematics MAS are attracted for
the creation of self-organized adaptive parallel computational algorithms.

1.8.2 Reinforcement learning for multi-agent systems

Reinforcement learning [108] is the learning without a teacher. It is inspired by be-
havioral features of biological systems and can be viewed as a learning via interacting
with an environment. Animals and artificial systems face similar problems in learn-
ing: how to optimize the behavior in the light of rewards or punishments. The perfor-
mance of reinforcement learning algorithms is estimated with the help of the fitness
(or reward) function. Reinforcement learning can be used in a variety of areas, such as
optimal control theory, game theory, information theory, simulation-based optimiza-
tion, and machine learning.

Being used in the frames of multi-agent systems, the learning deals with states,
values of actions, etc. The agent performance is compared to that of an agent that acts
optimally. There exist several ways to determine the optimal value function and the
optimal strategy, which have their origins in the field of dynamic programming [7]. Re-
inforcement learning often focuses on an online performance and requires attraction
of exploration mechanisms. Random selection strategy is known to give rise to poor
performance. A deterministic stationary strategy exploits deterministic selection ac-
tions based on information about a current state. The strategy can be identified with
a mapping from the set of states to the set of actions, the expectations being approx-
imated by averaging over samples. The Monte Carlo methods are sometimes used to
model strategy iterations, the recursive Bellman equation being attracted for the esti-
mation of variance. The methods of stochastic optimization are used as an alternative
method of good strategy search.

Currently the reinforcement learning is an actively studied topic in the area of arti-
ficial intelligence. This kind of learning is attractive because of its generality. It can be
viewed as an extension of classical dynamic programming. Unlike supervised learn-
ing, the reinforcement learning does not require explicit train samples. By combining
dynamic programming with the neural network approach many previously unsolvable
problems can be solved.

1.9 Wireless networks and cognitive dynamical systems

During the last several years the Internet has evolved from a wired infrastructure to
a hybrid of wired and wireless domains by spreading worldwide interaction for mi-
crowave access (WiMAX), Wi-Fi, and cellular networks. Therefore, there is a growing
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need to facilitate a reliable content delivery over such heterogeneous networks. The
following obvious advantages of wireless communication can be noted: (a) communi-
cation has been enhanced to convey the information quickly to the consumers; (b) pro-
fessionals can access Internet anywhere without cables; (c) urgent situations can be
alerted through wireless communication; (d) wireless networks are cheaper to install
and maintain.

The proposed multiinput multioutput (MIMO) systems and networking technolo-
gies introduced a revolution in recent times, especially in the wireless and wired
multicast (multipoint-to-multipoint) transmission field. MIMO networks and wired
multicast transmission systems have a considerable influence on many applications
such as teleconferencing and information dissemination services. Numerous research
projects were carried out to explore how to support multicast in various networking
environments. Design and analysis of wireless networks are on the agenda. In par-
ticular, such topics as the dependence of wireless network performance on network
topology and multicast flow control using feedback mechanisms [83] are of interest.

Wireless sensor networks consisting of a number of distributed sensor nodes have
received much attention in recent years as well. The nodes cooperate with each other
to transmit the sensed data to an external base station. Due to their distributed char-
acter, a collaborative organization for robust communication is required. Innovative
techniques are used for reliable communication organization. For example, an artifi-
cial bee colony algorithm, simulating the intelligent foraging behavior of honey bee
swarms, was suggested for the routing protocol of wireless sensor networks [54].

The cognitive radio networks are complex multiuser wireless communication sys-
tems capable of emergent behavior. They are designed based on the concept of dy-
namic and intelligent network management and provide such capabilities as spectrum
sensing, dynamic spectrum management, robust transmit power control self-configu-
ration, self-learning, and emergent behavior. The primary goals of these wireless net-
works are: (a) to provide highly reliable communication for all users of the network;
(b) to facilitate efficient utilization of the radio spectrum in a fair-minded way. The
cognitive radio networks can be viewed as brain-inspired wireless communications.
Many novel architectures, protocols and algorithms have been proposed and imple-
mented. These networks can learn from the adaptations and allow the efficient uti-
lization of radio spectrum and dynamic spectrum sharing [109]. Analyzing the prop-
erties of broadcasting in wireless networks, it was shown that asymptotically optimal
broadcast capacity and latency can be achieved in mobile wireless networks [96]. Het-
erogeneous wireless systems are characterized by the coexistence of a variety of radio
technologies, and a key aspect is then the implementation of efficient joint radio re-
source management mechanisms. The multimedia scenarios of politics on distribu-
tion decisions are developed [31].

The diversity of problems, arising in the field of wireless networking is related
to such research areas as cognitive information processing, signal processing, com-
munication and control. On the whole, the area of wireless networks stimulated the
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emergence of a new discipline, called cognitive dynamic systems [43]. It is based on
the ideas developed in statistical signal processing, stochastic control and informa-
tion theory. It also uses the ideas drawn from neuroscience, statistical learning theory
and game theory. This discipline promises to provide principal tools for further de-
velopment of a new generation of wireless dynamic systems including cognitive radio
and cognitive radar. The approaches elaborated in the fields of Kalman filtering and
dynamic programming by Bellman for classical dynamical systems can be extended
to problems of signal processing, communication and control. It is noteworthy that ac-
cording to a neurobiological evidence, the Kalman-like filtering is used in the visual
and motor brain cortices, and (plausible) also in the brain auditory system. On the
other hand, as it is known, the reinforcement learning, which can be viewed as mini-
mally supervised form of learning, is exploited by animals. Animals are not told what
actions to perform, rather, they work out the actions themselves based on reinforce-
ment received from the environment. A special form of reinforcement learning known
as temporal-difference (TD) learning can be viewed as a combination of Monte Carlo
methods with ideas contained in dynamic programming. Based on the animal brain
features and on the ideas of Kalman-like filtering, a new approach was developed that
led to the creation of new research area — cognitive dynamical systems [43].

Cognitive dynamical systems are built up based on the rules of behavior over time
through learning from continuous experimental interactions with the environment.
For instance, the cognitive radio system would be able to identify subbands of radio
spectrum that are currently unemployed and assign them to unserviced users. A per-
fect example of cognitive radar can be constructed based the echolocation system of
the bat. The bats store information concerning their habitat that was accumulated
through their lifetime experience. With this information the bats are capable of locat-
ing their prey with accuracy and resolution that would be the envy for radar and sonar
engineers. Although the intended applications of cognitive radio and cognitive radar
are different, they do share two common features: scene analysis and operating by a
feedback channel (connecting the receiver to the transmitter and providing the infor-
mational transmitter adaptation to the environment). Thus, both cognitive radio and
cognitive radar represent examples of wireless control systems, and the feedback can
be considered as the facilitator of intelligent information processing.

To complete the presentation of cognitive dynamical systems, it is worth adding
that, in the expert opinion, the following research areas stand under the umbrella of
cognitive dynamical systems: signal processing, communication theory, control the-
ory, radar systems, neural networks and learning machines [42].
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1.10 Quantum and classical quantum-inspired parallel
computational algorithms

Nowadays there is a growing area of research dealing with the construction of quan-
tum and quantum-inspired artificial neural networks and evolutionary algorithms.
Qubit-inspired neuron models are used as processing units of these artificial neural
networks, and concepts and principles of quantum computing are exploited in the de-
sign of network performance. Some quantum-inspired network models demonstrate
more powerful computational capabilities in various complex tasks solvable with arti-
ficial neural networks, including data classification tasks, various problems of global
search and others.

Quantum entanglement, a characteristic feature of quantum systems, is consid-
ered nowadays as the main physical resource of quantum information processing and
quantum computing. Qualitative theory of quantum entanglement is one of modern
directions in quantum information processing, and methods of entanglement mea-
sure calculation are currently under extensive development. Despite the ubiquitous
nature of entangled states, many features of these states remain unusual and even
mysterious from the viewpoint of classical physics.

1.10.1 Photonic one-way quantum computations

In photonic (optical) quantum computing photons figure as qubits (which are usu-
ally called polarization qubits). Photons are ideal carriers for quantum information,
carrying it in the polarization degree of freedom. Photons are easily available, do not
interact with the environment and therefore exhibit negligible decoherence. Their ex-
cellent manipulability allows the precise execution of single-qubit operations. Pho-
tons can be manipulated in an extremely fast and accurate manner and can easily be
transmitted over long distances using optical glass fibers. Thus, a possibility of mak-
ing a quantum computer that uses light seems very appealing.

However, the absence of photon-photon interactions makes two-qubit operations
required for universal quantum computing very difficult to realize, and two-qubit
gates for polarization qubits cannot be constructed. The construction of probabilistic
optical two-qubit gates was suggested by Knill, Laflamme, and Milburn in 2000. This
approach is now known as the KLM scheme [56]. Various experimental versions of the
probabilistic gates were suggested later, and a number of experimental groups have
already demonstrated all-optical probabilistic quantum gates [58].

An alternative approach to the usual circuit model of quantum computing was
introduced by Raussendorf and Briegel [95]. It is the so-called one-way (or the clus-
ter state) scheme of quantum computing, which is based on the creation of a cluster
of entangled qubits as a computational resource. The computations are then proceed
as a series of single-qubit measurements, the basis and order of measurements be-
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ing defined by the computational algorithm itself. Since the entangled cluster can be
prepared “off-line,” the one-way scheme seems to be a promising quantum comput-
ing scheme. Currently all-optical implementation of the one-way computation scheme
with four, six and ten qubit clusters has been experimentally realized. The underly-
ing resource for the computations — entangled cluster states of different topological
architectures — can be generated using the nonlinear optical process known as spon-
taneous parametric down-conversion.

1.10.2 Quantum-inspired neural networks and evolutionary algorithms

A number of novel classical parallel evolutionary algorithms, inspired by quantum
computation algorithms, were developed based on the concepts and principles of
quantum computing such as linear superposition of states. Quantum and quantum-
inspired artificial neural networks (with qubit-inspired neurons as processing units)
were designed and in many cases demonstrated more powerful computational ca-
pabilities than classical neural networks [5, 61, 97]. They are learnable and capable
of solving complex tasks of data classification and problems of binary mapping. At-
traction of quantum information processing principles into the problem of designing
associative memory networks provided an exponential increase of network storage
capacity [97]. Genetic quantum-inspired algorithms (stochastic, population-based
optimization algorithms combining many principles in a global search) were also
developed. The algorithms often incorporate operations of state superposition and
reinforcement learning. In some problems they demonstrated rapid convergence and
good global search capability.
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2 Neural and oscillatory networks of associative
memory

2.1 Neural networks of associative memory
2.1.1 Types of associative memory networks

Design of artificial neural network models with simple architectures of connections
is a necessary step to the elucidation of basic principles of parallel information pro-
cessing. It allows us to understand the capabilities and limitations of these network
models and obtain well-established mathematical results.

Various neural network models of correlation-type associative memory have been
developed since 1972. The first models were proposed in [12, 29, 46]. There is a number
of different types of associative memory networks, among which are cross-correlation
associative memory networks (or networks of heteroassociative memory), autocorrela-
tion associative memory networks, sequence recalling associative memory networks,
bilateral associative memory (BAM) networks and others. In this section, we present
the most important results of a qualitative analysis of the main properties of associa-
tive memory networks: their memory storage capacity and dynamical behavior.

Networks of heteroassociative memory

Networks of heteroassociative memory can be designed based on multilayered percep-
trons. The simplest type of an associative memory network is provided by one-layered
perceptron. Let the set of M input-output vector pairs (p',q'),..., (p™, q™) be given.
The network is required to emit the outputs q', ..., q" provided p',...,p™ are given
as the inputs. The problem is equivalent to the construction of the matrix W for one-
layered perceptron, satisfying the condition

Tp" =q", m=1,...,M, (2.11)
where
Tx:G(Z Wx—h), (2.12)
j=1
and h = (h,,..., hy) is the vector of thresholds, which we further put equal to zero, for
simplicity.

Obviously, the matrix, defined in the form of the sum of outer products,

1
M

Mz

o LG mm —_—
W=— > q"®", W= q; by (2.13)
m=1

1

3
I
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provides the solution. The one-layered perceptron with the matrix of connections
(2.13) can be interpreted as a network of heteroassociative memory that stores the
“memory” vectors q',...,q" and recalls them when vectors p',..., p™, associatively
related to memory vectors q',.. ., q", are provided as network inputs.

The associative memory problem for a multilayer perceptron (a cascade N,
..., N® of L feedforward networks) is formulated as a natural generalization of that
for one-layer perceptron. Let L + 1 sequences S, ..., SV of network state vectors,
each containing M vectors, be given:

SO = pt® L pMWy k=1, ,L+1. (2.1-4)

The sequence of matrices W, I = 1,..., L, for the L-layer perceptron should be
constructed so that the perceptron recalls the sequence $* by emitting p™**? from the
layer N, the p™ being the input of the first perceptron layer. That is, the following
relations should be fulfilled:

TOp™® = pmD - = 1,..,M, I=1,...,L. (2.1:5)

The sequence of matrices for perceptron layers

M
W(l) _ Z pm,(l+l) . (pm,(l))T (2.1—6)
m=1

1
M
provides the solution to the problem. It is natural to call this multilayered perceptron
a network of cascade associative memory.

Networks of cyclic associative memory
If we introduce a feedback connection loop by closing the output of cascade associa-
tive memory network to its input, we obtain a network of cyclic associative memory.
A network consisting of L layers connected into a ring is often called L-AM.

Let SV, ..., 8% be L sequences of vectors and let the connection matrix W for
the layer N of the ring be given by

M
Y prte T, (2.17)

m=1

o L
M

Then relations

) _ pOym® -y oM, 1=1,...,L, L+1=1 (2.1-8)

p p

hold for the L-AM associative memory network. When L = 2, the 2-AM network is called
a BAM [30]. As it turned out, the dynamical behavior of BAM is slightly different from
that of L-AM networks with L > 3.
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Networks of autoassociative memory
The one-layered recurrent network (of Hopfield type) can be regarded as a 1-AM. As we
saw, its dynamics is governed by the dynamic equation

x(t +1) = Tx(t) = GWx(t) - h), (2.1:9)

where x(t) is the network state vector at time t.
If the vectors p', ..., p™ are given, the recurrent network of associative memory is
obtained if we put

" 1 < m,_m
W= Y e (2.110)
m=1

All the vectors p', ..., p" are the equilibria of network dynamics and satisfy the
equation
p"=Tp", m=1,...,M. (2.111)

The main question of interest for autoassociative memory networks is the estima-
tion of the admissible number M of memory vectors that can be stored by an autoas-
sociative memory network with N network neurons and then retrieved as stable equi-
libria with guaranteed attraction basins. It was analyzed by many researchers since
the 1980s (see, for instance, [10, 35, 48]).

General analysis of dynamics of nonlinear, highly multicomponent and densely
interconnected neural networks is a very challenging problem. Therefore, special
asymptotical methods for elucidation of “typical” neural network dynamics were
required to be derived. A statistical macrodynamics approach, developed by Amari
and colleagues [6-8], provided one of the asymptotical methods. Key ideas of this
approach are close to those used by Khinchin for the development of a statistical
approach to the problems of classical statistical mechanics [27]. An important step in
establishing the theoretical background of the statistical macrodynamics approach is
also contained in the papers [50-52]. Rigorous mathematical foundations of statisti-
cal neurodynamics are given in [11]. We outline here the most essential results on the
macrodynamical approach.

2.1.2 Random neural networks and the statistical macrodynamics approach

In order to elucidate a typical behavior of large-scale neural networks it is necessary to
know some macroscopic characteristics of the network dynamics. To this end, macro-
scopic state equations derived from microscopic network dynamics are required. They
can be obtained by the study of an ensemble of random networks — networks in which
parameters (interconnection matrices elements and neuron thresholds) are randomly
generated according to some probability law and then kept fixed. The presence of cor-
relations among microscopic states introduces certain theoretical difficulties into the
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derivation of macroscopic state equations. The situation is quite similar to that en-
countered in deriving the Boltzmann equation in statistical mechanics of gases. A kind
of statistical postulate related to the restriction on possible correlations between neu-
ral network states (analogous to the assumption of “molecular chaos” [50-52]) must
also be formulated for random neural networks in the macrodynamical consideration.
It should be noted, however, that the correlation properties of ensembles of random
neural networks are different from those of statistical physics.

The statistical macrodynamics approach is aimed at the analysis of ensembles
of neural networks of randomly interconnected idealized neurons [6-8]. Let x(t) =
[x,(1),... ,xN(t)]T be the state vector of neural network of N neurons, and the dynam-
ical system governing network microstate dynamics be written in the form

x(t+1) = Tx(t) = GWx(t) - h) (2.112)

Denote by w the set of network parameters: N> components of N x N matrix W
and N components of threshold vector h:

®={Wyp..., Wani by . iy ). 2.113)

Introduce the ensemble Ey of random networks where all W, and b, are inde-
pendently and identically distributed random variables with the probability distri-
bution Py (w), statistical means W, & and variances oy, 0. Then the dynamical sys-
tem (2.1-12) can be rewritten as

x(t + 1) = T, x(¢t). (2.114)

The goal is to determine the macroscopic variable X(x) = [X;(x),..., X K(x)]T that
describes the macroscopic features of the microstate x and to find a macroscopic state
transition equation in the form

X(t +1) = F(X(t)). (2.1-15)
The network mean activity level
1 N
X0 =+ lej (2.116)
=
is atypical example of a scalar macrovariable. Another typical example is the so-called
overlap, which arises in the analysis of memory recall process in associative memory

networks. The overlap, characterizing similarity of current state vector xand a network
memory vector p*, is defined by the inner product

1 1 ¥
W _ T _ k )
a = =) x =< lejxj. (2.117)
pa

A detailed analysis of macrovariable properties and macrostate dynamics is given
in [8, 11]. The following important results established should be mentioned:
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(1) A dynamical variable X(x) = (X;(x),...,X K(x))T is a macrovariable if it satisfies
the macroscopic equation (2.1-15) that holds in a weak sense, that is

dim E[IX(T,x) - F(X)*] = 0. (2.118)

The weak convergence (2.1118) is transformed (under appropriate exact condi-
tions) into the strong convergence (uniform convergence in time) only in the case
of macrovariables for the so-called sparsely connected networks (a special class
of random networks).

(2) Let X, beascalar macrovariable. Then there exist macrovariables X,, ..., Xy such
that X(x) = (X;(x),..., X K(x))T is the macrovariable satisfying a macrostate dy-
namical system

X(t+1) = EX@®), or X=-X+FX). (2.119)

It means that, as a rule, a scalar macrovariable is not a macrovariable by itself,
but is contained as a component in some vector macrovariable.

The macrodynamical equation for scalar macrovariable X defined by (2.1-16) was
obtained in [11]. This equation can be written as

X(t+1)=FWX(t)-H), or X=-X+FWX-H), (2.120)
where
F(u) = 2 Jeitz/zdt =erf <l> , (2.121)
%4 5 2
NW h
W=——  H=-—, = +/No? 2. 2.1-22
. p o = Noy, + o} ( )

The structural portrait of the macrodynamical equation (2.1-20) was also ob-
tained in [8]. In the parametrical plane (W, H) there exist three qualitatively different
regimes: monostability regime I, when only single stable equilibrium exists; bista-
bility regime II, when three equilibria exist (two stable and one unstable); the limit
cycle regime III, when a limit cycle of period two is inherent to network dynamics.
The bifurcation of “limit cycle birth” occurs when the curve that defines a change of
network parameters crosses the boundary separating the regions I and III, whereas
the bifurcation “the catastrophe gather” occurs when this curve crosses the boundary
between regions I and II. Thus, the macrodynamical system provides full information
about all the types of the network dynamics.

Another example of macrodynamical analysis can be demonstrated using the
scalar variable of the Hamming distance between two network microstates

1 N
d= j:zl|xj i (2:123)
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As was clarified in [8], the variable d is not a macrovariable by itself and should
be included into some three-dimensional vector macrovariable X = (d, Z,, Z,). The
macrodynamical system for X can be written in the form

X =-X+dX;W,H,a), (2.124)
where
NW h o\
W=—, H=-, (x=(1+ h2> , (2.1:25)
o o Noy,

and the matrix-valued function @, defining the macrostate transition law, can be ob-
tained via proper statistical averaging over random network parameters.

Only in the limit situation of W = 0, H = 0 the variable X = d is the scalar
macrovariable that satisfies the equation

X=-X+f(XGa), [f(Xa)= %arcsin VaX. (2.1-26)

This equation also admits simple structural analysis. The details can be found
in [8].

Thus, the statistical neurodynamics approach is proved to be useful for the anal-
ysis of essential properties of associative memory networks. It has helped to elucidate
the set of network dynamical regimes and has provided the estimation of the network
storage capacity.

2.1.3 Macrodynamical approach for associative memory networks

Noise reduction by one-layer perceptron

The noise reduction property inherent to the simplest one-layered heteroassociative

memory networks can be demonstrated based on the results obtained in [9].
Consider a one-layer perceptron with memory vectors p',...,p", output vec-

tors q',...,q and let us study the problem of recalling a vector q' from a noisy

version of p'. The similarity between an input x and p' can be measured by the over-

lap

1 1
a= N(pl)Tx =~ Zl Pj%;. (2.1:27)
=
We write the network dynamical system in the form
y(t + 1) = sgn(Wx) (2.128)

(for simplicity we put h = 0 and G(x) = sgn(x)), and calculate the overlap a* of the out-
put y = Tx with one of the memory vectors, for instance, with q = q': a* = N7 (q")"y.
The calculation of the jth component of the output y gives

| N
y;j = sgn ( N z q}pixk) = q} sgn (a + q}Nj) , (2.129)
k=1
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Fig. 2.1. Noise reduction by heteroassociative memory network: The curves a* = F(a/+/r) at differ-
entr.

where
N; = N z z q;."p,’("xk. (2.130)

The term N; can be regarded as interference noise from superposed vector pairs
in W other than (p', q'). The case N; = 0 and @ > 0 would correspond to the exact
retrieval of q', thatisy = q'. The term N ;is asum of N(M - 1) random variables. Ac-
cording to the central limit theorem, at large N the random variables N; are normally
distributed with mean 0 and variance ¢*> = (M — 1)/N ~ M/N = r, where r is the ra-
tio of the number of memorized vectors to the number of neurons in the network (r is
called the network storage capacity). Carrying out the calculation of the probability of
y; = q} using the law of large numbers, the following limit expression for a* can be
obtained [9]:

. . a
I\}l_r)réoa =F <W> , (2.131)
where F(u) is defined by expression (2.1-21). The curves shown in Figure 2.1 demon-
strate the noise reduction by one-layer heteroassociative memory for recalling of as-
sociative vector pairs.

Macrodynamical system for the retrieval process

We consider a network composed N formal neurons each taking two states +1, x =
(%155 xN)T being a column vector of current network state, W = [ij] being an
N x N matrix on network connections. We put vector of thresholds h = 0 again and
consider the network dynamical system in the form (2.1-28).

For a recurrent associative network of Hopfield-type M memory vectors {p™}, m =
1,..., M, are constructed as equilibria of the network dynamics. It can be achieved by
construction of the matrix W in the form of the sum of outer product over memory
vectors,

1 I 1 &
W= 2 e W Y Pl (2132

1 m=1

Mz

3
I
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In the case of recurrent heteroassociative memory network, arranged as a cascade
of L layers with N neurons in each, the full set of memory vectors is

PO m=1, M =1, L pOm = (0, pOm)T (2133)

The memory construction can be achieved via defining the matrix of connec-
tions W of the layer ! in the form

~ 1 M M
W(l) — M Z p(l+1),m(p(l),m) (l) Z (l+1),m (l)m (2.1_34)
m=1 m=1

If components of vectors p™ and p”" are chosen as random identically dis-

tributed variables, taking values +1, the statistical neurodynamics method can be
applied. The signal-to-noise analysis can be employed to obtain the following expres-
sion for the jth component of x(¢ + 1):

x(t +1) = pj sgn(a(t) + p;N;(1), (2.1:35)
where
Nj(t) = Z Z P} X (0. (2.136)
m 2 k#j

For t = 0 the interference noise term N ;(t) is a sum of NM independent random
variables p’’ px;(0) which take the values +1 with equal probability. Therefore, ac-
cording to the central limit theorem N;(0) is the random variable obeying a Gaussian
distribution with the mean zero and the variance a in the limit of large N. This is no
longer the case for N ;(t) at arbitrary ¢ (since x,(t) depends on the set {p”} through the
dynamical system). The careful analysis, carried out in [10], shows that it is possible
to consider N () as random variables subject to Gaussian distribution with vanishing
mean and time-dependent variance o*(t). Moreover, as it turned out, the self-averag-
ing property is inherent to the overlap macrovariable a(t). As a result, the two-dimen-
sional discrete time macrodynamical system was derived for the vector macrovariable
with components X (the mean of overlap a(t)) and Y (the square of variance of inter-
ference noise N j(t)):

Z

X =Elat)] =a, a(t) = —x p' = % Y x;(Op},

j=1

N (2.137)
= Z (N () -
The macrodynamical system derived in [10] can be written in the form
X(t+1)=F(u()), t) = X#)/VY(®),
(t+1) = Fu@®), u() (O/VY(#) (2.138)

Y(t+1) =7+ 4f(u(t)) + 4ru(t) f (u(t))F(u(t)),
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where
u

fu) = \/%e_“z/z, F(u) = j f(z)dz. (2.139)

The extension of the statistical macrodynamical approach [10] to finite tempera-
ture dynamics was performed in [48].

-u

2.1.4 Macrodynamical analysis of the memory retrieval process

In this section we present some results of macrodynamical analysis of the retrieval
process for two different types of associative memory networks — recurrent autoas-
sociative memory network and multilayered feedforward heteroassociative memory
network. As we saw earlier, the macrodynamical approach allows us to describe the
network dynamics asymptotically in the limit when the number of neurons N and
the number of memory vectors M both tend to infinity under the condition that the
ratio r = M/N remains finite (r < oo). The situation is similar to the so-called ther-
modynamical limit in the kinetic theory of gases, and the macrodynamical approach
itself in fact is equivalent to accounting of correlations in the multicomponent system
in frames of mean field approximation of statistical physics.

Continuous time analog of the macrodynamical system derived in [10] can be writ-
ten as [35]

X = -X + F(u),

. ) (2.1-40)
Y =-Y+r+ f(u) +2rBf(u)F(u),

where the functions f(u) and F(u) are defined in (2.1-39), and the parameter 3 is equal
to 1in the case of a Hopfield network (a network of autoassociative memory) and to 0
in the case of a layered feedforward network (a network of heteroassociative memory).

Study of the phase portrait of the dynamical system (2.1-40) and its bifurcations
at changing of the parameter r permits us to elucidate the features of the memory re-
trieval process and to find the critical value r, of the network storage capacity, above
which the memory retrieval is impossible. The phase portrait is defined by the number
of fixed points of dynamics and their mutual locations in dependence of the parame-
ter r. The analysis of fixed points of the dynamical system (2.1-40) can be reduced to
studying the roots of the nonlinear transcendent equation [35]

R(u, ) = F(u) — u* {4 f>(u) + r[1 + 4Buf (u)F(w)]} = 0. (2.1-41)

As a result, at § = 1 (Hopfield network) the phase portrait demonstrates the follow-
ing behavior. At r € [0, 1] there exist exactly three fixed points of dynamics: stable
nodes z° = (0,Y°), z* = (X*,Y*) and saddle point z = (X, Y). The attraction basins of
the nodes z* and z° are separated by the separatrix passing through the saddle z. The
node z* corresponds to network capability of retrieving the memory vector p' (since
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Fig. 2.2. Phase portrait of the dynamical system (2.1-40) at r = 0.03.
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Fig. 2.3. Bifurcation of phase portrait of the dynamical system (2.1-40): (a) r = 0.156, (b) r = 0.161.

0 < X* < 1), whereas the node z° corresponds to the incapability of retrieving (since
X =0).

At small r the node z* is located in close vicinity of the pointz = (1,0), and the
attraction basin of the node z° is very narrow (see Figure 2.2). When r grows, the basin
size of the node z* gradually decreases, and the node itself approaches to the basin
boundary and to the saddle point z. At = r, the bifurcation saddle-node takes place:
the point z* merges with the approaching saddle point Z, and then both disappear (see
Figure 2.3). The disappearance of the stable node z* at r > r. means that the retrieval
of memory vectors is impossible if M > r.N.
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Fig. 2.4. The basins of attraction of stable nodes (a) zj (at = 1) and (b) z; (at f = 0) at r = 0.15.

The behavior of the phase portrait of the dynamical system (2.1-40) at 8 = 0 is
qualitatively similar to that at § = 1. The only difference is that now the saddle-node
bifurcation takes place at larger value of r,.. For example, the comparison of attraction
basins of the nodes z; (at § = 1) and z; (at = 0) in the case of r = 0.15 is presented
in Figure 2.4, where only the trajectories belonging the basin of care are shown.

The critical values r! and r’ of the parameter r at the moment of bifurcation and
the corresponding locations of the nodes z; and z; were obtained:

=1: r'=016, =z’ =(XY")=(0.912,0.286),
A S Lo 2.1-42)

B=0: r.=0269, z,=(X,,Y,)=/(0.841,0.357).

[

The bifurcation diagrams for the dynamical system (2.1-40) at § = 0 and 8 = 1 are
depicted in Figure 2.5. It should be noted that the bifurcation curve 2 and the bifurca-
tion value rf are in excellent agreement with those obtained in [45], where the exact
solution to the problem was found. This fact could be regarded as the evidence of ap-
plicability of the macrodynamical approach to the problem.

An example of time dependence of X and Y near bifurcation is shown in Figure 2.6.
The feature of these curves X (¢) and Y (¢) is that at any fixed Y (0) there exists a thresh-
old X (dependent on Y(0)) so that X(f) — X* att — oo for X(0) > X (that is, the
retrieval is possible), whereas X(t) — 0 att — oo for X(0) < X (the retrieval is impos-
sible). This behavior is a direct consequence of the bounded size and the special form
(triangle like) of the attraction basin of the stable node z* in the vicinity of bifurcation.
We recall that the existence of the critical value r, for the network storage capacity
is caused by network “overloading” — the appearance of a great number of extrane-
ous (“spurious”) fixed points of network dynamics, drastically growing as N — oo
and M — oo [17].
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Fig. 2.5. The bifurcation diagram of the macrodynamical system (2.1-40): B = 1 (curve )and 3 = 0
(curve 2).
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Fig. 2.6. The retrieval dynamics of autoassociative memory network in terms of X(t) and Y(¢) near
bifurcation (- < ¥, +V —r < 0.1).

Concluding the macrodynamical analysis of associative memory networks, it is
important to stress on the essential role of the dynamical equation for the variance Y
(the second equation in the system (2.1-40)). Indeed, the macrodynamical system used
in [28],

X= —X+F(£), Y(t) =« (2.1-43)
Vo

provides more rough approximation for critical storage capacity: r} = 2/7.
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2.2 Oscillatory networks of associative memory

2.2.1 Problem of the design of oscillatory associative memory networks

As discussed in Section 2.1, a low-memory storage capacity is inherent to associative
memory networks of formal neurons. The attempts to design artificial neural-like net-
works of distributed associative memory consisting of other types of network proces-
sors seem natural. The network processing units, alternative to two-state formal neu-
rons, were considered since 1980s. These were so-called phasors — the units in which
state is defined by a continuous variable ranging over the unit circle. Recurrent as-
sociative memory phasor networks of both continuous-variable phasors and phasors
with discrete g-state variable were designed and studied [19, 49]. The performance of
associative memory phasor networks with continuous- and discrete-state phasor vari-
able and sparse asymmetric network interconnection architecture admitted analytical
analysis [49]. For fully connected phasor networks phase diagrams and estimations
of network storage capacity were obtained in the frames of mean-field theory using a
replica method [19].

The networks of continuous-variable phasors (so-called clock neural networks)
are closely related to ensembles of limit cycle oscillators, arising in a wide variety of
research areas, and being used to analyze different types of collective dynamics of var-
ious multicomponent systems. So, it seems reasonable to use oscillators (processors
capable to perform stable undamped oscillations) as processing units for neural-like
networks of the associative memory.

It should also be noted that the phasor networks are related to complex-valued
neural networks (CVNN), which have been extensively developed over the last decade
and have applications in various research areas. In the CVNN the artificial neurons
with complex-valued states and complex-valued activation function are used as pro-
cessing units, and interconnection matrices with complex-valued connection weights
specify the neuron connections (a short outline is given in Section 2.2.4).

In the design of oscillatory neural-like networks of associative memory simple
nonlinear limit cycle oscillators demonstrating sustained harmonic auto-oscillations
are used as network processing units. Single oscillator dynamics is governed by a
two-dimensional dynamical system that is traditionally written in the form of a sin-

gle equation for the complex-valued variable z = x + iy = re':

z= (p2 —lz]* + iw)z. (2.21)

The stable limit cycle of the system (2.2-1) is the circle of radius p (|z| = p), and
w is the natural oscillator frequency on the limit cycle. The system (2.2-1) is the normal
form of a dynamical system undergoing a supercritical Hopf bifurcation (the bifurca-
tion of limit cycle birth or disappearance). The phase trajectory corresponding to the
limit cycle and the curves of temporal behavior of the variables x and y are shown in
Figure 2.7.
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Fig. 2.7. A Ginzburg-Landau limit cycle oscillator.

The oscillator with dynamics (2.2-1) is known as a Ginzburg-Landau oscillator. In
variables r, 0 it reduces to the system of following two independent equations:
P=r(p’ =17,

0w (2.22)

For modeling of recurrent associative memory networks composed of oscillators,
we use a system of N limit cycle oscillators (2.2-1) with p = 1 and symmetric nonhomo-
geneous linear all-to-all oscillator coupling. The dynamical system of the oscillatory
network can be written as

N
zj= (1 +iw; — Izjlz) zj+ Kkz Wiz - z;). (2.23)
=1

Here z; = rjeiei is the state of the jth oscillator and w; is its natural frequency.
The elements of the Hermitian matrix W = [W;i] specify the coupling of jth and kth

oscillators. This matrix satisfies the natural restrictions
N
Wil <1 and Y [W,l<1. (2.2-4)
k=1

The real-valued parameter x characterizes the absolute value and the sign of in-
teraction strength in the system.
The system (2.2-3) can be written in the vector form

z = (D(z) + W)z, (2.2-5)

where z = (zy,..., zN)T is the state vector of the oscillatory system and D(z) is the
diagonal matrix

D(z) = diag(D, (@), .., Dy(2)), D@ =1 +iw; - |z;|. (2.2:6)
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For arbitrary set of parameters {w j}, «x, and W the system (2.2-3) demonstrates a
great variety of complicated dynamical regimes, including synchronization and dy-
namical chaos (see Section 2.2.2). It is the synchronization regime that is used in as-
sociative memory modeling. If the condition Z?i y w; = 0is fulfilled (this restriction
on the frequencies can be always satisfied by a proper rescaling of the dynamical sys-
tem), the synchronization process in fact represents network relaxation into a stable
equilibrium state. The problem of design of an oscillatory associative memory network
can be formulated as a combination of two (independent) subproblems for governing
dynamical system: (1) an inverse problem for the dynamical system: the design of a
dynamical system of type (2.2-3) possessing the prescribed set of stable attractors with
large enough attraction basins; (2) a control problem for the designed dynamical sys-
tem: the selection of dynamical system parameters providing any prescribed subset
of the system attractors from the full admissible attractor set. Here we mainly concen-
trate on the first subproblem.

Let {U™}, m = 1,..., M be a given set of state vectors of the oscillatory dynamical
system (2.2-3). Our aim is to clarify the following questions:

(1) under what conditions parameters {wj}, «, and W the set {U™} can belong to the
set of stable attractors of the dynamical system (2.2-3);

(2) given N, what maximal number M of stable attractors from the set {U™} can si-
multaneously exist (what the memory storage capacity of associative memory os-
cillatory network is);

(3) whether the dynamical system possesses another stable attractors of dynamics
different from {U™} (“extraneous memory” of the network).

Obviously, the study of general properties of the dynamical system (2.2-3) is re-
quired for the elucidation of the posed questions. The dynamical system with homo-
geneous all-to all coupling (when W, = (1 - &;)/N) was extensively studied both
analytically and via computer simulations. The most essential results are presented
in the following section.

2.2.2 Systems of globally homogeneously coupled limit cycle oscillators

Types of collective dynamics of large-scaled systems of limit cycle oscillators
Here we consider systems of limit cycle oscillators with homogeneous all-to-all cou-
pling and random frequency distribution governed by the equations

N
. ) K .
;= (1 - |sz2 + zwj)zj + N Z(zk -z}, j=L...,N. (2.27)
k=1
Let the oscillator frequency distribution {w;} be characterized by a frequency distribu-
tion function g(w) with the effective width A. The oscillatory system demonstrates a
rich variety of dynamical regimes for various interaction strengths x and widths A. A



54 = 2 Neuraland oscillatory networks of associative memory

1.5 T T T
Synchronization RS
(frequency locking) Q\'\‘ &
= & be,"’ 1.2 - Hopfoscillations -
2
x
0.5 Incoherent dynamics 1+ -
. X Quasiperiodic
Partial locking oscillations
0 1 | 0.8 | _
0 0.5 1 0.6 0.8 1

A A

Fig. 2.8. The structural portrait of the dynamical system (2.27) in the parametrical plane (4, x) [43].

kind of macrovariable is usually introduced to study collective dynamics. In the case
of large-scale oscillatory system the macrovariable Z (known as an “order parameter,”
or an order function for oscillatory systems)

1 i
Z== ]Zl z;=Re (2.2-8)

turns out to be adequate. Different types of collective dynamics inherent to the dy-
namical system (2.2-7) were studied based on the analysis of a self-consistent equa-
tion for Z and computer modeling [43, 44]. The complete information about all types
of dynamics is contained in the so-called structural portrait of dynamical system —
the decomposition of parametrical space of the system into the set of domains, cor-
responding to qualitatively different dynamical regimes. The structural portrait of the
dynamical system (2.2-7) in the parametrical plane (4, x), was obtained in [43, 44] and
is presented in Figure 2.8.

We qualitatively describe the regimes of collective dynamics in each parametrical
domain. On the one hand, it should be noted that the variable Z defined in (2.2-8) can
be viewed as a centroid coordinate of an oscillator “cloud” in the complex plane z.
On the other hand, Z defines a measure of coherence degree of oscillatory dynam-
ics. Both stationary and nonstationary regimes of collective dynamics are possible,
manifesting themselves in different Z behavior. However, in the case of stationary dy-
namical regimes, the variable R = |Z| either relaxes to some constant, or undergoes
random fluctuations of order 1/vN about zero. However in the case of nonstationary
states, Z oscillates. There are the following domains in the plane (4, x) corresponding
to different types of dynamics:

(1) The domain of incoherent collective dynamics.

The domain is located in the region k < CA (C is a constant, 0 < C < 1). In

this domain the interaction is too small to synchronize the system. As a result, all

oscillators perform independent oscillations with slightly perturbed amplitudes
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and frequencies. At finite N the variable R undergoes statistical fluctuations of
order 1/+/N about zero.

The domain of synchronization (frequency locking).

The domain is located in the region « > CA. The synchronization to a common
frequency w emerges spontaneously. The variable R relaxes to a constant. Oscilla-
tions of each oscillator correspond to a limit cycle of radius p = V1 — . The system
is strongly ordered geometrically over the oscillation amplitudes. Oscillators form
a stationary arc in the complex plane z, in which oscillators with the most extreme
frequencies possess the lowest amplitudes.

The domain of oscillation suppression (“amplitude death”).

The domain is located in the region ¥ > 1 + C(A - 1). In this case oscillations
are impossible. Oscillators pull each other off their limit cycles and collapse into
the origin as t — oo. The origin z; = 0, j = 1,..., N is a stable fixed point of
the dynamical system (2.27). The function R(¢t) approaches a constant value as
t — oo. Since the amplitudes of all oscillators are zero, this state is often referred
to as “amplitude death”.

The domain of unsteady collective dynamics.

This domain is located in the vicinity x = A and is comparatively narrow. It con-
tains a collection of different regimes (see [43, 44] for details). First, there exists a
thin subdomain, located in the vicinity of the line x = A, corresponding to a par-
tial synchronization. In this state the oscillator system splits into two subsystems
with qualitatively different dynamics. The first subpopulation that contains oscil-
lators having frequencies with absolute value less than some critical value is in a
synchronization state. The second subsystem, formed by drifting oscillations, is
characterized by oscillating R(t). Both the states of partial synchronization and
the incoherent state belong to statistically steady states. A thin domain bordering
the synchronization domain corresponds to Hopf oscillations — small quasisinu-
soidal oscillations about the synchronization state. This nonstationary dynamical
regime arises as a result of stability loss by synchronization state. The correspond-
ing R(t) is an asymptotically oscillating function with a small amplitude.

A wider domain adjacent to the domain of Hopf oscillations is a domain of so-
called large amplitude oscillations. This regime is qualitatively different from
Hopf oscillations. These are slow nonsinusoidal oscillations of a partially syn-
chronized state. The frequency of large oscillations is typically lower than the
width A of oscillator frequency distribution. The oscillations arise from the syn-
chronization state as a result of a saddle-node bifurcation. In this case the func-
tion R(t) undergoes slow nonsinusoidal oscillations of a large amplitude.

At last, there exists a regime of dynamical chaos, in which oscillators evolve in an
irregular manner in the complex plane, and R(t) undergoes chaotic oscillations.
The “diagnostics” of a dynamic chaos state demands the estimation of Lyapunov
exponents, which characterize an exponential divergence of dynamical system
trajectories, and also the estimation of the spectrum of R(t). The chaotic state
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is characterized by “power spectrum” of R(¢), containing all the frequencies and
demonstrating a typical decreasing at frequency growing.

A self-consistent method of the mean-field theory was used in [43] for calculation
of all region boundaries in the plane (4, ) and for stability analysis of all dynamical
regimes. At small k and A < 2/3 there exist at least three formally permitted synchro-
nization regimes, but only one of them is stable.

Analysis of critical phenomena for oscillatory systems in the frames of phase
approximation of dynamics

The system of equations of phase approximation can be derived for small Aand « via a
simple transformation of the of oscillator dynamical system (2.2-7). The phase system
can be written in the form

de y AN
—F =0ty ;;1 sin(6 — 6,), (2.29)
where
. K 5 w; ~
0; = arg(z;), &= T @; = 3 f =tA. (2.2110)

The phase approximation is valid when all oscillator limit cycles are only slightly
perturbed by the oscillator interaction. Hence, this phase approximation, which is at-
tractive due to the simplicity of the system (2.2-9), is admissible when frequency distri-
bution is narrow and oscillator interaction is sufficiently weak. In the frames of phase
approximation a number of interesting analytical results, confirmed further by com-
puter experiments, were obtained. These results mainly concern collective dynamics
of oscillator systems with all-to-all homogeneous coupling. Sometimes it is convenient
to rewrite the phase oscillatory dynamical system in more general form

d;

di /N

N
> (6, - 6)). (2.211)
k=1
where h(0) is a periodic coupling function [20]. Then, besides the order function Z
defined by (2.2-8), a more general order function H, related to the system of equa-
tions (2.2-11), can be used to study the synchronization as a type of the phase transi-
tion [20-22, 31, 32, 55]. Statistical macrodynamics approach for large-scale oscillator
systems was developed in [33].

In terms of the order function Z = Re”¥ the dynamical system (2.2-9) can be pre-
sented in the form of the system of the uncoupled equations

N
0; = w; + kR Z sin(6, — ). (2.212)

k=1
The function Z(t) can be interpreted as the mean field of the oscillatory ensemble.
The appearance of the mean field can be described as self-consistent process that can
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be studied via deriving and analysis of the evolution equation for Z. To derive the self-
consistency equation, it is convenient to present the function Z in the form

2
Z(t) = j gy, t)eV dy, (2.213)
0

where g(v, t) is the density function for oscillators with phase y at time ¢. The follow-
ing self-consistency equation corresponding to dynamical system (2.2-12) can then be
derived:

1
Z=2 J kZg(x|Z|x)V1 — x*dx. (2.214)
0

For the frequency distribution given by a Lorentzian,

Y 1

A ar )

g(w) =
the analytical expression for the function R = R(#), 1 = 2y/x was obtained [33]. The
behavior of the function R in a small vicinity of the synchronization threshold «, char-
acterizes the type of phase transition into the synchronization state. As it turned out,
this phase transition is of the second type, demonstrating the behavior R = O(1/k — «.)
at small x — . It was further named as Kuramoto phase transition.

In a more general situation, the order function H corresponding to the dynami-
cal system (2.2-11) satisfies the functional equation dependent on %, g(w) and h(9). In
the following, the synchronization threshold (in the subcritical regime) the oscillatory
system is in the incoherent state, and the order function is identically zero. In the su-
percritical regime, atx > «_, the order function is essentially nonzero. The onset of syn-
chronization can be viewed as a bifurcation of appearance of nontrivial order function
in functional space. Computer simulations demonstrated excellent agreement with
analytical results, obtained for function H in the vicinity of synchronization using the
standard methods of bifurcation theory [20].

Another class of oscillatory systems studied in computer experiments was locally
coupled spatially distributed oscillatory systems, localized in d-dimensional lattices
(d = 1,2) [53, 54, 56]. The main attention was focused on the cluster formation in the
process of phase transition into the synchronization state (the cluster formation was
studied in the frames of phase approximation of oscillator dynamics and the mean
field theory). An interesting analytical result was obtained for one-dimensional os-
cillator chains: the critical value x, defining the synchronization onset behaves as
K. = O(+/N) at large N [56]. Hence, a linear oscillator chain with any fixed coupling
strength x cannot be synchronized when the number of oscillators in the chain in-
creases. For oscillator systems localized in lattices with d > 2 clusters of synchronized
oscillators in an intermediate state of partial synchronization were demonstrated to
possess the fractal structure.
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Important results were also obtained for large-scale oscillator systems with ho-
mogeneous and nonhomogeneous global coupling in the presence of external noise.
It required the consideration of infinite systems of stochastic differential equations
coupled via mean-field interaction. The approach was based on the analysis of stable
time-dependent solutions of a nonlinear Fokker—Planck equation [13-16]. It allowed
us to give an analytical self-consistent description of the phase transition into the syn-
chronization state. The phase transition was studied as a Hopf bifurcation for time-pe-
riodic probability density satisfying the Fokker—Planck equation. It was shown that
the phase-transition-type depends on the shape of the frequency distribution func-
tion g(w): both “soft” (subcritical) and “hard” (supercritical) bifurcation are possible.
Oscillatory systems with a special type of random inhomogeneous oscillator coupling
(the van Hemmen coupling) were also studied. In this case it was necessary to intro-
duce three order functions instead of the single function Z. This allowed us to obtain
amore detailed phase diagram for the oscillatory system. The phase diagram contains
parametric domains corresponding to the “paramagnetic” state (the incoherent state
of oscillatory system), “ferromagnetic” state (synchronized state), “spin glass” state
(global synchronization is absent, but oscillators are synchronized with random dis-
order) and “mixed” state (a state of partial synchronization). The bifurcation analysis
(transitions from the incoherent phase to the others) was performed. The results were
confirmed by experiments on Brownian simulation [16].

2.2.3 Associative memory networks of limit-cycle oscillators

Oscillatory dynamical system, phase approximation of dynamics, and eigen-basis
of coupling matrix.
In the regime of synchronization oscillatory systems have the capability to store infor-
mation, just in the same manner as recurrent neural networks, and the dynamics of
the oscillatory system has a resemblance with relaxation dynamics of recurrent neural
networks into stable equilibrium states.

We consider oscillatory networks of limit cycle oscillators with dynamics governed
by the dynamical system (2.2-3). It can be rewritten in the polar form

N
i = (1 - rf - xaj) i+ Kkz Wikt cos(O = 0; + Bjr),

=1
. N (2.216)
0 = w; — by + = Y Wi sin(6; - 6, + Bjp),

J k=1
where , .
Wi = [WyleP = W e,
(2.217)

N N
a; = Zij cos i, b;= Zij sin By
k=1 k=1
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In the general case we have the system of coupled equations for r; and 6, but in
the special situation, when all r; are close to the limit cycle |r| = 1, it is possible to sep-
arate the independent pure phase system from the complete dynamical system (2.2-16)
(as a phase approximation of dynamics). Given the frequency distribution {w;} and the
interaction strength «, the parameter y = Q/x with Q = malewjl can be introduced as
the essential parameter of the oscillatory dynamics (the parameter Q can be consid-
ered as a measure of the frequency distribution width). As the analysis shows, phase
approximation is admissible for sufficiently small Q and sufficiently small x. Then,
one can obtain the phase approximation of oscillatory dynamics (2.2-16) in the form

N
0, =w+ KkZlekrk sin(6;, - 0; + Bjr). (2.218)

Initial attempts to design an oscillatory associative memory network were based
on the dynamical system (2.2-18). It was clarified later that the exact dynamical sys-
tem (2.2-1) is much more suitable for this task. Nevertheless, information on the prop-
erties of the phase system (2.2-18) was proved to be useful and instructive for elucida-
tion of the behavior of attractors of full dynamical system (2.2-1) [36]. To present here
some simple results on attractors of phase system (2.2-18), we introduce the eigenbasis
of the matrix W.

Let A", m = 1,...,M (M = rank W, M < N) be real nonzero eigenvalues of the
Hermitian matrix W and U™ = (U™, ..., Uﬁ)T be the corresponding mutually orthog-
onal N-dimensional eigenvectors vectors with complex-valued components, and U*
be the Hermitian conjugate to U. The one has

wu™ = A", uh'um =, m=1,...,M. (2.219)

Let the matrix W be presented in the form of the outer-product expansion
R M
W= Amurum)' (2.220)
m=1

Obviously, the expansion (2.2-20) is nothing but a representation of the linear
operator W in the form of the sum of one-dimensional orthogonal projective oper-
ators U™(U™)" onto the subspaces corresponding to the eigenvalues A™. The vector
space X of state vectors z = (z,,...,2y)" of full amplitude-phase dynamical system
can be expanded into the set sum

X =xudX? (2.221)

where
X'=imX = {x|x =Wz}, X*=kerX = {x|Wx=0}. (2.222)
It is clear that XX = X' when M = rank W = N. In the general case (M < N) any
z € X' can be presented by its expansion in the orthogonal basis {U™}:

M
z= Z VAL VA AL 4 S LY (2.223)

m=1
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It is easy to see that the state vectors of the phase approximation (2.2-18) belongs
to the hypersphere S of radius VN, S = {z|z € X, |z| = VN}. It is also convenient to
introduce the set of vectors {V"'} related to {U™} by

V"= VNU", V"= &B, IV = N. (2.224)

Then, instead of (2.2-20) we obtain a more convenient decomposition
1 & ‘
W=— ) A"v*rvmh 2.2-25
N m; v (2.2:25)

Now one can recognize the variables Z™ as the “overlaps” that were used for
asymptotical analysis of the retrieval process in the case of neural networks of associa-
tive memory (see Section 2.1). When the oscillator number N is large, the variables Z™
are macrovariables. They can be considered as “order functions” governing the phase
transition into the synchronization state of oscillatory networks with inhomogeneous
all-to-all coupling.

In terms of the macrovariables Z™, the phase system (2.2-18) can be rewritten in
the form of N uncoupled equations

N
0, =w;+x Z A"R™ sin (1//"‘ + B} - Gj) . (2.2:26)
k=1

The advantage of representation of phase system (2.2-18) in the form (2.2-26) is that
it provides the description of the phase dynamical system in terms of acting “mean
field.” In some simple situations it allows us to derive the self-consistency equations
in a closed form and to clarify completely the question on the number of stable attrac-
tors of an oscillatory network and their bifurcations under network parameter varia-
tions [42]. The coupling matrix of homogeneously coupled oscillatory network can be
defined as W = UU', U = N"/2(1,...,1)T, and the unique, already known to us, order

function

Z

z-L ¥ (2.227)

<.
Il
—

exists in the case. The following self-consistency equation for R = Re Z can then be
obtained:

N w:
yzukgl\/l—yfuz, y:%, uzﬁ, yj=5]. (2.2:28)

Based on the self-consistency equation (2.2-28), the behavior of stable attractors
of network dynamics under variation of the parameter y for the network composed of
three homogeneously all-to-all coupled oscillators was elucidated [42] (see Figure 2.9)
with the following results. The value y = y = 0.588 corresponds to synchronization
threshold: the network is not synchronized at y > y (small interaction strength «);
synchronization arises at y = y, and a pair node—saddle equilibria of the dynamical
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Y

Fig. 2.9. Stable attractors of phase dynamical system in dependence on parametery = Q/x.

system (2.2-26) appears. The single stable attractor (the stable node N;) exists in the
interval y; < y <y (with 0 < y; < ). Further, the second node-saddle pair appears
aty = y, (with 0 < y, < y,), and the two stable attractors (nodes N, and N,) coex-
istaty, < y < y,. The third node-saddle pair appears at y = y,, and three stable
attractors (the nodes N;, N, and N;) coexist at 0 < y < y,. If, on the contrary, y in-
creases starting from y = 0 (strong interaction), at first three stable nodes coexist at
small y (0 < y < y,). Then, the stable nodes N, and N, disappear via a saddle-node
bifurcation at y = p, and y = y,, and the single stable node N, remains in the in-
terval y; < y < y. It should be noted that when the network with the coupling ma-
trix W = UU', U = N"2(1,...,1)T is considered as an associative memory network,
the stable attractors N, and N, should be referred to attractors belonging to the “ex-
traneous” memory (that arise in addition to the “scheduled” attractors). The question
on extraneous memory will be discussed in more detail in Section 2.2.3.

Oscillatory associative memory networks, the admissible set of memory vectors,
and phasor networks
We now return to the dynamical system (2.2-3) and to the problem of the oscillatory
associative memory design. The dynamical system governing oscillatory network dy-
namics is given by (2.2-5) with the coupling matrix W satisfying the conditions (2.2-4).
The stable equilibria are defined by the following system of linear equations with con-
stant coefficients:

(D(z) + kW)z = 0, (2.2229)
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where y ; ;
D(z) = diag(D,(z), ..., Dy(z)),
N (2.230)
~ . 2
Di(@) =1+iw; - |z;|" - KkZink.
The stability of equilibria is defined by eigenvalues of the Jacobian
J(z) = (D(z) + £W). (2.231)

As we saw in Section 2.2.1, the state vectors that can figure as stable attractors of
the dynamical system (2.2-29) (the memory vectors that can be imposed into the oscil-
latory network memory) are not arbitrary but must be chosen from a special set {V"}
of mutually orthogonal vectors in CV — the eigenvectors of matrix W. This set can be
naturally called the “phase” basis:

B = {V" V" =e®, (V)'V" = N&y,, k,m=1,...,N}. (2.232)

The basis B is cyclical because equation (2.2-29) admits the cyclical N-polygonal
pyramid group. Hence, all the vectors of B can be generated from the single unit vec-

tor V° = (1,..., 1) by application of recurrent action of the group representation op-
erator 5
. i i(N— T
T, = d1ag(1,e’¢, L@ Dy ¢ = N (2.233)

An arbitrary N x N matrix W satisfying the conditions (2.2-4) can be represented
in the form

o1 &
W=—= Y A"V, (2.2:34)
N2,
where A™ are some real numbers. The matrix W of rank M,
R 1 ¥ R
W= = YAV M = rank W (2.235)
m=1

is the matrix of the projection operator onto the M-dimensional subspace of CV
spanned by V..., VM, Similarly to vectors of the basis B, the matrices W and W*
are cyclic.

Let us denote oscillatory network with arbitrary frequency distribution {w;} satis-
fying the condition Z;\; yw; =0, and coupling matrix WH as ON ({wj}, «¥W). Introduce
the special type of oscillatory network with zero frequencies: PN(xW) = ON({0}, kW).
These networks, which can be regarded as phasor networks, are closely related to so--
called clock neural networks (that, in tern, are related to systems of continuous-state
magnetic spins in a plane) [19]. The phasor networks are also closely related to CVNN,
which are now actively applied (see Section 2.2.5). On the other hand, the phasor net-
works PN(kW) can be considered as the limit case of networks of coupled oscillators
with extremely strong oscillator interaction (since y = Q/k — 0as x — o). In the
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problem of oscillatory associative memory design the phasor networks PN({0}, kW)
play a role of a key model, attaining the maximum storage capacity at special choice
of network parameters.

Class of networks with guaranteed memory characteristics and poor extraneous
memory

Stable attractors of dynamics of oscillatory network ON({w;}, «¥W) and the correspond-
ing PN(xW) are proved to be closely related. Namely, the following proposition is
valid.

Let V',..., VM be the stable attractors of network dynamics of the phasor net-
work PN(xW), and the value of interaction strength % for the network
ON({wj},ch) satisfies the condition y = Q/k <« 1, where O = max;|w;|. Then, the
the memory vectors V', ..., V*of the network ON({w;}, kW) represent small perturba-
tions of the corresponding V*,..., V¥,

The proof of this statement can be obtained by the estimation of the norm
[VF — V¥|| with the help of a perturbation method on the small parameter y. The
proximity of V',..., V™ and V',..., V™ was also confirmed in computer study of
phase portraits of oscillatory dynamical systems at small N [37, 38].

The matrix W, defined according to (2.2-35) is known as the Hebbian matrix of
connections (due to its direct relation to the Hebbian learning). However, in contrast to
neural networks of associative memory, memory vectors of oscillatory network cannot
be arbitrarily chosen. Instead, they have to be chosen from the special set of mutually
orthogonal vectors of CV — the “phase” basis B defined according to (2.2-32). Besides,
only the special choice of the number N of network processing units (oscillators or
phasors) provides the networks with guaranteed (completely controllable) memory
characteristics. Thus, a special class of oscillatory associative memory networks can
be selected [37, 38]. Namely, if the number N of oscillators is a prime number, the
memory storage capacity up to r = M/N = 0.5 can be achieved for the the phasor
associative memory network. These networks are characterized by the following fea-
tures: (a) any subset of M (M < [N/2]) vectors from the phase basis B can be chosen
as the set of the network memory vectors; (b) the network possesses a poor and easily
diagnosed “extraneous” memory.

If the number N is not prime, the network memory is not completely controllable:
only special odd numbers M of memory vectors from B can be chosen as the sets of
network memory vectors.

The extraneous memory — an additional set of stable equilibria of network dynam-
ics that arises in the phase space of the governing dynamical system simultaneously
with the scheduled memory vectors — crucially influences on the performance of asso-
ciative memory network via decreasing the sizes of memory vector attraction basins.
As a result, the network retrieval performance degrades. The extraneous memory of
Hopfield networks was shown to grow exponentially under some conditions [17]. For
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oscillatory networks with composite numbers N the extraneous memory definitely ex-
ists, but its features have not been completely studied. It is computationally confirmed
that if some extraneous vector P belongs to the phasor network memory, the number
M' = N -1 of another extraneous vectors different from P also exists in the network
memory. (This fact is a direct consequence of cyclicity of W.) There is one more no-
table property of extraneous memory of the phasor networks: unlike the memory vec-
tors V1, ..., VM from the phase basis B, the components P; of extraneous vectors are
characterized by different |P;| for different j. In addition to isolated extraneous mem-
ory vectors, a complicated degenerated stable equilibria can exist. These arise due
to the peculiar phase space of the governing dynamical system (an N-dimensional
torus). The detection of the degenerated extraneous equilibria is not a simple task.
As was revealed in the computer study, a vast extraneous memory, which can exist
for the oscillatory networks at composite numbers N, results in drastic degradation of
network retrieval capabilities [37, 38].

Some analytical results on networks of limit cycle oscillators: Structural portrait of

a two-oscillatory dynamical system

In the case of the system of two coupled oscillators

z = (1 +iw, - |z,[))z, + 1ce’.ﬁ(z2 -z, (2.236)
2, = (1 +iw, - |2,|))z, + kP (2, - z,),
the parametrical space of the dynamical system is {w, x, 8} where w = w, = —~w,, W}, =
¢ with the domains —co < w < 00,0 < k¥ < coand -77/2 < S < m/2. As one can see from
the form of equation (2.2-5), the whole set of equilibria of the oscillatory dynamical

system consists of two subsets: z = 0 and {z # 0, (D(z) + xW)z = 0}.

Let D denote the subdomain of the parametrical space where the equilibriumz = 0

is stable and S denotes the subdomain where the equilibria {z # 0, (D(z) + kW)z = 0}

are stable. The following results can be analytically obtained for the two-oscillatory

system [39]:

(1) There exist from one up to four fixed points of (2.2-36) in different domains of the
parametrical space, and only one of these points (the fixed point U' € S)isa stable
node, whereas the others are saddles.

(2) The structural portrait of the system (2.2-36) contains the following domains:

(a) the domainS:

w>0: k2> filw,f) at0<w<w; K> fr(w,f) at w>w,
w<0: k= fi(w,B) at o< ol <wy k> fy(w,B) at |o| > w,,
(b) the domain D:

w>0: filw,p)<x< flw,p) at w>w,
w<0: folw,f)<x< filw,f) at|w >w,
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(c) the domain O:

w>0: k< filw,f) at0<w<w;

k< fh(w,B) at w> w,

w<0: k< fz(w,P) at0< ol <w,y; Kk < fulw,B) at |w| > w,,
where
w w +1
filw, B) = m> frlw, ) = m>
@) = =g fulw, ) = fo(-lal, )
_l+sinf _l-sinf
@1 = cosfB ’ @2 = cosfB

The projection of the structural portrait onto the quadrant (w, «, 0), w > 0 is shown
in Figure 2.10. The domains S (the synchronization domain), D (the domain of un-
steady multifrequency oscillations) and O (the domain of oscillation suppression) can
be written analytically in the following form:

S={a>ww<l}u{a> (0 +1)/20>1}
O={a<wws<llufa<lw>1}, (2.237)
D={l<a< (@ +1)/2}.

The structural portrait is symmetrical with respect to the k-axis at real-valued «
(Imx = 0) in the upper half-plane « > 0. The symmetry is absent if Imx # 0. The
simplicity of the structural portrait is a consequence of coupling symmetry. In the case
of nonsymmetrical coupling, a narrow domain corresponding to more complicated
oscillatory dynamics arises in the vicinity of the line x = w, w € [0, 1]. However, in the

3 T T T
2+ J
S D
x
1F
0
0 1 1 1
0 1 2 3 4
w

Fig. 2.10. Structural portrait of dynamical system of two coupled oscillators at Imx = 0 (the projec-
tion of full structural portrait of the system (2.2-36) onto the quadrant (w, x,0), w > 0).



66 —— 2 Neuraland oscillatory networks of associative memory

(€)]

< Bl 3 |
X, t t
(b)
< < 3 <
X, X, t t
©
= N > %) i
X, X, t t

Fig. 2.11. Phase trajectories and temporal dynamics x, () and x,(t) of system of two coupled oscilla-
tors in parametric domains (a) O, (b) D, and (c) S.

case of the two-oscillatory system this narrow domain does not contain the subdomain
corresponding to chaotic dynamics.

The examples of the dynamical regimes in the domains O, D, and S are given in
Figure 2.11.

Some analytical results on networks of limit cycle oscillators: number of stable
attractors for small oscillatory chains

A class of closed chains of limit cycle oscillators represents an important special ex-
ample of globally coupled oscillatory systems and possesses some attractive features.
These networks can be considered as building blocks in the problem of design of os-
cillatory associative memory networks with general interconnection architecture. Ho-
mogeneously coupled closed oscillatory chains are governed by the dynamical sys-
tem (2.23) with Wy, = wd;,,;, where w = b + ic = ue. At small N (N = 3,4, 5,6) the
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Fig. 2.12. The structural portrait of dynamical system governing the dynamics of the oscillatory
chain of six oscillators. The numbers in the picture denote the numbers of stable attractors in de-
pendence of coupling strength w = b + ic.

chains were analyzed analytically, and the obtained results were further confirmed in
computer experiments.

The structural portrait of the dynamical system governing the dynamics of the
oscillatory chain that comprises six oscillators in parametrical plane (b, ¢) is shown
in Figure 2.12. It contains the domains of existence of one, two and three stable fixed
points of the dynamical system. All fixed points correspond to memory vectors from
the phase basis B. The stability of the domains when N grows was estimated. For
example, the domain of stability of the memory vector V° = (1,...,1)! increases as
N grows, whereas the domains of stability of the other vectors from B decreases [41].
An interesting feature of closed oscillator chains is that they provide an example of
coupling architecture of oscillatory associative memory networks that lacks extrane-
ous memory.

An asymptotical estimation of memory storage capacity of oscillatory chains gives
the value r, = 0.27.

2.2.4 Oscillatory media related to networks of limit cycle oscillators

In this section, we consider a class of oscillatory networks consisting of locally cou-
pled limit cycle oscillators. In spatially continuous limit these networks can be viewed
as oscillatory media governed by a nonlinear diffusion equation — the so-called re-
action—diffusion equation (RDE). Spatiotemporal regimes in nonlinear media (wave
trains, standing waves, spiral waves, stripe patterns, and cluster states) has been
studied since 70s and are widely known as dissipative structures. Belousov—Zhabotin-
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Fig. 2.13. The examples of spatiotemporal regimes (dissipative structures) in nonlinear media, gov-
erned by 2D CGL: spiral defect chaos near threshold of Rayleigh—Benard convection (left); coexis-
tence of spirals and defect chaos (right).

sky oscillating chemical reaction in a thin layer of fluid and oscillatory media of
Ginzburg-Landau oscillators belong to the most familiar examples of nonlinear ac-
tive media. A considerable scope of oscillatory media studies exists, including strict
mathematical results, physical level results and computer modeling [18, 23, 24]. The
examples of dissipative structures arising in two-dimensional nonlinear media gov-
erned by the complex Ginzburg-Landau equation are shown in Figure 2.13.

Depending on the local coupling template (the number of closest neighbors cou-
pled with each network unit), the networks can be considered as 1D, 2D, or nD spa-
tially distributed arrays of processors. Similarly to locally connected neural networks
known as cellular neural networks [57], the locally coupled oscillator arrays may be
naturally regarded as cellular oscillatory networks. The two-dimensional oscillator ar-
rays can be successfully used to model collective oscillatory neural activity. We present
here some results of analytical study of possible dynamical regimes in one-dimen-
sional oscillatory media corresponding to closed and open oscillator chains.

For locally coupled Ginzburg-Landau oscillator arrays it is convenient to rewrite
the governing dynamical system (2.2-3) in the form

N
;= (1+iw; - Iujlz)uj +K Z Wi (. = u), (2.2-38)
k=1

where

0. N
u]' = rjel 7, W]k = Wk]' (2'2-39)

In the case of homogeneously locally coupled oscillatory chains, the coupling ma-
trix elements can be written as

Wy =dd; 10,1 d=xe¥=d, +id,, (2.2-40)

where d is the coupling strength in the chain. To transform the dynamical sys-
tem (2.2-38) into its spatially continuous analog, one should introduce the spatial
coordinate x (x € [0,I]), and the complex-valued function u(x,t) instead of u;(t).
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Then, the RDE can be easily derived:
= (1 +iw(x) - [ul’)u+du,,, (2.2-41)

where u(x,t) = u,(x,t) + iuy(x, t), and the second derivative u,, = 9°u/0x* plays the
role of Laplacian Au in 1D case. Equation (2.2-41) can be rewritten in terms of the two-
component real-valued vector-function u(x, t) = (u,, uz)T:

i = F(uu + Du,, (2.2-42)
where .,
. 1-uf —u —w . d, -d
F = 1 2 5 D = 1 2 . 2.2'4
w- (U ) oo () e

Oscillatory media governed by the RDE (2.2-41) represent a special type of Ginz-
burg-Landau oscillatory media governed by the widely known equation

W= [1+iw- (1+if)|lw]]w+ (1 +ie)Aw. (2.2-44)

However, the diffusion operator in (2.2-41) is of more general type than that in

equation (2.2-44).
The following properties are inherent to the RDE (2.2-41).

(1) fw(x) = w = const, the function w(x, t) = u(x, t)e"* satisfies the RDE (2.2-41) with
w = 0. So, it is sufficient to analyze only an RDE with w = 0.

(2) The function u°(x, t) = % is a spatially homogeneous solution of the RDE (2.2-41)
with w = 0.

(3) Ifw = 0, the complex-valued vector-function w(x, t) = (u, v)" = 272 (u, + iy, u, —
iu,)” satisfies the RDE with a diagonal diffusion operator:

[E=amwwn (S [ x(5 S)[] eem

(4) To further analyze the properties of the nonlinear RDE it is helpful to use an
expansion of the solution into the series of orthonormalized system of eigen-
functions {X,,(x)} of the corresponding linear scalar diffusion operator. For the
RDE (2.2-41) with w = 0 these series can be written in the form

w () = Y Xu(Pu(), w61 = ) X, (x)Q, (), (2.2-46)

m=1 m=1
where X, (x) are simple periodic functions of x (for open chain X, (x) =
cos(nmmx/1)), and {P,,(x), Q,,(x)} can be obtained from the solution of the system

of coupled ODE - the “moment system” [40].

By analyzing the series (2.2-46) it is possible to elucidate the main features of the
RDE (2.2-41) solutions [40]. We mention of the most important of them.
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(1) The diffusion instability of 1D oscillatory media corresponding to closed oscilla-
tory chains occurs in some parametrical domain of (x, y).

(2) Theregime of plane wave trains (the RDE solutions of the form u(x, t) = U(wt—kx))
can exist. It can arise as a result of a bifurcation from a spatially homogeneous
dynamical state.

(3) In the case of oscillatory media corresponding to open oscillator chains, the
regime of modulated standing waves (special RDE solutions with separated vari-
ables x and t) can also exist. Its existence was established by analyzing the
series (2.2-46).

(4) Cluster states — the RDE solution with separated variables x and ¢ of another type
than standing waves — can exist as well. The cluster states correspond to the oscil-
latory medium decomposition into synchronously oscillating subdomains (clus-
ters), where each cluster oscillates with its own frequency, amplitude and phase
shift. The regimes of cluster synchronization are of special interest from the view-
point of dynamical neuromorphic methods of image processing.

2.2.5 Associative memory networks of complex-valued neurons

The processing units of CVNN are neurons with complex-valued states and discrete-
valued activation functions. Accordingly, network coupling is specified by matrices
with complex-valued elements.

As was clarified, complex-valued neurons are more functional than real-valued
ones. The multivalued activation function makes single network neuron more flexible
and adaptive. As a result, the CVNN are capable to learn faster and generalize better.
In particular, they permit us to overcome the Minsky—Papert limitation and to extend
the solvable class of nonlinearly separable problems. The CVNN models with continu-
ous-valued activation functions were successfully developed as well. It was possible to
generalize the perceptron learning rule to construct the complex-valued back propa-
gation algorithm. In addition, the learning algorithms for CVNN were constructed that
do not suffer from the local minima phenomenon. A significant advantage is inher-
ent to CVNN in signal and image processing problems due to the proper exploitation
of phase information. Single-layer and multilayer CVNN of feedforward architecture
are capable to analyze the phases of the Fourier spectral coefficients and to achieve
successful recognition and restoration of blurred and corrupted images. The CVNN
also permit us to naturally exploit a multivalued logic over the field of complex num-
bers [1-5, 25].

Recurrent complex-valued neural networks of associative memory were also de-
signed and studied [26, 32]. They consist of N fully connected multistate neurons, the
output of each neuron being determined by the equation

N
x;. =¢ (Z Sjnx,,) , (2.2-47)
n=1
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where S = [$ jn] is the complex N x N matrix, and ¢(x) is the complex multivalued sign
function. The recurrent associative memory CVNN is capable to store complex-valued
vectors

X5 xE= (o), xFeY (2.2-48)

as a set of stable attractors of neural network dynamics. The components of X* may
be both continuous valued and quantized, that is, defined as

k in/K 1K1 .
x5 efe™E L j=1,.0N, (2.2-49)

n=1
where the resolution factor K divides the complex unit circle into K quantization levels
(separate sectors). Similarly to the case of real-valued neural networks, the energy
function can be introduced for CVNN, providing the analysis of CVNN dynamics in
terms of local energy minima. If the matrix § is chosen in the form of the sum of outer-
products over the memory vectors (the generalized Hebb rule),

S= X" (x™T, (2.2-50)

Mz

1
N =

3
il

the set (2.2-48) of M memory vectors can be stored by a complex-valued autocorrela-
tion associative memory network. In the case of CVNN each memory vector is not an
isolated equilibrium point but an equilibrium subset of the network (a closed curve
in the complex space). The asymptotic behavior of a dynamical system trajectory near
memory vectors was analyzed, and conditions assuring the correct recall of a memory
vector were discussed [34].

The temporal evolution of the overlap during the memory retrieval phase was also
studied in computer experiments. It was found that in the case of unsuccessful mem-
ory vector recall, the variable overlap demonstrates a kind of oscillatory dynamics. It
reflects the behavior of the trajectory of the network dynamical system in the vicinity
of the stable attractor corresponding to the memory vector (which is similar to trajec-
tory behavior near very slowly damping stable focus). The network storage capacity
r = M/N achieves the value r, = 0.5 for CVNN of autoassociative memory [47].

On the whole, a great number of publications is devoted to various aspects of cur-
rently popular CVNN topic, including their numerous applications.

Concluding the section, we note a close resemblance between complex-valued as-
sociative memory neural networks and recurrent phasor networks of associative mem-
ory discussed in Section 2.2.3.
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3 Oscillatory networks for modeling the brain
structures performance

3.1 Motivations for oscillatory network modeling

Coherent oscillations and synchronization of the neural activity was observed in dif-
ferent areas of the brain of mammals, amphibians and insects. Synchronization was
discovered in monkey’s motor cortex and in the visual cortices of cats. Synchronous
oscillations in the antennal lobe of insects appear to enhance the animal ability to
distinguish between two closely related odors. The exhibition of synchronized neu-
ral activity in a wide range of brain areas of a diversity of organisms indicates that
synchronization presumably plays a fundamental role in the brain information pro-
cessing. In particular, synchronization and resonance are used in many human brain
neural structures: olfactory and auditory systems, thalamocortical system, hippocam-
pus, and neocortex.

All this induced large interest to theoretical studies of oscillatory networks and
stimulated the development of oscillatory network models for various information
processing tasks. As a result, a series of oscillatory neural network models, exploiting
principle of dynamical binding via synchronization, was created. Besides the models
developed for image processing [5, 6, 11-14, 17-19, 23-27, 31-34, 45, 46, 49, 50], oscil-
latory network model for processing of mixed sound streams [43, 47, 48] for olfactory
information processing and odor recognition [30, 37, 38] was designed. It was clarified
that the oscillatory dynamical methods of image processing demonstrate some ad-
vantages over traditional computational methods, mainly due to their self-organized,
distributed and automatic style of performance.

3.2 Oscillatory network models for the olfactory and auditory
brain systems

3.2.1 System of two coupled oscillatory networks for modeling the olfactory brain
system functioning

The olfactory brain system consists of a pair of coupled modules — the olfactory bulb
and the olfactory cortex. The main feature of this system is that the olfactory bulb
transforms any input odor into the oscillatory neural activity. Further, all kinds of in-
formation processing are performed by cooperative work of the olfactory bulb and ol-
factory cortex using resonance, selective cortical response and odor-specific feedback
suppression of olfactory bulb response. In addition, oscillatory associative memory is
exploited by the olfactory system to successfully perform odor detection, recognition
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and segmentation. Mechanism of odor-specific feedback provides adaptive function-
ing that can be viewed as the simplest example of cognitive neural computation.

The model of two coupled neural networks each consisting of excitatory and in-
hibitory neurons and capable of oscillatory dynamics was designed by Li, Hopfield,
and Hertz [30, 37, 38] for modeling the olfactory bulb and olfactory cortex joint per-
formance.

Before describing the model, it is necessary to say a few words about neuron
types and interconnectivity architecture of the brain olfactory system. The main neu-
ron types of the olfactory bulb are the excitatory mitral cells and the inhibitory granule
cells. The mitral cells receive odor inputs and excite the granule cells, which in turn in-
hibit the mitral cells. The outputs of the bulb are carried to the olfactory cortex. Odors
induce the oscillatory bulbar activity. These oscillations are an intrinsic property of the
bulb, and upon repeated presentation of the odor they weaken. The primary olfactory
cortex receives bulbar outputs. The signals are conveyed to the excitatory pyramidal
cells of the cortex, both directly and via feedforward inhibitory cells of the cortex.
The pyramidal cells are connected with each other and with feedback interneurons
(which inhibit them). Thus, there is some excitatory—inhibitory circuitry both in the
bulb and in the cortex. The cortex differs from the bulb in much greater spatial range
of the excitatory connections and in presence of excitatory—excitatory connections.
Cortical output (including the feedback to the bulb) starts from pyramidal cells. It is
important to note that the oscillations in the cortex do not arise spontaneously and
require an input from the bulb. This anatomical structure has led some researchers to
model the olfactory cortex as an associative memory for odors.

In the model [38] only basic features of the olfactory system were retained to il-
lustrate the basic operation of the system. The model consists of two modules, a bulb
and a cortex, with forward and feedback connections between them. The bulb encodes
odor inputs as patterns of oscillations entering into the cortex. The cortex, represent-
ing an oscillatory associative memory network, recognizes them via oscillatory reso-
nance when the input from the bulb matches one of the stored odor memory patterns.
The resonant activity pattern is transformed into a feedback control signal to the bulb,
leading to approximate canceling the odor input that generated it. The system is then
able to respond to a newly arrived odor (which can be superposed with the previous
one). In this way, the system segments temporally different odors.

Damping limit cycle oscillators figure in the model of two coupled neural net-
works as functional units of both the bulb and the cortex networks, although local
populations of excitatory and inhibitory neurons figure as the structural units of both
networks. Single network oscillator is formed by these coupled local neuron subpop-
ulations (of excitatory mitral cells and inhibitory granule cells). The first version of
bulb oscillator model was created by Li and Hopfield [38]. Dynamical equations for
the neural oscillator were written in terms of membrane potential of the mitral neu-
ron (the variable x) and the granule cell (the variable y), averaged over local neuron
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populations:

Z w9y () + 1,

(3.21)
=-ay; + Z G () + IC

Here I; is the odor input to mitral neuron, IJC. is the external input from the cortex
(containing the feedback signal), Hj, is the (nonnegative) weight of inhibitory con-
nection from the granule neuron k to the mitral neuron j, Wy, is the weight of corre-
sponding mitral-to-granule connection, g, (y) is the sigmoid activation function of the
granule neuron, g, (x) is the similar activation function of mitral neuron and 1/« is the
membrane time constant.

In fact, the network model represents a two-layered feedforward neural network
with two external entries — the external input and the input from olfactory network
(for realization of feedback control). When the odor intensity exceeds some thresh-
old value, the bulb network demonstrates bursting oscillatory dynamics in the form
of oscillatory packets of finite duration. There exists a finite discrete collection of os-
cillatory eigenpatterns of the bulb network defined by the network parameters. Non-
linear feedback from olfactory network permits to gradually change the parameters of
bulb eigenoscillations and to control the response of the bulb to external input odor
mixtures.

The model of the olfactory cortex is structurally similar to the bulb network. Its
functional unit - a single oscillator — is formed by the (averaged) excitatory pyramidal
neuron and the inhibitory interneuron. The difference between both networks mainly
concerns the connection architecture. Namely, the cortex network receives oscillatory
inputs from the bulb network and there exist internal excitatory-to-excitatory connec-
tions in the cortex network in contrast to the bulb network. Therefore, the cortex net-
work can be represented as a two-layer recurrent network of associative memory. A set
of stable focuses (that correspond to packets of damping oscillations of appropriate
mean frequency) form a collection of network memory templates. The cortex network
demonstrates a resonant response to the oscillatory input from the bulb network in
the case when the frequency of the input is close to one of the mean eigenfrequencies
of the cortex network (then it is in the corresponding eigenoscillatory state). Other-
wise, the cortex network is in the “silence” state. The resonant oscillatory cortex net-
work response is interpreted as “odor recognition.” The cortex network feedback to
the bulb is empirically designed but biologically motivated. It is not negligible only
in the case when own network response does not vanish. The system of governing
dynamical equations can be written as

i = —ou; - g, (u;) + Z Tikdo@o) = . Hixg, (0 + I,
, (3.22)
v; = —av; +yg,(u;) + z k9 ()
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Here u; is the average membrane potential of local population of pyramidal neu-
rons and v; is that one of interneuron population, j=U ;] is the matrix of excitatory-
to-excitatory connections, H = [H ] is the matrix of inhibitory-to-excitatory connec-
tions and W = [W;,] is the matrix of excitatory-to-inhibitory connections.

Detection and recognition of an input odor by the system is carried out in two
steps: (1) if the odor of sufficient intensity has been recognized by cortex network as
a familiar one, the bulb network response to the subsequent odor is “blocked” by the
feedback from cortex network (the blocking is realized via shifting the location of bulb
network attractor corresponding to the received odor); (2) at subsequent odor mixture
the bulb network does not react to already diagnosed odor (as if it was excluded from
the odor mixture), and so the bulb network is able to respond to the subsequent odor.

Computer simulations were performed with networks consisting of 50 excitatory
and 50 inhibitory neurons. The Hebbian matrices ] and W were designed so as to pro-
vide storing of three stable oscillatory attractors in the cortex network. Thus, the de-
signed two-network model of olfactory brain system is capable to detect, recognize
and segment (via exclusion from the unknown mixture) odors. The three tasks car-
ried out by the system — detection, recognition and segmentation — are computation-
ally linked. The designed system performs what might be called the simplest cognitive
computation. It is natural to suppose that the flexible adaptation of the biological ol-
factory system was elaborated by biological evolution.

3.2.2 Oscillatory network approach to segmentation of mixed interfering acoustic
streams

The acoustic streams reaching our ears are composed of sound energy from multiple
environmental sources. Consequently, a fundamental task of auditory perception is
to disentangle this acoustic mixture in order to retrieve its separate components. The
problem can be categorized as auditory scene analysis. Human ear exhibits a remark-
able ability to segregate the voice of a single speaker from a mixture of other interfering
sounds. So, the creation of neuromorphic computational models capable to imitate
neurobiological process of decomposition of mixed sound stream is always of inter-
est. As usual, such models are also capable of robust and automatic performance. The
auditory scene analysis is related to the problem of blind source separation, which
was developed independently [43, 52].

The appeal to oscillatory approaches to auditory scene analysis was related to the
fact that synchronized oscillations with frequency of about 40 Hz were experimen-
tally discovered in the brain auditory cortex similarly and in the visual and olfactory
brain systems. So, the application of the idea of temporal dynamical binding to audi-
tory grouping problems was initiated in the early 1980s [44]. In particular, oscillatory
binding via synchronization seemed to be relevant in problems of auditory scene anal-
ysis. Oscillatory network model with synchronization-based performance, capable to
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segregate sound stream from a variety of interfering sound sources, was suggested by
Wang and Brown [47]. It is a combination of two interactively performing networks of
relaxation oscillators with local excitatory and global inhibitory network connections.
The preliminary calculation of sound stream characteristics should be fulfilled to find
the full set of frequency-temporal stream parameters (“segmentation”). In the frames
of the model it was done via stream transmission through etalon filter system imitat-
ing the transfer function of cochlear filtering. At the first stage the full set of frequency-
temporal stream characteristics including correlogram, integral correlogram and full
cross-channel correlation map of sound stream is found. At the second stage the basic
processing of auditory stream is carried out with the help of the two-layered oscilla-
tory network. The first layer represents the network composed of relaxation oscillators
located at a 2D grid with local excitatory and global inhibitory oscillator coupling. Sin-
gle network oscillator is defined by excitatory variable x ;. and inhibitory variable y;;.
The dynamical equations are written in the form

. 3
. X jk
ik =€y 1+tanh? = Vik-

Here I, represents the external stimulation, S;. denotes the overall coupling
from other network oscillators, and p is the amplitude of Gaussian noise. The equa-
tions (3.2-3) define a relaxation oscillator with stable limit cycle and two time scales
(the oscillator is similar to the Van der Pol oscillator). In the problem of sound stream
processing, the weights of oscillator connections were derived from cross-correlation
information found at previous stage. Under the network dynamics, the synchronized
clusters of oscillators (segments) are formed in this oscillatory network layer in cor-
respondence with connected regions of acoustic energy in the time—frequency plane.
Different synchronized oscillatory clusters are desynchronized, and thus, the first
layer provides the decomposition of acoustic mixture into a collection of sensory
elements. It corresponds to auditory scene decomposition into the set of primary
structure elements.

In the next stage, oscillatory network of the second layer realizes further process-
ing of the auditory stream — grouping of different sensory elements into components.
Two types of connections were designed in the network of the second layer: internal
connections depending on correlation information of the stream and external (verti-
cal) connections from the network of the first layer. The network of the second layer is
capable to reconstruct the acoustic stream components from previously obtained sen-
sory elements. The reconstruction includes: (1) the reconstruction of the basic acoustic
component, (2) the reconstruction of peripheral components and (3) the reconstruc-
tion of the “middle” area. All these steps are achieved via cluster synchronization of
oscillatory network. The acoustic stream is represented in the form of the network de-
composition into the set of internally synchronized and mutually desynchronized os-
cillatory clusters encoding proximity in frequency and time (special methods of filtra-

(3.23)
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tion were also used at the first stage). Therefore, it is possible to interpret the acoustic
stream reconstruction realized by the oscillatory network method as auditory scene
synthesis from its elementary constituents.

The two-layer oscillatory network performance was tested on several stream ex-
amples with voiced speech perturbed by interfering sounds of the telephone mixture.
Good network performance was demonstrated. As was stressed by the authors, the
designed model includes only bottom-up processing corresponding to primitive seg-
regation. But it is known that auditory scene analysis is notably influenced by the prior
knowledge (the so-called schema-based organization). The model was further elabo-
rated based on statistical analysis of general signal properties (in particular, via ac-
counting for the uncorrelatedness of speech and noise), but without using oscillatory
networks for acoustic stream decomposition and reconstruction. In this way, the ap-
proach to solution of speech segregation problem based on the analysis of perceptual
and speech properties and speech enhancement was developed [48].

3.3 Oscillatory network models for visual image processing tasks

Networks of nonlinear coupled oscillators with controllable connectivity architectures
were successfully exploited in various problems of image processing, such as bright-
ness image segmentation, image contour extraction and object selection in a visual
scene. A great diversity of problems related to image processing stimulated the de-
velopment of complicated traditional computational methods of image analysis and
transformation. The most simple brightness image segmentation tasks are computa-
tionally complicated ones, being related to processing of great amount of information.
These tasks still remain a crucial problem in machine vision. Although the human
brain performs image analysis efficiently and with apparent ease, it is still a major
challenge for computer vision systems. Dynamical approaches to image processing
based on construction of oscillatory network models and exploiting principles of dy-
namical binding via synchronization represent a promising alternative to traditional
computational methods of image processing. Most of such approaches were devel-
oped based on neuromorphic models imitating various aspects of functioning of the
brain neural structures. They provide self-organized adaptive algorithms with auto-
matic performance. Several of the most valuable oscillatory network models based on
systems of limit cycle oscillators are presented and shortly described in the section.

3.3.1 Oscillatory model by Malsburg and Buhmann
The oscillatory network model suggested by Malsburg and Buhmann [45] was one of

the first models for solving the problem of object separation in a visual scene. The net-
work consists of a collection of identical 2D subnetworks. The oscillators of each sub-



3.3 Oscillatory network models for visual image processing tasks = 81

network are localized in the 2D grid, so that one oscillator corresponds to each image
pixel. The subnetworks correspond to different image objects that need to be selected.
The internal oscillator connections in each layer are designed to provide the synchro-
nization of oscillator groups corresponding to the same image segment, the desyn-
chronization between oscillator groups corresponding to different image segments
and the damping of activity of other oscillators that do not correspond to some image
segment. To this end three types of oscillator connections were designed: (1) global
(one-to-one) connections between the oscillators in each layer (horizontal connec-
tions); (2) local connections between the layers; (3) connections with inhibitor units
preventing global correlations. It proved possible to achieve internal synchronization
of the oscillatory ensembles corresponding to each object and mutual desynchroniza-
tion of ensembles corresponding to different objects. The performance of the model
was demonstrated in the problem of segmentation of synthetic (36 x 36 pixels) im-
ages. Further model development allowed us to extend it to the processing of real gray-
scaled multipixel images, however, at the price of appropriate image preprocessing.

3.3.2 Model LEGION by Wang and Terman

The remarkable oscillatory network model for visual image segmentation is the os-
cillatory network Locally Excitatory Globally Inhibitory Oscillator Network (LEGION)
designed firstin 1995 [5, 6, 46, 49, 50]. The model is not directly related to modeling the
brain visual processing. But nevertheless, its most perfect version [6] delivers highly
effective dynamical image segmentation algorithm based on the synchronization in
oscillatory networks. Active network unit is a relaxation (limit cycle) oscillator (of the
Van der Pol oscillator type). The internal dynamics of a single oscillator is dependent
on the external input defined by image pixel brightness, the local stationary excita-
tory connections with closest neighbors, the action of global inhibitor and Gaussian
noise. Network oscillators are located in 2D spatial lattice that is in one-to-one corre-
spondence with the image pixel array. In addition to stationary connections and global
inhibitor, a dynamical coupling was designed in the network. Besides, a method of
dynamical coupling adaptation was developed that allowed us to essentially improve
the quality of network performance.

The governing dynamical system for the LEGION network can be written as
(cf. 3.23)):

Xj = 3% = X + 2=y + iH(pj —0) + Sy + p,
. Xk
Vik =€y 1+tanh? = Viks

where H(x) is the Heaviside step function, p ik is the lateral potential of oscillator (j, k),
0 is the threshold defining a specific character of oscillator role in the network dynam-
ics (whether the oscillator is a leader), p is the amplitude of the Gaussian noise and

(3.31)
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the parameter € (0 < ¢ < 1) is chosen to ensure standard relaxation oscillations in
the absence of noise. The oscillator is capable to demonstrate the active phase (stable
steady oscillations) at I > 0 and the silent phase (the absence of oscillations) at I < 0.
The function H(x) is introduced to provide a mechanism to distinguish between object
and noise fragments. The coupling term S, in (3.311) is defined by the total coupling
term S‘J‘.k with active neighboring oscillators and the weight W, of inhibition from the
global inhibitor activity z:

Six = %~ W,H(z - 6,), (3.32)

where the threshold 6, defines the condition of action of global inhibitor on each net-
work oscillator (the action of inhibitor is triggered when the oscillator is in the active
phase). If the activity of every network oscillator is below the threshold 6, the global
inhibitor does not receive any input, and z — 0. In this case all network oscillators do
not receive any inhibition. Thus, the LEGION dynamics can be qualitatively presented
as a competition between excitative action of network oscillator interaction causing
synchronization, and desynchronizing action of global inhibitor.

The dynamical adaptation of network connection weights is aimed at noise re-
moval and image features preservation. It just allowed us to extend the network ap-
proach to real gray-level image segmentation tasks. The fixed oscillator connections
are directly determined by the image structure. Qualitatively, the dynamical contri-
bution to the stationary connection weight has a small value if two oscillators corre-
spond to two neighboring pixels in an image region with homogeneous brightness.
The dynamical coupling design requires the detailed analysis of possible brightness
discontinuities across the whole image brightness structure. The features of the con-
structed dynamical weight adaptation scheme were empirically analyzed, and it was
found that it is similar to that used in some nonlinear smoothing algorithm [6].

The LEGION network was thoroughly tested in different problems of image seg-
mentation: noisy synthetic images, real satellite images, and magnetic resonance im-
ages. It wasillustrated that the LEGION with dynamical coupling adaptation definitely
demonstrate much better performance, providing high quality in the reproduction of
sharp boundaries between image fragments. The oscillatory network with dynami-
cally adapted connections can also provide correct segmentation of images that are
highly corrupted by noise. Segmentation of satellite images is a difficult task due to the
additional inhomogeneity of image subregions that are actually homogeneous, and
most of traditional approaches have had only limited success. The simulations were
carried out at solving of the following tasks: (a) entire image segmentation; (b) ex-
traction of hydrographic objects in the image; (c) extraction of the topographical map.
Solution of the task of hydrographic objects extraction requires the grouping together
the pixels corresponding to water body and putting other objects into the background.
When LEGION was applied to the problem, the hydrographic objects were identified as
leaders, and a special set of parameters controlling dynamical oscillator connections
was used. The objects were separated precisely, including noisy bank of the compli-
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cated form. The problem of extraction of topographical map was also qualitatively
solved. The satisfactory results were also obtained in the problems of entire segmen-
tation of images highly corrupted by noise and magnetic resonance images segmenta-
tion. There was a series of images of human brain containing 43 regions (including the
cerebral cortex, the cerebellum, the corpus callosum and fornix area). All the signif-
icant regions were segregated. Hence, the effectiveness of the LEGION algorithm was
demonstrated.

It is possible to say that the LEGION model version [6] with dynamical network
coupling adaptation provides good segmentation of real gray-level images contain-
ing more than 400 000 pixels. The LEGION approach was compared with the adaptive
multiscale method of image segmentation [4] and with the adaptive smoothing algo-
rithms [40, 41] that are widely used in noisy image segmentation tasks. As computa-
tion results showed, the oscillatory network LEGION with adaptive dynamical oscilla-
tor coupling adjustment considerably more precise image segmentation.

3.3.3 Three-dimensional columnar neural network model by Li

Biologically motivated neural model of the brain visual cortex was designed and de-
veloped by Li in the series of papers [31-34]. It is a recurrent three-dimensional neu-
ral network model with oscillatory dynamics imitating information processing in the
brain primary visual cortex (VC) at solving contour separation and contour integra-
tion tasks in visual images. Functional network unit is a neural oscillator formed by a
pair of interconnected cortical neurons — an excitatory pyramidal neuron and an in-
hibitory interneuron. Similar model of neural oscillator was previously proposed by
Freeman [8], when prominent synchronous oscillations of 40-60 Hz were discovered
in the rat and rabbit olfactory bulb and cortex. Following Freeman, Li and Hopfield
suggested oscillator model closely imitating a real cortical neural oscillator, and used
it in modeling the olfactory brain system where oscillations and synchronization play
a key role in odor recognition [38] (see Section 3.2.1). A cortical oscillator of the VC
model, proposed further in [31], reflects orientation-selective response of simple cells
of the primary visual cortex. The dynamical system governing single oscillator dynam-
ics can be written in terms of membrane potentials of excitatory and inhibitory neu-
rons, x and y, that form the neural oscillators:
x=-x-g,(y) +Jog:(x) + I, (333)
y=-y+g.x)+1.

Here g, (x) and g, (y) are the threshold sigmoid nondecreasing functions defining
the outputs of excitatory and inhibitory neurons (neuron activation functions), J, is
the weight of the back-loop connection to the excitatory neuron, and I and I, are the
external inputs to the excitatory and inhibitory neurons, respectively. The neural os-
cillator dynamical system possesses a limit cycle in which size decreases smoothly
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under gradual decrease of input value I. It converts into a stable focus at some thresh-
oldvalueI =T".

The spatially 3D neural network model was designed in [31] based on known ex-
perimental data on VC interconnection architecture and functioning. The most impor-
tant features of VC internal structure — orientation selective cells, local cortical circuits
and horizontal intracortical connections — were reflected in the model construction.
The orientation selective neurons respond to input edges only within their classical
receptive fields (RFs), the local small regions in the visual field. The direction of the
preferred orientation is presented by a bar in the RF center. The brain visual cortex
transforms visual inputs received by the retina into VC responses in the form of dy-
namical regimes of neural activity. The simple edge detection mechanism probably
“works” just in the primary visual cortex [39]. Contour integration is likely completed
by higher visual centers. The VC neural network dynamics demonstrates synchronized
oscillations in the process performance of contour enhancement tasks.

Structurally the VC is composed of a great number of excitatory and inhibitory
neurons. Visual input is received mainly by the excitatory neurons. In addition to
almost local connections in VC, there exist long-range horizontal connections from
upper visual cortex layers. Probably, they are responsible for synchronization of the
40-60 Hz oscillations [7, 10]. Usually the degree of synchronization decreases as the
distance between neurons increases. Both the synchronization and the enhancement
of responses were postulated as mechanisms underlying feature linking [9, 42].

The designed three-dimensional neural network of columnar architecture is as-
sociated with a 3D spatial lattice consisting of M vertical columns, each containing
K sites. The column bases are located at the sites of some two-dimensional lattice in
a plane, the column direction being normal to the plane (M is the number of 2D lat-
tice sites). The 2D lattice can be chosen either as square or as the hexagonal one. The
pair (j,k), j=1,...,M, k =1,..., K, of interconnected excitatory and inhibitory neu-
rons is prescribed to each site of the 3D lattice, and the angle 6 = kn/K of the RF
orientation is prescribed to the (j, k) neuron pair. It is suggested that the excitatory
neuron of each pair receives the visual input I;, modeling the response of orientation
selective cells of VC hypercolumn. The input received by excitatory neuron depends
on the difference between the direction 6 of the RF-orientation corresponding to the
site k and the direction f3 of preferred orientation of the incoming visual image input.
The received input is maximal when the visual input orientation coincides with the
RF orientation prescribed to the site (j, k). In the model it is realized via some func-
tion ¢(6 — B) quickly decreasing at increased values of difference 6 — 8. The dynamical
system, governing by the neural network dynamics, is written as

Xje =~ Xjp — chk’gy(yjk’) + Jogs(xj3) + z ikt 9x (X jrger) + Lige + I,
X JEK

Vik = =0, Yjk + 9x(Xj) + Z Wik 9 (X jrie) + I,
j’ij,k’

(3.3-4)
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where J, i are the excitatory-to-excitatory connections, W are the inhibitory-to-
excitatory connections, and «,, ,, are the constants.

Stationary excitatory and inhibitory connections of neurons of cortical circuits
forming neural oscillator were constructed based on experimental neurobiological
data concerning horizontal intracortical connections in VC. As one can see from dy-
namical system (3.3-4), the network connections are organized so that each excitatory
neuron of a column is connected with all excitatory and all inhibitory neurons of all
the other columns (the connections are inhomogeneous, the connection weights de-
crease at increasing the spatial distance between the network oscillators) and each
excitatory neuron is connected with all inhibitory neurons of the same column (the
connections are also inhomogeneous). There also exist some additional controlling
feedback coupling (from higher visual cortex areas) for all excitatory neurons.

The model was tested in problems of preattentive image processing including
contour segmentation, contour integration, texture segmentation and figure-ground
segmentation tasks. It demonstrated quite successful synchronization-based perfor-
mance in these image processing tasks for synthetic images and for small number
of real gray-level ones. Some further developments of the described network model
version were suggested in [32-36].

3.4 Pure oscillatory network model for image processing tasks

An oscillatory network of columnar architecture located in 3D spatial lattice was de-
signed by the authors as an oscillatory network model of the brain visual cortex. It
was designed to simulate a synchronization-based performance of a single preatten-
tive bottom-up step of visual image reconstruction. A pure oscillatory level of mod-
eling was of our particular interest. The model is entirely formulated in terms of a
system of oscillators and their mutual interaction. Self-organized dynamical network
coupling was constructed, and the idea of dynamical binding on the proximity of os-
cillator activity levels and their RF orientations was reflected in the designed network
connectivity principle. The network performance consisted in relaxation into a sta-
ble stationary state of clusterized synchronization. Internally synchronized network
ensembles (clusters) corresponding to image brightness fragments were expected to
be formed. The three-dimensional network model was considered further as a basic
model for the creation of a number of spatially two-dimensional models for different
image processing tasks.

A single network oscillator is a relaxation (limit cycle) oscillator with internal dy-
namics tunable by visual image characteristics — local brightness and local image el-
ementary bar orientation. It is able to demonstrate either the active state (stable un-
damped oscillations) or the “silent” state (quickly damped oscillations). Nonlocal self-
organized dynamical connections of network oscillators depend on oscillator activity
levels and orientations of RFs prescribed to the sites of a spatial lattice. The network
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performance consists in network state transfer into a state of clusterized synchro-
nization. The reduced spatially two-dimensional oscillatory network was extracted
as a simplified limiting version of the three-dimensional source network model. As
it turned out, the initial version of the reduced network model is capable to perform
a number of gray-level image segmentation tasks via supplemented gradual network
coupling strength adjustment. As a result, satisfactory synchronization-based bright-
ness image segmentation of synthetic low-pixel images was achieved. Simple tasks
of texture segmentation and contour integration were also performed in the frames
of the 2D oscillatory network approach in the case of low-pixel synthetic images. The
2D network model was developed later to provide solution of various segmentation
problems for real multipixel gray-level and color images (see Chapter 4).

3.4.1 Known data on the brain visual cortex taken into account in the oscillatory
network model

Designing the network model, we focused our attention on the performance of the
primary visual cortex in tasks of preattentive image reconstruction. The initial step in
visual perception consists in focusing of a visual image on the retina. The external in-
put stimulus received by the retina is further transferred through the so-called visual
path — the sequential cascade of the brain neural structures, each being sufficiently
complicated both structurally and functionally. It includes the retina itself, the visual
nerve, the chiasma, the lateral geniculate body, the visual radiation, the primary vi-
sual cortex and the higher cortex zones. The function of the primary visual cortex con-
sists in extracting of all visual information (forms, color, texture, and movement). Al-
though the VC is the most studied brain structure, only a small part of answers to the
question how the VC realizes the visual information processing, is known nowadays.
The main visual processing occurs in the primary visual cortex. The most important
feature of neurons of the brain visual system is the existence of the so-called RF for
each neuron. The RF can be viewed as the total set of neurons of the previous neural
structure of the visual path, from which visual stimulation provides the response of
the given neuron. The RFs of both the retina and the visual cortex possess the internal
spatial structure — the internal and the peripheral spatial zones. Moreover, there exist
so-called “on”- and “off”-centers. For “on”-centers the internal RF zone is excitatory,
and the external RF zone is inhibitory, and vice versa for “off”-centers [15, 39].

Visual image processing is fulfilled by the VC via several stages and is carried out
by neurons of three types, namely, simple, complex and hypercomplex cells. Recep-
tive fields of complex cells respond only to moving stimulus, those of hypercomplex
cells — only to area boundaries and line ends. Their RFs possess central symmetry: the
internal circular zone is encompassed by a ring-shaped external zone. The existence
of complex and hypercomplex cells in the VC is not accounted in our network model,
and at first we restrict ourselves to the processing of still images. Vision stereoscopy,
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for which so-called eye-dominance columns are responsible, was also ignored. Hence,
only the subset of simple cells (about one-fourth of total number of VC cells), respon-
sible for processing of motionless images, was taken into account in the model. The
orientation selectivity of a simple cell response is the most important feature of these
neurons. It is realized due to strong anisotropy of their RFs: the form of the excitatory
RF zone is similar to a narrow bar intersecting the RF center. The simple cell response
is maximal when visual stimulus also possesses the form of a narrow bar, and the stim-
ulus bar orientation is close to the orientation of the RF internal zone. The response of
a simple cell is also absent if the stimulus bar is located completely in the inhibitory
zone of the RF, but the stimulus and RF bars orientations coincide [15]. Further, we
always assume the orientation of the internal excitatory bar zone of the RF of a simple
cell to be the RF orientation.

As for VC spatial architecture, so-called orientation hypercolumns (the neuron
columns) represent functional modules of the VC. At simplified consideration, one
can imagine the hypercolumns as oriented orthogonally to the visual cortex surface.
So, a flat approximation — the plane retina and the VC in the form of parallelepiped —
is acceptable. At last, the key feature is that the visual cortex is composed of excitatory
and inhibitory neurons coupled by short internal connections. Excitatory neurons re-
ceive inputs from the retina. They “send” their outputs into higher zones of the visual
cortex and receive feedback loop connections from there. In addition, there exists the
coupling of VC neurons with close RF orientations. It is believed that these connec-
tions provide the experimentally discovered synchronized oscillations with frequency
of 40-60 Hz in the VC. The existence of coupled pairs of excitatory and inhibitory neu-
rons allows to say about neural oscillators in the VC. Therefore, the designed network
models where oscillators figure as processing units represent a natural step in model-
ing the brain structures, which exploit oscillations and synchronization in their func-
tioning.

3.4.2 Three-dimensional oscillatory network of columnar architecture

We designed oscillatory network consisting of neural oscillators localized at the nodes
of three-dimensional spatial lattice being in one-to-one correspondence with a two-
dimensional image pixel array located in a two-dimensional plane. The oscillatory
network can be interpreted as an oscillatory model of the primary visual cortex (more
exactly, the subset of VC simple cells). Let a 2D square lattice be related with the image
pixel array of M x N pixels, which centers are located at the nodes of the lattice Gg\‘,[";)N
We then design the oscillatory network consisting M x N oscillator columns each of
K oscillators, so that the bases of the columns are located at the nodes of the 2D lat-
tice G, identical to G{I”);, whereas oscillators of each column are located at the
nodes of the 1D lattice LY*" oriented normally to the plane that contains G . Thus,

the oscillators of the whole network, containing MxNxK oscillators, are located at the
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nodes of the 3D spatial lattice GI"), x L2, and each oscillator column corresponds

to some image pixel.

We prescribe to each network oscillator an internal parameter — the RF orientation
specified by two-dimensional vector nl;m = (cos wjfm, sin wjfm) located in the plane or-
thogonal to the column direction. According to neurobiological data [15], vectors n’;m
are uniformly distributed over each column, that is

Vi =1;/;’m+%”, k=1,...,K. (3.41)

Further, the additional set of image characteristics is included into considera-
tion — the set of unit vectors s,,, defining pixel elementary bar orientations. These pa-
rameters can be interpreted as a measure of pixel brightness I,,, inhomogeneity (the
s;m are orthogonal to the direction of pixel brightness gradient). We proposed that the
set of s, can be extracted via proper image preprocessing, and so the array [I,,,s,,]
of image characteristics can be defined. The array [I;,,, s, figures in the model as the

set of tuning parameters controlling oscillatory network dynamics.

3.4.3 Biologically inspired model of single network oscillator

In the design of network oscillator internal dynamics, we took into account and pre-
served the main features of dynamics of cortical neural oscillator (3.3-3) introduced
in [31]. Preliminary analysis of dynamics of oscillator (3.3-3) shows that the dynami-
cal system possesses a stable limit cycle when the value of external input I belongs
to some finite interval. The limit cycle size monotonically depends on I: it decreases
smoothly when the value I is gradually decreased. The limit cycle converts into a sta-
ble focus at some threshold value I = 1,,,;,, = I".

After clarifying the dynamical features inherent to biologically motivated neural
oscillator (3.3-3), we designed single network oscillator dynamics of our model based
on proper modification of Ginzburg-Landau oscillator and preserving qualitatively
the features of the oscillator dynamics (3.3-3), including the dependence of single os-
cillator dynamics on two image characteristics — pixel brightness and pixel elementary
bar orientation.

Defining the oscillator state by a pair of variables (u,, u,), it is possible to write the
system of two coupled ODE, governing the oscillator dynamics, in the form of a single
equation for the complex-valued variable u = u; + iu,:

= fup, fluu) = (p+io—|u—c’)u-0c) +u

(34-2)
=gl s,n) = p(I) +4(s, n).

Here p,, c and w are the constants defining the parameters of the limit cycle of the
the dynamical system (3.4-2): the limit cycle of the dynamical system (3.4-2) is the circle
of radius p, with center located at the point (¢, c,), ¢ = ¢ + ic,, in the plane (u;,u,),
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w being cycle frequency. At 4 > 0 the size and the location of the limit cycle can be
controlled by parameters I and s via properly designed functions p(I) and g(s,n) =
q(IB — yl), where ¢ = 8 — y is the angle between the elementary bar orientation s
(cos B, sin §) and the RF orientation n = (cos y, siny). The convenient functions for
limit cycle control are:

p(I)=1-HUI-h,), H(x)= ! , v> 1,

1+e=

2014l
q(¢l) = 1-T(8D), I(gl) = oo O 1.

(3.43)

The parameter u is a bifurcation parameter of dynamical system (3.4-2): the limit
cycle radius p = p(u) (the oscillation amplitude) is maximal at 4 = 0 (p(0) = p,). It
monotonically decreases at u decreasing and bifurcates into a stable focus at some
Y = p,, 4, € (0,1). Due to the designed dependence y on I and s, the limit cycle size
is sufficiently large if two following conditions are satisfied simultaneously: (a) I es-
sentially exceeds the threshold value h,; (b) the angle between s and n is sufficiently
small. Otherwise, either the cycle size is very small or it degenerates into a stable focus
(that corresponds to quickly damping oscillations). The bifurcation character of sin-
gle oscillator dynamics is essentially exploited in image processing tasks performed
by the oscillatory network. The response of a single network oscillator to variation of

=
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Fig. 3.1. The “response” of single network oscillator to variation of pixel brightness: temporal be-
havior of both oscillator state variables u; and u, (left); the trajectory of dynamical system (upper
right); the limit cycle size dependence on I (lower right).
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pixel brightness is shown in Figure 3.1. As one can see, the oscillator demonstrates al-
most instantaneous response to a sudden decrease of pixel brightness via oscillation
amplitude reduction.

3.4.4 Self-organized dynamical network coupling

The principle of oscillatory network coupling has a key influence on the network dy-
namical behavior. We design self-organized dynamical coupling that nonlinearly de-
pends on oscillatory activity levels (amplitudes of oscillation of network oscillators)
and differences between s and RF orientations. The dynamical system governing the
network dynamics can be written in the form

]m _f( ]m’tujm)+sjm’
j=1,....,.M, m=1,...,N, k=1,...,K.

(3.4-4)

Here f(u,u) is defined according to (3.4-2) and y;?m p( )+ q(s ]m’n'm)‘ The
term S’]‘m, specifying the interaction between network osc111ators, is chosen in the form

= Y W (1 - ). (3.4-5)

/ I !

The welghts I/V']’jn il defining the connection strength of network oscillators
(j,m, k) and (j' j ,m', k"), are specified by nonlinear functions that depend on state of
the oscillator pair. The form of the functional dependence influences crucially both
network dynamics and performance.

We constructed the functions W]"m it based on results of our previous mathemati-
cal study of synchronization in oscillatory networks, governed by more simple version
of dynamical equations (3.4-4) and (3.4-5) (at ¢ = 0, yjfm =0, W = const) [20-22]. The

following expressions for the matrix W elements were chosen:
kK' koK koK koK
‘/ijjlml =P (ij, Pj'm’) Q (n]m, n] m' ) D (I'Jm, l'J m' ) (3.4‘6)

where pf;, and p}‘,'m, are the limit cycle radii for oscillators defined by indices (j, m, k)

and (j',m', k'), n’]?m and n’;,'m, are the RF orientations for these oscillators, r’;m and r’;,’m,
are the radius vectors defining their spatial locations in the network lattice. The cofac-
tors P(p, p'), providing the connectivity principle dependence on oscillator activities,
are chosen in the form

P(p,p') = wyH(pp' - h), (B.47)

where H(x) is the sigmoid function dependent on the threshold h, w, is the constant
defining the total strength of network interaction. As itis clear from (3.4-7), the connec-
tion weight (3.4-6) is negligible if at least one of interacting oscillators is in the state of
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low activity. The cofactors Q(n, n'), providing dependence on RF orientations, are de-
fined in terms of a delta-shaped function I" that depends on the orientation difference
between nand n’:

Q(n,n") = I'(In - n’|). (3.4-8)

So, Q(n,n') is nonzero only if the orientations n and n’ are sufficiently close. The con-
struction of Q(n, n') reflects the neurobiologically confirmed fact of preferable connec-
tivity of VC neurons with close RF orientations.

At last, the cofactors D(r, '), permitting to control spatial radius of oscillator in-
teraction, can be defined by any function vanishing at some finite spatial distance. For
example, D(r, r') can be chosen in the form

D(r,r') =1-H(r—r'| - r,), (3.4-9)

where r, is the given radius of spatial interaction. In particular, one can define local
interaction (with closest neighboring oscillators), or the global oscillator coupling (all-
to-all).

As a result, according to the connectivity rule (3.4-6), any two network oscillators
are proved to be sufficiently strongly dynamically coupled if they both are active, pos-
sess close RF orientations and are located at the distance not exceeding the prescribed
radius of spatial interaction.

3.4.5 Reduced two-dimensional oscillatory network

The 3D oscillatory network can be naturally reduced to its limiting version — the 2D net-
work in which oscillators are located in the nodes of the lattice Gi<"); and can be in-
terpreted as idealized oscillator columns. The reduced network can be obtained in the
following way. Let us fix parameters I > h and s of some pixel of sufficient bright-
ness and consider the response of the oscillator column corresponding to that pixel.
Obviously, only several neighboring oscillators in the column will be active, i.e. those
that possess RF orientations close to s. Let the number of oscillators in the column
be gradually increased and at the same time the width of the function I" be reduced.
Then the number of active oscillators in the column will be gradually decreased, and
in the limit of an infinitely long column and an infinitely narrow I', we would get the
single active oscillator in each column, namely, the one for which the RF orientation
coincides with s.

Hence the response of an infinitely long idealized column is reduced to the re-
sponse of a single oscillator in this column. Its dynamics is governed by the sys-
tem (3.4-2), where the function g(I, s, n) is reduced to g(I,s,n) = 1 — H(I — hy) = G(I).
The 2D reduced network of these oscillator-columns is located in the G}, lattice,
which is in one-to-one correspondence with the retina lattice G\"),. Therefore, one
oscillator of the reduced network now corresponds to one image pixel (see Figure 3.2).
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Fig. 3.2. Spatial architecture of the reduced two-dimensional oscillatory network. A fragment of
image pixel array and the corresponding fragment of the oscillatory network are shown. The circle,
defining the subset of network oscillators that will be dynamically coupled with a selected one, is
marked by gray color.

The reduced network state is defined by the M x N matrix il = [u;,,], and network
dynamical equations are:

Ujpy = (pg + 10, = Uy, — c|2) U, — ©) + GI,) +
4-10
+ Z ‘/ijjlm/ (uj/m/ - ujm), (3 4 )
j'm
where
Wimjm' = PPims P QS > 8 YD jyys E jr)- (3.4-11)

The cofactors P and Q in (3.4-11) are calculated in the same manner as in the case
of 3D network, but the cofactor Q now depends only on image bar orientations. As it
turned out, the presence of the cofactor Q in network connections provides the net-
work with the capability to perform some texture segmentation tasks.

3.4.6 Brightness image segmentation via the reduced oscillatory network

The reduced network is capable to provide segmentation of pure brightness images,
for which information on elementary bar orientations is absent. For simplicity we can
suppose that for brightness images the bar orientations are the same for all the pixels
and puts im = const. Then, Q(s im> Sl ) = 1in (3.4-11), and the dependence on bar orien-
tations disappears. Due to the one-to-one correspondence between image pixels and
the oscillators of the 2D network, in the initial network state the distribution of oscilla-
tor activities exactly corresponds to the pixel brightness distribution. The grouping of
pixels into a whole image fragment will be achieved via synchronization of oscillators
with close activities.

To improve the network performance in brightness image segmentation tasks (in
particular, to achieve accurate detection of image fragment boundaries), we included
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an additional procedure of synchronization control. It is a simple algorithm of gradual
increasingoftotalnetworkcouplingstrength,anditpermitstorealizesuccessiveselection
of synchronized assemblies (clusters) corresponding to image fragments of different
brightness levels. To this aim a matrix N = [y;m] of additional control parameters is
introduced, and we put at first y;,, = 0. A modified matrix W of network connections
dependingony;,, is further considered instead of W: ijj,m, = Winjtmt (1Y jm = Vi ). At
thebeginningoftheinteractionstrength controlstagewespecifytheinitialinteractionto
be so weak that the network is completely desynchronized. This is realized by a choice
of a sufficiently high initial threshold value 4 in equation (3.4-7) for the cofactor P.
Further we gradually increase the W elements via decreasing  up to the moment of
synchronization of the first network cluster. It happens at some h = h,. The first cluster,
formedbyoscillatorsofmaximalactivity,correspondstoanimagefragmentwithmaximal
brightness. Under further decreasing h inside some interval (h,, h,), the first cluster
remains as the single synchronized cluster of the network. Such oscillatory network
behavior is a consequence of monotonic dependence of the oscillator limit cycle size on
the pixel brightness I. When the first cluster is synchronized, whereas the rest network
is desynchronized, we separate the cluster via excluding it from the interaction with
all other network oscillators. It is achieved by means of the matrix N modification: we
prescribe some nonzero value y, to those components of N that correspond to spatial
locations of oscillators belonging to the synchronized cluster. Further we continue the
aboveprocess ofinteraction strengthening until the second clusterissynchronized, and
after that it is excluded. Finally, all the clusters will be sequentially synchronized and
separated. Thus, the network will be decomposed into a set of internally synchronized,
but mutually desynchronized clusters, corresponding to image fragments of different
brightness levels. Moreover, in the final state the desynchronized clusters oscillate with
slightly different frequencies, which provides an additional tool for the analysis of the
segmentation result. The described procedure of interaction control has been fulfilled
manually. However, an automatic interaction control performance could be realized.
In a series of computer experiments on segmentation of synthetic brightness images
a satisfactory network performance was demonstrated. The example of processing of
the synthetic image containing 2460 pixels is given in Figure 3.3.

The network state during image processing is represented in the form of the array
of all the oscillator states (what exactly reproduces the current state of image pixel ar-
ray), the brightness of each screen pixel being correspondent to |u im (t)|. Since different
brightness fragments oscillate with slightly different frequencies, all image fragments
are clearly distinguishable. A large number of different “versions” of segmented im-
age is contained in the full set of oscillatory network states, which is quite helpful in
the situations when some ambiguous image fragments exist (for instance, contours of
low contrast). Several typical examples of such instantaneous image versions are pre-
sented in Figure 3.4. Some simple postprocessing is needed to extract the final image
segmentation result from the collection of instantaneous images contained in the full
set of the oscillatory network states arising in the oscillatory segmentation procedure.
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Fig. 3.3. Brightness segmentation of synthetic image of 2460 pixels. Three typical states of oscil-
latory network in the process of interaction strengthening: (a) total desynchronization (b = 1.25);
(b) partial synchronization (h = 0.5); (c) almost complete synchronization (h = 0.01). The examples
of instantaneous network states (left) and the temporal dependence of all oscillator variables (right)
are shown (r,, = ltjl, 0, = argup,).

Note that there is an evidence of a sequential type of image processing performed
by the brain visual cortex, i.e. image fragments of different brightness are not pro-
cessed simultaneously. Instead, there is some time delay in fragment reproduction:
the most bright fragments are reproduced faster than the less bright ones [51]. Probably
such a behavior is achieved via additional image processing fulfilled in high cortical
areas.
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Fig. 3.4. The examples of instantaneous image “versions,” arising during the oscillatory procedure
of brightness image segmentation, carried out by the oscillatory network. The initial state of desyn-
chronized network is shown in the left upper picture.

3.4.7 Texture segmentation and contour integration

The processing of texture visual images is usually regarded as a special class of prob-
lems in the field of traditional computer vision. In particular, there exist special meth-
ods of texture representation and synthesizing. In the frames of our approach it is
possible to include into consideration only the simplest texture types that can be rep-
resented as collections of oriented bars.

The 2D reduced network is capable to process texture images due to the depen-
dence on bar orientations preserved in the connectivity rule (3.4-11). In the general
case of texture image segmentation problems, one has to deal with brightness—tex-
ture image fragments instead of pure brightness ones. In the first series of computer
experiments on texture image segmentation we processed images with monodirected
textures and concentrated our attention on texture images with homogeneous mean
brightness. The network performance is based on desynchronization of clusters corre-
sponding to different texture fragments. Unlike the case of pure brightness image seg-
mentation, network coupling control is unnecessary here. Two examples of the texture
image segmentation are shown in Figure 3.5. The source texture images are presented
in the left panels, being defined in the form of the oscillator phase distribution at the
initial network state. Two instantaneous states of synchronized network are shown in
the middle and the right panels. Desynchronized clusters, corresponding to different
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@

(b)

Fig. 3.5. Texture segmentation and contour integration via the 2D oscillatory network: (a) segmen-
tation of a contour selected solely by monodirected texture; (b) segmentation of a double contour
selected solely by a texture of continuously varied orientation.

texture fragments, are in different phases of oscillation and therefore are accurately
segmented. For the processed texture-marked contour shown in Figure 3.5 (a) with the
complicated, “fractal”-like form it was necessary to choose a sufficiently large spatial
radius of network coupling. A solution of a simple contour integration task, fulfilled by
the reduced oscillatory network, is demonstrated in Figure 3.5 (b). The image shown
in the left panel contains two closed contours marked solely by texture, which is de-
fined by oriented bars of continuously varied direction (approximating local contour
tangent). As one can see, the network provides accurate segmentation of the double
contour via its desynchronization with respect to the background.

3.4.8 Comparison of the model with other oscillatory network models

There are two oscillatory network models for image segmentation that are closely re-
lated to ours. The first one is the model by Li developed in the series of papers [31-34].
The following distinctions of our model from the model by Li should be marked:

(1) Two features of single oscillator dynamics designed in our model - the bifurca-
tion character of oscillator dynamics and the monotonic dependence of oscilla-
tion amplitude on pixel brightness — were actively exploited in various tasks of
image processing, demonstrating good performance of the reduced 2D oscillatory
network extracted from the 3D oscillatory network model of the visual cortex.

(2) Self-organized dynamical network coupling is employed in our model: the net-
work connections automatically emerge after tuning of single oscillator dynam-
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ics by image characteristics (I;,,,s;,) (in contrast, stationary excitatory and in-
hibitory connections, designed in the model by Li, cannot be considered as self-
organized ones).

(3) The reduced oscillatory network supplemented by the method of interaction ad-
justment demonstrated a capability of detailed brightness image segmentation
(whereas the model by Li is designed mainly for contour integration and texture
segmentation tasks).

The following remarks are also necessary concerning the relation of our 2D re-
duced network model to the oscillatory network model LEGION. The initial model de-
scribed in Sections 3.4.5-3.4.7 required a considerable improvement to be used in real
image segmentation problems. The LEGION was successfully used in various tasks of
real gray-level image processing (see Section 3.3.2). Our 2D model was essentially im-
proved and developed, including creation of new approaches, to provide successful
processing of real gray-level and color images. However, some advantages of the de-
scribed initial 2D model over the LEGION model should be mentioned:

(1) There exist only dynamical connections in our model (stationary connections are
absent as unnecessary); this ensures the model simplicity and provides a flexibil-
ity of its performance.

(2) The network coupling principle constructed in our model leads to automatic ori-
gin of self-organized dynamical connections in oscillatory network and ensures
flexibly controlled synchronization (in contrast, special sophisticated calcula-
tions are necessary for LEGION model to determine, for each network oscillator,
the proper set of oscillators that should be coupled with it in a concrete image
processing task; our method of interaction strength adjustment is definitely more
simple as compared to algorithm of interaction adaptation developed in the last
version of the LEGION model [6].

The described 2D oscillatory network model was further developed in the follow-

ing directions:

(1) anew version of single oscillator dynamics was designed, providing more conve-
nient and flexibly controlled oscillator response to pixel characteristics;

(2) several new principles of self-organized network coupling were developed and
tested in various image processing tasks.

It allowed us to qualitatively solve a number of image processing tasks, including
real (multipixel) gray level and color image segmentation, selective image segmenta-
tion and object selection in a visual scene (see Chapter 4).
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3.5 Oscillatory network models including visual attention

The brain has to process large amounts of information. But it can carry out only a
limited number of tasks at a time, and so it needs a capability to select the most rele-
vant information. Attention is the cognitive process of selective concentration on one
aspect of the environment while ignoring the others. Visual attention is believed to op-
erate as a two-stage process. At the first stage attention is distributed uniformly over
the visual scene, and information processing is performed in parallel. At the second
stage attention is concentrated to a specific area of the visual scene, and information
processing is performed in a serial manner. So, attention can be viewed as a kind of
filtration. The attention is often related to the visual search process (active scan of a
visual scene). In visual search attention is usually directed to the item with the highest
priority.

In computation modeling of visual attention the prevailed approaches are related
to reducing the amount of information to be processed. The approaches are concerned
with the branches of active vision and selective attention. As a whole these areas stay
out of our interests. So we present here only two oscillatory network models for visual
image processing, supplemented by attention-like algorithm of visual information fil-
tering. In the model by Labbi et al. [28, 29] a special network layer was introduced,
named attention map, that realizes additional image processing via oscillator cluster
desynchronization. It can be interpreted as “automatic attention focusing.” In the se-
ries of oscillatory network models with central oscillator element [1, 2, 16] the attention
is imitated via different states of partial synchronization for oscillatory network of pe-
ripheral oscillators (what is provided via synchronization of appropriate subensem-
bles of the network of peripheral oscillators with the central oscillator). The central
element, which consists of one or two neurons, reflects a hypothesis on existence of
central element of the brain attention system, localized in the brain prefrontal cortex.

3.5.1 Oscillatory model by Labbi, Milanese, and Bosch

The oscillatory network model was designed for gray-level image segmentation based
on the imitation of the visual cortex processing [28, 29]. It contains an array of
FitzHugh—Nagumo oscillators governed by the dynamical system

, W
u=u-—-v+l1,
3

(3.51)

v =¢€la+bu-v).

Depending on the parameters a, b, €, and I, the oscillator demonstrates either the
active state (relaxation auto-oscillations) or the passive state (the absence of oscilla-
tions).
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The oscillatory network of three-layered architecture was designed. The first (in-
put) layer contains the pixel array of an image to be processed. The second layer con-
sists of locally coupled FitzHugh—Nagumo oscillators being in one-to-one correspon-
dence with the image pixel array. The external input for each oscillator of the second
layer depends on the brightness of the corresponding pixel located in the first layer.
The oscillation amplitude of the oscillators increases monotonically as a function of
the input. The local connections designed in the second layer provide cluster synchro-
nization of the oscillatory network (each cluster is supposed to correspond to the ap-
propriate image segment). The third layer (named the attention map) is designed to
introduce the desynchronization between the clusters corresponding to different spa-
tially separated image objects. The connections of network oscillators of the third layer
are organized in such a way as to provide detection of synchronized oscillator groups
in which amplitudes strongly differ from oscillator amplitudes of the background.

The model demonstrated satisfactory performance for simple gray-level images
(with 128 x 128 pixel array) containing several clearly separated objects. As was clari-
fied in computer experiments, only large groups of neighboring oscillators that receive
similar inputs are capable to synchronize.

3.5.2 Oscillatory neural network model by Borisyuk and Kazanovich

An oscillatory neural network model with imitation of selective visual attention was
developed by Borisyuk and Kazanovich [1, 2, 16]. The model was designed as a net-
work of locally coupled oscillators (peripheral oscillators) located in a two-dimen-
sional spatial lattice. These oscillators are controlled by a central oscillator located
outside the lattice and coupled with all the peripheral oscillators by feedforward and
feedback connections. The peripheral oscillators imitate functioning of hypercolumns
of the primary visual cortex, and the central oscillator plays a role of an attention con-
trol center, which is located in the brain septum-hippocampus neural structure. The
state of a network oscillator is specified by the amplitude and the phase of oscilla-
tions, both dependent on the phase of the central oscillator. The dynamical system,
governing network dynamics, is written in the form of three coupled ordinary differen-
tial equations. A single oscillator demonstrates periodical auto-oscillations. The pure
phase interaction of network oscillators was designed. The attention is modeled via
the synchronization of the central oscillator with the appropriate subensemble of pe-
ripheral network oscillators. In the frames of the model it was possible to model the
phenomenon of the visual perception ambiguity [3].

As a further progress, a new version of the model was designed as a two-layer
network of spiking peripheral neurons of the Hodgkin—Huxley type, containing exci-
tatory and inhibitory connections, controlled by a central neuron [1]. The neurons of
the first layer (peripheral neurons) are located in a 2D square lattice identical to that of
the image pixel array, and coupled both via excitatory internal connections and with



100 — 3 Oscillatory networks for modeling the brain structures performance

the central element. The dynamics of a single neuron is written in the form

v= _Iion + Iext - Isyn’

x=A ()1 -x)-B,(v)x, xe€{mh,n}

(3.52)

where v is the membrane potential of the neuron, x is the variable defining the con-
ductance of an ion channel (i, n, and h are the gating variables of the ionic chan-
nels, related to possible different colors of image objects), I,,, is the total ionic current,
I is the combination of constant current component and Gaussian noise, A ,.(v) and
B, (v) characterize the dependence of membrane current on v. The value I, defines
the synaptic current, provided by coupling with the neighboring network neurons.
The conductance-based equations are used to determine the value of I,y,,.

The central element consisting of two neurons is used for simplified imitation of
the brain attention system. The image object in a visual scene is represented by an
appropriate subensemble of peripheral neurons. The subensemble is capable to gen-
erate spikes synchronously with the central element, whereas the activity of the rest
peripheral neurons is suppressed. Such regime of partial synchronization imitates the
attention focusing. The network performs three different image processing tasks — se-
lective attention, raw contour extraction and object separation. At the contour extrac-
tion stage, standard computational algorithms of contour extraction were attracted
(the method of gradient calculation combined with Gabor filtering approach). At ob-
ject separation stage, peripheral neurons “work” in the regime of partial synchroniza-
tion with the central oscillator. The results of the model performance were demon-
strated in the task of sequential object selection by a robot camera in a simple visual
scene, containing four balls of different colors. As was found, local network excitatory
connections facilitated synchronization with the central element. Pattern recognition
considerations were not attracted in the frames of the model.
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4 Image processing based on the oscillatory
network model

4.1 Problems of image segmentation and traditional methods of
their solution

4.1.1 Digital images and methods of image analysis

Computational methods of image processing, image analysis, and machine vision be-
long to a research subarea of cognitive and computer science that exists about a half
of the century and continues to be extensively developed nowadays [8, 23, 24]. Algo-
rithms for a wide variety of sophisticated image processing applications required by
software engineers and developers, advanced programmers, graphics programmers,
scientists, and related specialists have been developed. Various tasks of image pro-
cessing such as image segmentation (i.e. identification of homogeneous regions in
the image), image reconstruction, spectral analysis, coding, compression, filtering,
recognition, and quality enhancement are currently of great interest. Neural network
architectures, which help to get the output in the real time due to their parallel pro-
cessing ability, have also been used for image processing, demonstrating good results
even when the noise level is very high.

A great variety and high complexity of computational problems related to image
processing led to the development of theoretical background, which allowed us to
investigate general properties of discretized images, their transformations and to con-
struct effective computational algorithms for real color image processing. The area of
computational image processing was significantly enlarged owing to computer tech-
nology modernization, and currently it involves science, technology, industry, agri-
culture, space monitoring, medicine, and arts. For example, in the field of cosmic re-
search the tasks of automatic object revealing during information transfer from cosmic
satellites require processing of great flows of numerical information in the real time.
Powerful systems of image forming, transformation, visualization, and documenta-
tion are required in medicine. Automatic image processing systems are necessary in
numerical problems of Earth state monitoring. Therefore, the necessity of automatic
processing of great information flows looks like a characteristic feature of modern im-
age processing tasks, and therefore it stimulates the development of new special ap-
proaches and alternative ways for sophisticated analysis of great amount of visual
information.

In this section, we shortly outline the most important mathematical approaches
and computational algorithms developed and mention some important results in the
field of computational processing of digital images.

Digital image processing consists in the use of computational algorithms to per-
form processing of discretized images. An analog image is defined by a continuous
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function I(x, y) giving the intensity at position (x, y). The function I(x, y), dependent
on two spatial coordinates is defined in a rectangle. A discretized form of an image,
or a digital image (2D array of numbers), is obtained by sampling and quantizing an
analog image. The digital image can be considered as defined over a grid, each grid
site being called a pixel. The image transformation into the digital form is the transfer
from the continuous function I(x, y) to some piecewise function. It is realized via com-
bination of two operations: (a) discretization — replacement of continuous domain of
the function I(x, y) by some 2D discrete spatial grid; (b) quantization - replacement of
continuous interval of the function I(x, y) values by a discrete fixed number of func-
tion values {I?} — the given scale of intensity levels, or the scale of brightness levels.
It is sometimes convenient to carry out the image discretization via multiplication of
the continuous function I(x, y) by a discretization function that is represented as a
sum of §-functions defined at the nodes of a 2D lattice with the cell (Ax, Ay). In this
case, the discretization operation and other function transformation can be fulfilled
analytically.

The quantization error I — I? and its variance are important image characteristics,
providing optimal choice of quantization for various image types. For instance, in the
case of rather homogeneous image brightness distribution, a homogeneous quanti-
zation is optimal. The optimal quantization choice for noisy images was a subject of
special investigations. As a result, a proper family of brightness scales was constructed
for adequate choice of quantization type in dependence of noise character. The errors
in image processing due to quantization type figure in the form of image spurious con-
tours that appear in the image regions with smooth brightness variation.

The information on the frequency spectrum F(w,, w, ) is essentially used in image
processing. The spectrum is obtained via direct two-dimensional Fourier transforma-
tion of the function I(x, y). As is well known from the Fourier analysis, the spectrum of
discretized image is obtained as a convolution of the spectrum of the continuous func-
tion I(x, y) and the spectrum of the discretizing function. It gives the important result:
if the initial continuous image possesses a finite frequency spectrum width (that is, the
spectrum vanishes outside the rectangle |w,| < Q,, Iwyl <Q, with Q, = 27/Ax and
Q, = 27/ Ay), then the spectrum of the discretized image can be obtained via infi-
nite repetition of the continuous image spectrum by its shifting over 2rk/Ax, 2mm/ Ay,
k,m = 1,...,00. Therefore, the neighboring spectrum fragments will be overlapped
if Ax and Ay are chosen too large. This feature permits to understand the restrictions
on conditions of reconstruction of the continuous image spectrum from that of the
discretized image (via linear interpolation or spatial filtration of discretized image
spectrum). In the case of filtration, the filter is required to reproduce the main spec-
trum component and to completely suppress all additional parasitic components. As
the analysis shows, this condition can be fulfilled when discretization interval is not
greater than spatial half-period corresponding to the smallest image fragments (Kotel-
nikov frequency). According to the Kotelnikov—Nyquist-Shannon theorem, only un-
der this condition the initial continuous image can be reconstructed from the dis-
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cretized one via spatial filtration with any given accuracy. The function that deter-
mines the spatial characteristics of the ideal reconstructing filter (called impulse re-
sponse) and is defined in the infinite interval attains a maximum value at the origin
and demonstrates quickly damping oscillations away from the origin. In practice, the
special types of low-pass filters are used. They are constructed based on the principle
of maximal similarity of filter frequency characteristics to those of the ideal low-pass
filter.

For visualization quality enhancement elementwise transformations are often
carried out. They can include linear contrast enhancement, transformation of bright-
ness in a given range, and nonlinear brightness transformation. Besides, the elemen-
twise transformations of the probability density function related to the image can
also be carried out. The transformation is then realized based on preliminary ob-
tained brightness histogram and the subsequent probability density function trans-
formation (as a rule, the density function transformation corresponds to histogram
equalization).

Probabilistic models are also widely used for image description and analysis. The
brightness function I(x, y) is considered as a stationary random function of coordi-
nates. The first and the second moments, the autocorrelation function and its spec-
trum comprise the essential information on function I(x, y) behavior, allowing us to
estimate such image characteristics as quality, spatial distortions, color rendering, etc.

Image filtering is applied for the purpose of attenuation of various disturbances,
such as noise and complicated background. The filtering is based on neighborhood
operations (taking a filter mask from point to point and performing operations on pix-
els inside the mask), and can be realized both in spatial and in frequency domains.
Filtering in frequency domain consists in transformation of the preliminary obtained
frequency spectrum. Filtering with the help of filter masks is widely used in the tasks of
digital image processing. Two-dimensional spatial filtering based on filters with finite
spatial spectrum is one of popular filtering operations (a 3 x 3 square neighborhood
and homogeneous mask being usually applied). The shortcoming of image processing
via linear smoothing is that the noise suppression, inherent to the linear smoothing,
is usually accompanied by boundary blurring. This is the reason why the methods of
nonlinear filtering have been also developed. They are based on nonlinear brightness
function transformation in a neighborhood specified by the filter mask. Good results
are often provided by the so-called median filtering, in which action consists in reduc-
tion of both minimal and maximal local brightness “escapes.” The median filtering
better preserves image boundaries compared to linear filtering of any kind. The fre-
quency filtering allows us to select filter frequency characteristics via discrete image
Fourier transformation. As a result, high frequencies are suppressed in the filter fre-
quency spectrum in the case of low-pass filter application, whereas low frequencies
are reduces in the case of high-pass filter applications.

The necessity to process huge amount of information stimulated the development
of approaches on image compressions. At the end of the 1960s the coding methods
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for gray-level images were created, providing compression factors up to 5. In the
1980s the compression methods of the second generation were developed, includ-
ing those based on wavelet approaches. These gave much more compression degree
and ensured optimal compromise between spatial and frequency resolution. In the
1980s-1990s fractal coding methods were also developed, providing 50-2000 times
compression. The compression methods can be divided into two classes of methods:
compression without information loss and that with information loss. Some features
of the brain visual systems performance related to the dependence of visual acuity on
image brightness and contrast were attracted in the process of development of some
image compression methods admitting the information loss.

4.1.2 Image segmentation problems and the examples of their solution via
traditional methods of computer vision

Image segmentation is a partitioning of an image into a collection of homogeneous
regions (image segments, or fragments). The homogeneity can be defined in terms of
some feature characteristics (or a parameter, possibly multidimensional) such as gray-
level value, color, shape, texture, and motion. The proper formulation of conditions
for specification of the set of feature matching characteristics should naturally pre-
cede the segmentation problem solving. The following types of feature characteristics
frequently figure in partitioning principles of image segmentation: brightness charac-
teristics (such as brightness distribution over an image segment), geometrical charac-
teristics (such as conditions of specification of fragment boundary form or appropri-
ate information on proper reference points), and texture characteristics. The choice
of parameters providing texture specification usually depends on concrete approach
applied for texture description — structural, statistical or fractal.

It is worth to outline typical difficulties arising in the solution to the image seg-
mentation problem via traditional computational methods. The extraction of the set
of connected image regions is a typical task of image segmentation. The connected
fragments of a digital image are the subregions of image pixel array in which for each
pixel there exists at least one neighboring pixel belonging to the given subregion.
Three main ways of segmentation of connected fragments via traditional approaches
are reduced to iteration methods, recursive methods, and methods of boundary de-
tection. The iteration methods are based on scanning of the whole image pixel array.
The recursive methods of region-based segmentation are basically reduced to some
algorithms of region growing, edge detection, region splitting, and merging. Edge de-
tection is one of the important and difficult operations in image processing. It is an
important step in the process of image partitioning into constituent objects. Mathe-
matically the existence of edge is reflected by a sudden jump of intensity, which can
be expressed in terms of first and second derivatives of I(x, y): dI/dx is maximal and
d*I/dx* crosses zero at the edge point. In two-dimensional case the edge is indicated
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by the maximum value of gradient, and gradient-based edge detection methods are
applied, the Laplacian being used as the second derivative. A variety of boundary de-
tection methods is based on versions of high-pass filtering. The main shortcoming of
the iteration methods in the problems of real image segmentation is large running
time and large volume of required computer memory. The slow running is also inher-
ent to recursive methods, being related to the necessary enumeration of all segment
pixels at the final stage of segment formation. The shortcomings of the methods based
on boundary detection are related to insufficient accuracy of boundary identification
and also to restrictions on segment boundary form. Various ways to overcome these
problems were suggested. One of natural ways consists in the construction of parallel
computational algorithms.

The image segmentation based on segment growing is usually accompanied by si-
multaneous detection of the boundaries between the growing segments. For instance,
the task arises in image partitioning into a collection of macroscopic brightness frag-
ments with a given brightness level between the fragments. In a number of situa-
tions, the fragment boundary detection can be successively fulfilled by histogram-
based methods. These approaches are based on the use of functionals characterizing
statistical properties of brightness field and often permit us to evaluate a probability of
brightness variation at a given point of the processed image. An iteration histogram-
based algorithm for spatial separation of image points can be then constructed. Such
approaches can provide satisfactory boundary detection between image fragments in
the case of image fragments with sharp brightness variation between the fragments,
but fail in the cases when fragments with continuous brightness gradient exist.

For separation of contour boundaries in a segmented image the methods of con-
tour filtering are used. They are based on the calculation of the first and the second
derivatives of the brightness function I(x, y). As it turned out, the linear filtration ap-
proaches lead to a number of systematic errors in segmentation task solution, for in-
stance, to the appearance of spurious contours in the regions with continuous bright-
ness gradient. Better results are provided by methods of quadratic filtering. And the
best results demonstrate the improved methods of nonlinear filtering, permitting the
construction of controllable adaptive oriented filters [2, 27]. In image segmentation
problems where the exact calculations of fragment boundaries and thin contours are
required, the so-called methods of contour tracing proved to be adequate.

At last, an interesting approach based on the application of a weighted graph as-
sociated with the image should be mentioned [26]. The graph vertexes were associated
with image pixels, whereas the weights of graph edges specified the proximity degree
of pixels. In dependence on concrete image segmentation task, the weights can be
dependent on pixel brightness, pixel mutual spatial distance, color components, or
proper filter parameters. Image segmentation problem is solved via the graph cutting
into two components, the principle of maximizing internal connectivity of subgraphs
and minimizing of mutual subgraph connectivity being exploited. The problem of the
initial graph cutting was reduced to the problem of analysis of discrete spectrum of
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a linear operator corresponding to the graph. The calculation of minimal (by mod-
ule) eigenvalue of the operator was necessary to specify the first graph cutting. The
graph cutting itself is related to image separation into two maximally independent
partitions. Further the whole process was recurrently repeated with a complete seg-
mentation of the processed image as a final result. This approach is in some sense
similar to visual image processing that is realized by the brain visual system in the
process of natural image perception.

It should be added that the principle of the graph weight construction used in [26]
has a resemblance with the principle of construction of dynamical connections in the
oscillatory network model designed for brightness image segmentation [10-13] that
will be described below (see Section 4.2).

4.1.3 Neuromorphic methods of image processing

Neuromorphic methods of image processing imitating performance of the brain neu-
ral structures and representing a significant interest are considered as an alternative to
traditional computational methods developed in the field of computer vision. In par-
ticular, the neuromorphic methods imitating the principle of dynamical binding via
synchronization that is presumably exploited by the brain visual system are of special
interest 7, 9, 28]. The brain visual system capability of self-organized functioning is
especially attractive to use in the visual image processing tasks where it is necessary
to exploit selective attention and an ability to exclude unessential information. The
problems of image understanding, recognition, and selection of objects in a visual
scene require using of these capabilities. The development of artificial visual systems
of autonomous robots has led to clear understanding that robotic vision should be ac-
tive, that is, be dynamically reconfigurable depending on a concrete visual processing
task. So, the methods of flexible, adaptive visual information processing are necessary
to be developed for artificial vision systems.

A dynamical oscillatory network method of visual information processing was de-
veloped based on the design of neural-like oscillatory network model of limit-cycle
oscillators with controllable internal oscillator dynamics and controllable dynamical
oscillator coupling [10—-13]. The designed network coupling, being self-organized and
tunable by a processed image, is capable to be quickly and adaptively reconfigurable.
As a result, the neuromorphic dynamical synchronization-based oscillatory network
method of image processing proved to be flexible and adaptive. The final oscillatory
network model version possesses a number of useful features that are indispensable in
the problems of active image processing. Besides the capability of qualitative bright-
ness segmentation of real gray-level and color images, the oscillatory network per-
forms selective image segmentation, and object separation in visual scenes in simple
situations. The model is described in detail in Sections 4.2 and 4.3.
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4.2 Oscillatory network model description

The model was developed based on the reduced 2D oscillatory network model that was
obtained via reduction of previously designed biologically motivated 3D oscillatory
network model (see Sections 3.4.2-3.4.5). New improvements of the 2D-reduced net-
work model concern internal single oscillator dynamics and the principle of network
oscillator coupling. Due to the advanced version of single oscillator dynamics, it is pos-
sible to specify the dependence of the oscillation amplitude on the pixel brightness via
arbitrary continuous monotonic function. It gives a notable increase in segmentation
quality. Several new versions of the network coupling principle were also constructed
and tested. In particular, the filtration type version of the coupling principle was de-
signed. It provided the network with the capability of selective image segmentation —
the extraction of brightness fragment subset with brightness levels belonging to an a
priori chosen interval of brightness. On the whole, the model improvements allowed
us to significantly raise image segmentation accuracy and to control network noise
suppression.

The oscillatory network model performance consists in network relaxation into
the state of clusterized synchronization encoded by a segmented image. The set of
internally synchronized but mutually desynchronized network ensembles (clusters)
arising at the final synchronization state corresponds to the image decomposition into
the set of brightness fragments specified by the choice of brightness levels.

4.2.1 Network architecture and governing dynamical system

Oscillators of a 2D-reduced network are located at the nodes of a 2D spatial lattice be-
ing in one-to-one correspondence with the pixel array of a segmented image (see Sec-
tion 3.4.5 and Figure 3.2). Active network processing unit is the limit-cycle oscillator
with the bifurcation dynamics. The stable attractor of single-oscillator dynamical sys-
tem is either the stable limit cycle, of a stable focus. Image segmentation is performed
by the oscillatory network via synchronization of network assemblies corresponding
to image fragments of various brightness levels.

Let the image to be segmented be defined by the M x N matrix (I, ] of pixel bright-
ness values. The state of a single oscillator is defined by a pair (u,, u,) of real-valued
variables. The network state is defined by the M x N matrix & = [u;,,] of complex-val-
ued variables u,, = u,;,, + iu,,, defining the states of all network oscillators. System
of ODE governing oscillatory network dynamics can be written as

M N
i = [ Wi L) + .Y Wit (e = 14, (4.21)
j'l=1m'=1

Here functions f(u,I) define internal dynamics of isolated network oscillators,
whereas the second term defines contribution into the dynamics via oscillator cou-
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pling. In the first version of the model the values W), s,.,, defining coupling strength
of network oscillators (j,) and (j',m'), were designed so as to realize the principle
of dynamical coupling based on brightness. The principle should provide self-orga-
nized emergence of synchronization in the oscillatory network, so that synchronized
network ensembles correspond to image fragments of different brightness levels. The
matrix elements W, ., were designed in the form of the product of two nonlinear

functions dependent on oscillation amplitudes (limit cycle radii) of oscillator pair and
spatial distance between the oscillators in the network:

‘/ijjlm/ = P(P]rw pj'm’)D(rjm’rj'm’)' (4.2-2)

The cofactors P(p, p'), providing the network coupling dependence on oscillation
amplitudes, were constructed as

P(p,p') = wyH(pp' - h), (4.23)

where H(x) is a continuous step function, wj, is a constant defining total strength of
network interaction. The cofactors D(r, r'), providing “cut off” of spatial oscillator cou-
pling, can be specified by any function of |r - r’| vanishing at some finite distance. For
instance, it is convenient to choose D(r, ') in the form

D(r,t') =1-H(lr - '| - 1), (4.2-13)

where r, is the chosen radius of spatial interaction. According to the coupling rule
(4.2-2), any two network oscillators are coupled if they possess sufficiently great oscil-
lation amplitudes and are separated by a distance not exceeding the prescribed radius
of spatial interaction. Otherwise the coupling is absent.

4.2.2 Modified model of network oscillator

The new version of single oscillator dynamics was designed with preserving the main
qualitative features of dynamics of biologically motivated model of neural oscillator
designed in [18]. The modified version of dynamics allows us to specify the depen-
dence of oscillation amplitude on pixel brightness by several types of simple mono-
tone continuous functions, providing an additional tool of brightness segmentation
accuracy rise. The new version of the dynamical system (3.4-2) can be written in the
form [17]

u=faD), ful) =[p"+iw-lu-c?+g)]w-o), (4.2-5)

where ¢ = p(1 + i) and g(I) is the continuous function of pixel brightness I.
If we choose g(I) in the form of a step-function dependent on a threshold h,,

g(I) = «[1 - H(p)], (4.2-6)
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then the following features of isolated oscillator dynamics will be ensured: (1) atI < h,
a stable focus is the only stable attractor of the dynamical system (4.2-5) (the oscillator
demonstrates quickly damping oscillations); (2) at I > h, the limit cycle of radius
p(I) is the only stable attractor of the system (4.2-5) (the oscillator demonstrates stable
auto-oscillations of the amplitude p(I) < p,, where p(I) can be specified by an arbitrary
monotonically increasing function of I). The collection of limit cycles at different I (in
the case of p(I) = I and h,, = 0.25) is shown in Figure 4.1 (a). The limit cycle centers are
located at the points with coordinates (p, p) of the phase plane. The bifurcation of limit
cycle into stable focus occurs at I = h,. The oscillator “response” to pixel brightness
variation is depicted in Figure 4.1 (b).

(b)
5
3
t
3
NN
N

u,

Fig. 4.1. New version of single oscillator dynamics: limit cycles and focuses of dynamical sys-
tem (4.2-5) for various values of pixel brightness I and the oscillator “response” to the pixel bright-
ness variation.
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4.2.3 Modified principles of network coupling

In addition to the new version of single oscillator dynamics, providing an analog
type of oscillator “response” on pixel brightness, the modified versions of network
coupling principles were introduced. The aim was to provide acceptable brightness
segmentation accuracy without application of the method of sequential segmen-
tation, which was exploited previously in segmentation of synthetic images (see
Section 3.4.6).

According to the coupling rule (4.2-2)—(4.2-4), any oscillator pair is coupled if both
oscillators possess sufficiently large oscillation amplitude and the spatial distance be-
tween the oscillators does not exceed a given radius of spatial interaction. To raise the
segmentation accuracy, more flexible connectivity rules were designed and tested.
One of the coupling modifications, which demonstrated the segmentation accuracy
improvement in processing of real gray-level images, was a coupling principle based
on restriction for each oscillator of the set of other network oscillators to which this
oscillator is coupled. The restriction can be realized via some “mask.” Analytically the
coupling principle can be defined by matrix (4.2-2) with the modified co-factor P(p, p),

B(p,p ) =H(p-p +Ap"))H(p' - p+Alp)). (4.27)

The function A(p) specifies the “mask,” restricting the size of interaction vicinity of a
network oscillator (see Figure 4.2).

If A(p) = 24,, then according to coupling rule defined by matrix (4.22) with
P(p, p') = P(p, p'), any pair of network oscillators is coupled only in the case when the
oscillator intervals of interaction [p — Ay, p + Ay] and [p' — A, p' + 4,] intersect. Com-
puter experiments on brightness image segmentation demonstrate the segmentation
accuracy improvement in the case of application of the coupling rule (4.22) with the
modified cofactor P.

(@) (b)

Fig. 4.2. The principle of network coupling with using of masks: (a) A(p) = const, (b) A(p) is chosen
as a monotonic function of p.
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4.2.4 Network performance and model capabilities

Brightness image segmentation is realized by the oscillatory network via two steps:
(1) preliminary tuning of oscillator dynamics by pixel brightness values (after the tun-
ing operation the proper limit cycle size is specified for each network oscillator); (2) the
network relaxation into the state of cluster synchronization (which results in oscilla-
tory network decomposition into a set of internally synchronized and mutually desyn-
chronized oscillator ensembles, so that each ensemble corresponds to a fragment of
appropriate brightness). The combination of gradual (analog type) oscillator response
to pixel brightness and the more flexible (filtration type) network coupling rule pro-
vides significantly higher segmentation quality of real brightness images.

Brightness segmentation of gray-level images

For computer experiments on real gray-level brightness image segmentation the in-
teractive computer code was created that provided a large series of experiments on
testing of model capabilities. Some results of real gray-level image segmentation are
presented in Figures 4.3 and 4.4.

In the frames of the oscillatory network model, the segmented image is “repro-
duced” by the network in the oscillatory form: each ensemble of oscillators corre-
sponding to a definite image fragment demonstrates internally synchronized oscil-
lations, being at the same time desynchronized with the oscillators of all other oscil-
latory ensembles corresponding to different brightness fragments. To extract the cor-
rect stable version of reconstructed image from its oscillatory version provided by the
network, some simple methods of postprocessing were used. One of the simplest post-
processing method was based on the extraction of the image via incorporation of its
instantaneous versions at the points of the maximal values of all the Tim(®) = [t (D).

®

Fig. 4.3. Brightness segmentation of a gray-level photograph (657 x 432 pixels): (a) segmented
image; (b) the final result of segmentation.
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Fig. 4.4. Brightness segmentation of a map fragment (492 x 475 pixels): (@) segmented image; (b) the
final result of segmentation.

Color image segmentation

Color image segmentation was realized via pixel array decomposition into three sub-
arrays corresponding to red, blue, and green components of pixel colors. These three
subarrays were processed by the oscillatory network independently. Final visualiza-
tion of the segmentation result after accomplishment of network performance was re-
alized via reverse joining up of three subarrays into the single array. The example of
color image segmentation is presented in Figure 4.5.

Fig. 4.5. Color image segmentation (524 x 374 pixels): (a) segmented image; (b) the final result of
segmentation.
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Another way of color image segmentation is also possible. Namely, one can use
the vector parameter I = (I, I, I;) with components equal to red, green, and blue
pixel brightness components, respectively, and represent scalar pixel brightness I in
the form

3 3
I=Yql, >0 ) ¢g=L (4.2-8)
k=1 k=1

Then the coupling principle (4.2-2) with P(p, p') = P.(p, p'),

3
P =[]HQA- L - L)), (4.2-9)
k=1

can be used for segmentation of color images (A is a constant parameter).

Selective image segmentation
Selective image segmentation consists in the extraction of a desirable image fragment
subset with brightness values contained in some a priori chosen interval of bright-
ness levels. Selective segmentation can be viewed as a simplest type of active image
processing. As it is intuitively clear, the selective segmentation can often be more in-
formative compared to usual complete segmentation, because it allows us to exclude
unnecessary information.

The modified version of oscillator dynamics (4.2-5) provides a natural way of se-
lective segmentation realization. It is sufficient to introduce a new function g(I) in
equation (4.2-5) instead of p(I) via introducing of a “mask” function F(I) by putting

p(I) = p(DE(). (4.210)

If it is required to select only image fragments of brightness values I € [I}, ],
we choose F(I) to be equal to 1 inside the interval [I;, I,] and vanishing outside the
interval. It can be done analytically via the mask of a rectangle form

FO(I) = HI - I))H(I, - I). (4.211)

In this case, obviously, only the oscillators corresponding to image fragments with
brightness values I € [I,, I,] will possess nonzero oscillation amplitudes, whereas the
rest network oscillators will drop out of network interaction because of vanishing limit
cycle sizes. To select a collection of brightness fragments with a discrete brightness
values IV, 1® ... 1" the mask in the form of the sum of delta-like functions I'(x)
can be used:

m
FP =% r(r-19)). (4.212)
k=1
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@

Fig. 4.6. Selective image segmentation 1: (a) original image; (b) complete image segmentation;
(c) extraction of several the most bright image fragments; (d) extraction of a set of fragments of
middle brightness; (e) extraction of several the least bright fragments.

The examples of selective brightness segmentation of a cross-sectional tomogram
are given in Figures 4.6 and 4.7.

The capability to focus attention and exclude unnecessary information is the
known significant feature inherent to the mammalian brain visual systems. In hu-
manoid robotics the problems of active vision are particularly important, because the
capability to concentrate attention on a single aspect is necessary for any animate
vision system. It is of special importance in navigation of autonomous robots in un-
known surroundings. The artificial neural network approaches, offering the analog
with the brain neural systems working, represent the attempts to elucidate various
principles of the brain functioning and to use them in robotics. In particular, modeling
of principles of visual information reduction is helpful for developments of artificial
vision systems. Thus, modeling of selective brightness image segmentation (simple
exclusion of unnecessary visual information) could be considered as an initial step
toward the creation of artificial active vision systems.

An example of the visual illusion shown in Figure 4.8 illustrates the informative
character of selective image segmentation.
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(b)

Fig. 4.7. Selective image segmentation 2: (a) original image; (b) complete image segmentation;
(c) extraction of several the most bright image fragments; (d) extraction of a set of fragments of
middle brightness; (e) extraction of several the least bright fragments.

Fig. 4.8. The visual illusion (related to selective brightness image segmentation). The squares A and
B are of the same gray level of brightness. It is demonstrated (right) via separation of the squares
and the exclusion of the rest of the details from the picture. Picture by Edward H. Adelson.
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4.2.5 Image fragment separation from a visual scene

Problems of visual scene analysis

The problem of object selection in a visual scene belongs to the class of higher level
image processing tasks and demands additional methods of image analysis (such as
filtering or pattern recognition), dependent on the problem statement. Visual scene
interpretation consists in partitioning of the scene image into constituent subregions
and in assigning of an appropriate label to each subregion.

In the mammalian visual systems the problems of scene analysis are solved via
parallel distributed ways of visual information processing. Surprisingly, human vi-
sual system can recognize a gist of novel image in a single glance, independently
on image complexity. So, it is natural to expect that in the frames of oscillatory net-
work approach some methods of visual scene analysis based on temporal correla-
tion can be suggested. Developing an example of such synchronization-based solu-
tion, we restricted ourselves at the first step to a simple problem of visual scene seg-
mentation, which does not require additional computational tools (besides the devel-
oped network model). It is the problem of successive image fragment selection from
some finite set of spatially separated image patches of almost equal, weakly inhomo-
geneous brightness. The condition of brightness homogeneity of the patches should
be stressed, because in the case of patches of different brightness they could be easily
separated by the improved version of the oscillatory network without any additional
efforts. In the case of homogeneous patch brightness the problem can be solved in the
frames of the oscillatory network approach by a proper model extension.

We now shortly outline the main traditional computational algorithms that were
used in visual scene segmentation tasks.

Visual scene segmentation via traditional computational methods

Various traditional computational methods were proposed for visual scene analysis
and segmentation, based on image representation in the form of a two-dimensional ar-
ray where some brightness, color, and texture information is prescribed to each pixel.
The first group of approaches contains region-based methods relied on generation of
fixation point and finding the enclosing contour. A kind of attention mechanism is
usually attracted in such approaches [21, 22]. This segmentation strategy, developed
mainly for extraction of “simple” objects (presented by some connected image do-
mains) from a visual scene, can be applied in problems for robots with cameras. The
approach allows us to model a combination of top-down and bottom-up visual atten-
tion processes.

The second group of methods is based on the concept of graph cuts [26]. The
graph-based algorithms exploit image representation in the form of hierarchical col-
lection of salient segments. A graph is associated with an image so that each image
pixel corresponds to the graph node, and the weight of graph edge, connecting two
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nodes, is specified according to some pixels features. The contour-based segmentation
strategy then involves two consecutive steps. At the first step a probabilistic boundary
map is generated (in which the weight of each boundary pixel is proportional to the
probability for the pixel to be at the region boundary). At the second step a fixation
point and a closed boundary contour containing the fixation point are selected in the
visual scene. This allows us to define a path that optimally cuts the boundary map
into two halves [25]. Discrete layered models based on a sequence of ordered Markov
random fields and on extended graph-cut methods have also been developed [29].
The approaches dealing with the normalized graph cuts admit estimation of image
motion and can provide segmentation of moving scenes. Region-based segmentation
approaches incorporating syntactic visual features (formulated in terms of shape and
spatial configuration of image regions) can also sometimes provide satisfactory seg-
mentation results.

Visual scene segmentation via oscillatory network approaches

The attempts to design neural network models reflecting the existence of so-called
neural circuits and exploiting synchronization and desynchronization of neural as-
semblies were undertaken for scene segmentation problems [6]. A visual scene seg-
mentation via synchronization in a two-layer network of Wilson—-Cowan oscillators
located in 50 x 50 spatial lattice was carried out with the help of image contours de-
tection approach [30]. For solving the problem of texture patch selection in the frames
of oscillatory network model it was necessary to use collections of filters and spectral
histograms [19]. One more approach to the problem of sequential selection of objects
from a visual scene can be formulated in terms of selective visual attention. Then the
visual scene segmentation task can be solved based on partial synchronization in a
neural network of spiking neurons using synchronization with a central element [1].

Image fragment separation based on in-phase synchronization of oscillatory
network ensembles
The oscillatory network model described in Sections 4.2.1-4.2.4 was used for solving
a simple visual scene segmentation task. A simple problem of visual scene segmen-
tation, which does not require additional computational tools besides the developed
oscillatory network model with controlled synchronization, was considered. It is the
problem of successive fragment selection from some finite set of spatially separated
image patches of weakly inhomogeneous (almost equal) brightness.

We introduce two identical independent (mutually uncoupled) oscillatory sub-
networks denoted as the x-layer and the y-layer. The initial distributions of oscillator
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phases of networks of the x-layer and the y-layer are defined as

" 2mj i
PO == j=L..M,
e (4.213)
Y. _ = —
90 =5 k=1L..,N,

where M is the image width and N is its height. As one can see from (4.2-13), the ini-
tial phases of network oscillators of the x-layer are chosen to be proportional to the
x-coordinates of the image pixels, whereas the initial phases of network oscillators
of the y-layer are proportional to the pixel y-coordinates. After the relaxation of both
subnetworks into the synchronization state, one will obtain the following relations
for phase shifts: (1) in the x-layer the phase shift between two in-phase synchronized
oscillator ensembles corresponding to two different image fragments is proportional
to the difference of the x-coordinates of fragment “centers of mass” and (2) in the
y-layer the phase shift between the same two oscillator ensembles is proportional to
the difference of the y-coordinates of the fragment “centers of mass.” So, the finite
phase shifts arise between the oscillator ensembles, corresponding to different spa-
tially separated fragments. Therefore, all spatially separated fragments (despite their
equal brightness) can be clearly distinguished and successively selected. The difficulty
in fragment separation can arise only in the rare situation when there exists a com-
bination of two spatially separated fragments, located one inside another, so that the
coordinates of both fragment centers coincide. The example of solvable problem of
fragment separation is presented in Figure 4.9. A fragment of the Earth surface ob-

(b)

Fig. 4.9. Selection of spatially separated fragments of visual scene: (a) original image; (b) succes-
sive selection each of four fragments.
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Fig. 4.10. Functions Pj(t) = 05 (t) — wt corresponding to patch selection, shown in Figure 4.9.

tained via satellite observation is presented in Figure 4.9 (a). The visual scene con-
tains four spatially separated patches of almost equal brightness. The two-network
approach allows us to successfully select all the fragments. The temporal behavior
of the oscillator phases for oscillators of the x-layer is shown in Figure 4.10. Similar
behavior of oscillator phases occurs for oscillators of the y-layer.

4.3 Relation of the oscillatory network method to other
approaches

4.3.1 Relation of the model to controllable dynamical systems

The theory of dynamical system control is a well-developed research field existing
during more than 30-year period. The purpose of the control theory is to design the
control methods for complicated dynamical systems, that would allow to achieve the
desirable dynamical system behavior without a detailed information on the system
dynamics. A great variety of control methods has been developed: methods of a di-
rect control, program control, control methods via feedback connections, adaptive
control, methods of auto-tuning and self-tuning, optimization methods, dynamic pro-
gramming methods, etc. The theory of adaptive control is related to the construction
of strategies providing desirable dynamical behavior of the controlled system without
the complete knowledge of the system. The control can be applied to systems of ordi-
nary differential equations, stochastic differential equations, and stationary random
processes. There exist close relations between adaptive control theory and appropriate
aspects of signal processing theory, expert systems, fault-tolerant control, intelligent
control, filtering algorithms, and learnable neural networks. In many situations the
arising changes in controllable dynamics are so large that simple linear feedback con-
troller will not work satisfactory (for instance, this is the case in problems of flight
control). Adaptive control includes the possibility of control law modifications in sit-
uations when the parameters of controllable system are slowly time varying or uncer-
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tain. Adaptive control does not need a priori information about the bounds of the un-
certain or time-varying parameters. The design of an optimal strategy of autonomous
robot behavior can serve an example of application of adaptive control methods. Self-
organized (unsupervised) learning algorithms for recurrent neural networks can also
be viewed as application adaptive control to network dynamical systems.

The oscillatory network model described in Section 4.2 is mathematically equiva-
lent to a high-dimensional nonlinear controllable dynamical system. The control con-
sists in preliminary tuning of internal parameters of the oscillatory dynamical sys-
tem by the array of image pixel brightness. The tunable parameters are the oscillation
amplitudes of single network oscillators (limit cycle radii) and the network coupling
matrix, which depends on oscillation amplitudes. The type of control should be re-
ferred to as a kind of direct adaptive parametrical control. In fact, the control consists
in self-consistent tuning of dynamics of the governing dynamical system. The control-
ling process itself is realized in discrete time and in a off-line manner.

4.3.2 Relation of the model to multi-agent systems

The principle of oscillatory network model design and the character of its performance
is closely related to self-consistent performance of multi-agent systems (MAS) that are
widely exploited in a great variety of research fields and applications (see Section 1.8).
MAS applications cover such fields as computer vision, robotic control, computer-
aided design, enterprise modeling, network monitoring, societies simulation, office
and home automation, telecommunication, and traffic management.

MAS can be viewed as distributed controllable systems, providing modeling
highly complicated nonlinear processes (more complicated than those formulated
in terms of usual dynamical systems) admitting adaptive behavior. Robotic mobile
intelligent MAS admit hierarchical programmable interconnection architectures. Dis-
tributed self-organizing algorithms for complicated program solving are currently
under development. The application spheres include a great variety of new modern
directions such as creation of distributed algorithms for planning and rational de-
cision making, modeling of artificial social systems, argumentation and preferences
modeling, mobile agent-based data mining for diagnosis support, remote control
multi-agent systems for healthcare service, adaptive intelligent algorithms for various
networks service, agent-based negotiation algorithms for cooperative decision mak-
ing, agent-based dynamic data storage, intelligent solutions to problems of resource
allocation, and agent-based WEB applications. Active development of reinforcement
learning algorithms and the other adaptive algorithms for various multi-agent dis-
tributed systems is in progress. Also, it seems plausible that many complicated prob-
lems that are nowadays solved based on problem-oriented computation algorithms
in future will be solved via MAS-based approaches.
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Returning to the oscillatory network model discussed in Section 4.2, we note that
network oscillators, located at the nodes of spatially distributed lattice and possessing
image controllable internal dynamics, could be considered as a community of proces-
sors (agents). Cooperative solution to the problem — image processing — is performed
by the community via a self-organized interaction of all processors. The interaction of
the processors is easily and adaptively reconfigurable dependent on the concrete task
to be solved.

Thus, the dynamical oscillatory method of image processing, developed on the
base of neuromorphic oscillatory network model with synchronization-based perfor-
mance, demonstrates flexible, inherently parallel, and automatic self-organized per-
formance in various tasks of image processing.

4.4 Hardware implementation of oscillatory networks

The algorithms for image processing based on oscillatory network approach are highly
parallel in essence. Hence, the desire to implement such networks as a standalone in-
tegrated circuit chip rather than to emulate them on a serial computer seems quite
natural. Self-sustained oscillation systems either of Van der Pol type or Ginzburg—
Landau type can be easily created using conventional discrete components such as
bipolar and field effect transistors, resistors, and capacitors. Packing of these elec-
tronic oscillators into a single chip is well within current technological capabilities.
We now briefly describe two implementations of the LEGION model (see Section 3.3.2).

The series of papers [3-5, 20] represents an ongoing work toward the designing
the BIOSEG system — a bioinspired VLSI (very-large-scale integration) analog system
for image segmentation. The prototype chips contain an array of 16 x 16 and 32 x 32 os-
cillators and are manufactures using 0.8 pm and 0.35 um complementary metal-oxide
semiconductor (CMOS) technologies, respectively. Experiments gave satisfactory re-
sults and demonstrated that the proposed network can properly segment small im-
ages, including noisy ones. The time required for the segmentation process is deter-
mined by the operating frequency of the device and in the present case is about 150 pis.

In the papers [14-16], the authors designed a VLSI chip using 0.35 um CMOS tech-
nology. The chip contained about 100 000 transistors to create a matrix of 32 x 32 oscil-
lators. It was demonstrated to be capable to perform fast segmentation of real biomed-
ical binary images (magnetic resonance image of rat liver with pancreatic islets was
used). Comparison with computer simulation of the same network revealed the ad-
vantage of its hardware implementation from the viewpoint of operation speed. The
segmentation of 32x32 fragment took about 1 ps, and this should be compared with the
simulation time of 0.24 s on a desktop computer operating at 4.3 GHz. The matrix size
seems to be too small for real applications, but the authors claim that similar approach
can be used to create much larger matrices containing, for example, 256x256 elements.
This can be done using modern analog technology, like 65 nm CMOS process. The chip
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requires further testing and much work still has to be done to significantly enhance
its design. Nevertheless, the obtained results represent an important step toward the
hardware implementation of neuromorphic image segmentation approach (with real-
life applications) based on oscillatory networks.

It should be noted that in contrast to the LEGION model, our oscillatory network
model described in Chapters 3 and 4 has only self-organized dynamical connections
and no static ones. This feature could hamper the design of the corresponding inte-
grated circuit, but the implementation still seems to be feasible. Finally we remark
that it would be of particular interest to design an optoelectronic device with direct
pure optical image input (CCD-like), that could be exploited for image processing in
real time, for example, in video tracking tasks.

4.5 Code providing computer experiments on image processing

The collection of computer codes ONN was created for computer experiments on the
oscillatory network method testing in different image segmentation tasks. The current
version of the ONN code allows us

(1) tointegrate the dynamical system governing the oscillatory network dynamics by
specifying the image to be processed from the external graphical file and the main
controlling parameters (the strength w, of oscillator interaction, the radius r, of
spatial interaction in the oscillatory network, the “mask” A restricting the set of
network oscillators that are coupled with each given oscillator and the level of
network artificial noise);

(2) to display the functions |u im(®)], argu,, (t), Rew,, (), Imu,,,(t), phase trajectories
of individual oscillators, the oscillatory network state at any moment of time (in
the form of an instantaneous state of the segmented image), the pixel brightness
values being defined by either |u jm(t)l orargu jm(t).

The maximal size of pixel array of segmented image is restricted by the operating
memory size and the computation procedure running time. A typical image segmen-
tation task with image pixel array of 50 000 pixels takes about 10 min for complete
problem solving using a desktop computer.

The ONN code provided a great variety of computer experiments on brightness
segmentation of real gray level and color images with multipixel arrays and experi-
ments on solving simple versions of vision scene segmentation task with the help of
the oscillatory network of the two-layer architecture. The following directions of fur-
ther model development are possible: the design of new principles of the oscillatory
network coupling (in particular, for incorporation of more complicated visual scene
segmentation problems), the development of new approaches for active image pro-
cessing and the development of approaches for moving images processing.
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5 Parallel information processing and photon echo

5.1 Properties of the photon echo effect

The photon echo effect (or time domain four wave mixing effect) was predicted in 1962
by Kopvillem and Nagibarov [6], and was experimentally observed two years later by
Kurnit, Abella, and Hartmann in a ruby crystal [7]. This is a nonlinear optical phe-
nomenon, analogous to a spin echo effect, that consists in the coherent response of
optical inhomogeneously broadened mediums (gases, plasma, and crystals) to ultra-
short optical pulses. It is widely utilized for studying, for example, processes of relax-
ation of elementary excitations. Investigations devoted to dynamic spatial and tem-
poral properties of signals of coherent spontaneous emission have formed a separate
direction in physics of photon echo. As a consequence, several practical applications
of these properties in optical-memory and data-processing systems were proposed.
Physically, various manifestations of the specific features of the formation of the tem-
poral and spatial structure of optical echo responses are associated, on the one hand,
with the sensitivity of quantum resonant systems to Fourier-transforming properties
of incident light pulses and, on the other hand, with the sensitivity of such systems
to spatial structure of the wave front of radiation. Optical processors that use pho-
ton echo may implement all the basis operations inherent in optical data-processing
methods, such as spectral filtration of conventional and spatial frequencies and cor-
relation comparison of optical signals and time-dependent images.

The physical essence of the photon echo phenomenon is as follows. Suppose we
have a source of ultrashort laser pulses and some resonant medium. For example, we
can use a dye laser that operates in a pulsed mode, and a ruby crystal (a corundum
crystal Al,0, with implanted chromium ions Cr’*). The carrier frequency of laser ra-
diation is adjusted to be resonant to some atomic transition of a chromium ion. In the
first experiments the wavelength A = 0.635 pm was used, which corresponds the pho-
ton energy E = 1.9 eV. An absorption of a photon excites a chromium ion. The typical
duration of single laser pulse is 15-20 ns, whereas the lifetime of an ion excited state
is about 20 ps, i.e. 1000 times longer than the pulse duration. Hence, an excited ion
can interact with laser field a large number of times before it recombines.

If a ruby crystal is subjected to two laser pulses with an interval r between them, a
coherent excited state of chromium ions is formed. Upon its decay, an optical coherent
pulse is emitted — a two-pulsed photon echo signal (see Figure 5.1).

The three-pulsed photon echo phenomena are much more important for scientific
and practical applications. Suppose now a crystal is subjected to three pulses. Now an
additional echo signal appears as a third pulse with a delay 7, which is equal to the
interval T separating first two pulses (see Figure 5.1).

The damping of an echo signal does not significantly depend on the moment T of
the third pulse appearance. The value of T can be much larger than 7. More rigorously,
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Fig. 5.1. A schematic of the two-pulse and three-pulse (stimulated) photon echo effect.

relaxation processes in resonant media can be characterized (in the simplest cases)
by three main time scales: T, — longitudinal nonreversible relaxation time that deter-
mines the life-time of an excited state, T, — transverse nonreversible relaxation time,
also known as phase memory time, and T, — transverse reversible relaxation time that
is determined by the width of inhomogeneously broadened line. For the photon echo
it is important that the conditions §; < T,, and 7 < T, are fulfilled, where §; are
the durations of excitation pulses. These conditions are natural: the photon echo is a
coherent optical phenomenon and all its characteristic time scales should be smaller
than nonreversible relaxation time of the medium. In three-pulsed photon echo the
time interval T between second and third pulses also has an upper bound: T < T;.
There are no strict limiting relations between §,, 7, T and T, . Different ratios of these
quantities determine different regimes of the photon echo effect.

The typical wavelength of laser field (of the order of 1um) is much smaller than the
typical crystal size. Hence, in contrast to a spin echo, the photon echo is characterized
by a spatial directionality: if all laser pulses are plain waves and k;, k, and k; (k; =
27ri; /A with f; the direction of propagation of a laser beam) are the wavevectors of the
first, the second and the third laser pulses, respectively, then the wavevector of the
echo signal is k = k; + k, — k;. This condition is known as a spatial wave-matching
condition. If k; + k, = 0 then the echo signal propagates in the direction opposite to
the first pulse direction. Moreover, if the first pulse is a divergent spherical wave, then
the echo signal will be a convergent spherical wave. Therefore, the photon echo effect
shares some spatial properties of the holography phenomenon.

As was demonstrated in numerous works, the photon echo effect can be used for
various tasks of information processing. In such optoelectronic devices input informa-
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tion is encoded in optical pulses, and the echo signal generated by a nonlinear crystal
figures as the output. We will refer to these devices as echo processors.

5.2 Time processing of optical signals in photon echo processors

We now briefly review main methods to form various echo signals, and describe how
these method can be used to implement some types of neural networks. Here we con-
centrate only on the final results, omitting their microscopic quantum mechanical jus-
tification. The details can be found, for example in [8].

Let E,(t) and E,(¢) denote the envelopes of the electric field of excitation pulses in
a two-pulsed photon echo. Then the echo signal F(t) has the following form:

F(t) ~ jG(tl)Ez(tz)Ez(t3)1:";‘(t1 +ty ity + 1t —t +1,)dt dydt, (5.21)

where 7, = 27 is the time of an echo signal emission and G(t) is the Fourier transform
of the frequency distribution function g(w) of the resonant medium.
An analogous expression is obtained for a three-pulsed photon echo:

F(t) ~ J G(t, —t, — t5 + t — T,)E5(t,) E, (t3) E; (t,)dt  dt, dt5, (5.22)

wherenow 7, =T + 7.

These expressions, involving triple integrals, can be significantly simplified under
certain conditions. For example, if the excitation pulses have a broad spectrum, i.e.
their duration 8, is much lower than the relaxation time T, §; <« T, , then the functions
E,(t) can be approximated with delta-functions. The echo signal is then proportional
to the G(t - 7,), and its duration is characterized by T, . On the other hand, if §; > T,
(this condition is typical for real experiments), then delta function approximation can
be used for G(t). Introducing the Fourier transform of the electric fields amplitudes

E(e) = jEi(t)eiEtdt, (5.23)

the output of the resonant medium for a stimulated echo is described by the expres-
sion d
F(t) ~ JE3(e)E2(e)Ef(e)e"e(t_re)z—e. (5.2-4)
T

Suppose that one of the input signals E, () (which we will call the coding pulse)
has an arbitrary temporal form with the duration §,, whereas other signals have much
smaller duration, §; < &, (and hence, much greater spectral width). Then all functions
in (5.2-1), except E,(t), can be approximated with delta functions, and for the echo
response we get

F(t) ~ E{(z, - 1). (5.2-5)

Hence, in this case the echo signal is just the time reversal of the input optical
pulse. Similar situation is observed in a three-pulsed photon echo. Here, along with
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time reversal of an optical pulse, it is also possible to introduce a time delay into its
propagation without changing its form. It was shown [5, 9, 10] that the role of the
coding pulse can be played by any of three excitation pulses. If the coding pulse comes
first, the echo signal is time reversed, and if it comes second of third, only the time
delay is introduced. For example, if E,(¢) in (5.2-2) represents the coding pulse and
two other pulses are much shorter, §, ; < J,, from (5.2-2) we obtain

F(t) ~ Ey(t - 1,). (5.2-6)

The first experimental observation of this effect was performed in ruby crystal
with implanted Cr** ions [12]. These experiments were later confirmed with numerous
other nonlinear media, including crystal with paramagnetic impurities and gases. It
is important to note, that the time delays in some experiments were as large as a few
hours (see, e.g. [2]).

Similarly, if the spectral width of one of the functions involved in the product in
expression (5.2-4) is considerably greater than the widths of other two functions, this
function can be factored out outside the integral. Then, the envelope of the echo signal
is proportional to

Emm~JEﬂuﬂur¢+QMm
(5.27)
Fconv(t) ~ J E3(t T~ tl)Ez(tl)dtb

i.e. the correlation and convolution functions of the excitation pulses amplitudes.

5.3 Implementation of vector-matrix multiplier based on photon
echo

Photon echo can be used for implementations of optical data-processing methods. In
particular, a vector-matrix multiplier (VMM) can be built based on this effect [1, 11].

Since under certain conditions a photon echo signal can represent correlation and
convolution functions of excitatory pulses, it can be employed for implementation
of multiplication using an algorithm of digital multiplication by analog convolution
(DMAC) [4]. Suppose, we want to multiply numbers A = 22 and B = 9. Their binary
representations A = 10110, and B = 01001, should correspond to waveforms of light
pulses (see Figure 5.2 (a)). The calculation of a product of two numbers A and B using
the formula of convolution (5.2-7) yields waveforms shown in Figure 5.2 (b), which cor-
respond to a number AB written in a mixed representation, AB = 10120110,,,. An easy
postprocessing is required to obtain a standard binary representation. It can be done
using a shift-and-add algorithm [4]: the amplitude of the kth pulse of the output signal
should be converted into binary representation, shifted by k digits, and then all the re-
sulting values should be summed up. This process is demonstrated in Figure 5.2 (c).
Its outcome is the result of multiplication: AB = 11000110, = 198.
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Fig. 5.2. DMAC algorithm in the time domain: (a) waveform of pumping light pulses (binary coding);
(b) the result of the multiplication of two numbers in a mixed representation; (c) postprocessing
with a shift-and-add algorithm.

A photon echo also makes it possible to produce optical images. In this case, a
resonant medium plays the role of a spectral-selective hologram that is also sensitive
to spatial frequencies. In particular, if a resonant medium coincides with the plane
of spatial frequencies, photon-echo signals produce optical images that represent the
correlation or the convolution of initial images in spatial coordinates,

Fcorr(r) ~ j E2(1‘1)E)1’K (l' + 1‘l)d?’rp
(5.311)
Fconv(r) ~ j E3(—1‘ - )Ez (1‘1 )dsrl-

Thus, the DMAC algorithm can also be implemented for multiplied numbers in a
parallel spatial coding on the basis of optical image processing. Generally, a photon
echo provides an opportunity of spatial-temporal correlation analysis of time-depen-
dent images. These opportunities are associated with the following fact: if a resonant
medium is employed as a spectral-selective hologram that displays selective proper-
ties with respect to spatial frequencies, then the spatial and temporal frequencies en-
ter into the total Fourier transform of electric field amplitude independently of each
other. This allows us to perform correlation processing of time-dependent images.

Photon echo is a phenomenon that is determined by a coherent interaction of op-
tical pulses with a resonant medium. Consequently, in implementing the DMAC algo-
rithm with the use of the photon echo, we perform correlation processing or compar-
ison of slowly varying amplitudes of optical pulses represented in the form of convo-
lution integrals either in temporal or in spatial domain. At the same time, photodetec-
tors can register a signal proportional to the intensity of incident light. In other words,
the detected signal is quadratic in the amplitude. Therefore, a procedure of addition
or integration in time, when a signal proportional to number digits in a mixed repre-
sentation is accumulated in time, loses its meaning in echo processors. Integration or
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amplitude addition in space is possible due to the use of coherent optical schemes.
In this case, to produce optical images with a complex spatial structure of the wave
front, one can employ schemes with the expansion of the laser beam and subsequent
application of a spatial-temporal optical modulator (STOM). From the viewpoint of the
DMAC algorithm implementation, two approaches are appropriate in echo processors
with correlation comparison being implemented either in time or in space.

5.3.1 Photon echo vector-matrix multiplier with spatial integration

The pixel modification of an echo processor employs a binary representation of the
elements of both a matrix A and a vector B in the form of a time-sequential code. Pro-
cessing that corresponds to the calculation of the product of the two numbers A ; B,
is performed in independent spatially structured areas (pixels). The number of pixels
in an STOM is equal to the number of pixels in a resonant medium (see Figure 5.3 (a)).
Thus, each pixel of a resonant medium calculates the convolution or the correlation
function of signals that correspond to a pair of light pulses in time domain (in the
case of a two-pulse photon echo, the numbers being multiplied within various time
intervals are related only to the second light pulse).

(b
12 k N
1
2
! A
M

Fig. 5.3. A photon echo vector-matrix multiplier with spatial integration: (a) a simplified schematic:
1 - laser, 2 — former of light pulses and lenses that shape waves with a plane wave front, 3 — STOM,
4 — resonant medium, 5 — cylindrical lens that implements spatial integration, 6 — array of photode-
tectors; (b) images produced by a STOM in the form of two pumping light pulses for calculating a
vector-matrix product.
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The dimensions M x N of an image produced by the modulator correspond to the
numbers of rows and columns of the matrix A or to the number M of identically ar-
ranged vectors B with elements By, B,, ..., By. (see Figure 5.3 (b)). During the action
of one of the pumping light pulses, the STOM should form different images. The num-
ber of such images is equal to the number of digits in the employed representation.
Therefore, an STOM operating in this regime requires an electrically independent ad-
dressing of working elements (cells) of the modulator. Addition of different elements
of the matrix A with the elements of the vector B is performed by a cylindrical lens. If
coherent light is used, an STOM performs addition of the field amplitudes.

Eventually, an array of M photodetectors should register a signal proportional to
(3, A;B,)’ inamixed representation in the form of a sequential code. Transformation
of this code into a binary representation with subsequent element-by-element digiti-
zation and addition with a shift should involve conventional electronic means.

5.3.2 A holographic photon echo VMM scheme with spatial integration

In the situation considered in the previous section, the role of the STOM was reduced
to the formation of a series of two-dimensional images within the time equal to the du-
ration of light pulses encoded with the number of digits of the employed representa-
tion. Thus, the DMAC algorithm was implemented in the time domain. A scheme of the
holographic type operates with numbers in a parallel code, and the DMAC algorithm
is implemented in space. Similarly to the above-considered scheme, each of the im-
ages produced by an STOM in the case under study represents a space-pixel structure
of domains that either transmit or do not transmit light (in accordance with encoding
in the binary representation). At a definite moment in time, the image forms a vector A
with N elements and the number of digits involved in the binary representation equal
to R (see Figure 5.4 (b)). If a time-dependent image features change during the time in-
terval corresponding to the action of one of the incident light pulses, then the above-
specified procedure defines a matrix of elements consisting of M vectors (M rows).
A complex optical system shown in Figure 5.4 (a) performs one-dimensional Fourier
transformation in the x-coordinate, forms an optical image and compensates for the
phase difference in the y-coordinate. Thus, a resonant medium represents a plane of
a multichannel dynamic hologram with one-dimensional filtration of spatial frequen-
cies.
The distribution of the field in the plane of the hologram can be written as

. !
ikxx

i i ! o
Ei(x,y)= JEj(x, -y') exp (— )dx, ji=12, (5.3-2)

where k is the wave number, and F is the focal length of spherical and cylindrical
lenses. Then, a signal arising in the observation plane (x,, y,) is proportional to the
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Aw By 7%

Fig. 5.4. Holographic VMM scheme based on photon echo: (a) 1-6 — components similar to those
shown in Figure 5.3, 7, 9 — combinations of spherical and cylindrical thin lenses that implement im-
age formation in the y-coordinate and one-dimensional Fourier transformation with respect to the
x-coordinate, 8, 10 — cylindrical lenses that implement phase compensation; (b) data representa-
tion in parallel coding for a holographic device.

correlation function or the convolution-type function,

. !
Fcorr(xa’ ytx) ~ j E; (x,’ _ya)EZ(x” _ya) exp (_lk%> dx”
o (533)
Fcorr(xa’ ytx) ~ j EZ(x” _ytx)E?a(x,’ _ytx) exp <_l ;"x )dx”
or
Fconv(xtx’ ya) ~ J ET (x, ya)EZ(x — X ya)dx’
(5.3-4)

Fconv(xzx’ yot) ~ J EZ(X’ yot)ES(_x ~ X yot)dx'

Thus, a set of products A;B;,i = 1,..., N in a mixed representation is produced in
the (x,, y,) plane, and a cylindrical lens placed in front of an array of photodetectors



5.3 Implementation of vector-matrix multiplier based on photon echo = 135

performs the operation of addition

N
> A;B;.
i1

The array of photodetectors produces a signal that is proportional to the square
of the scalar product (AB)? of the vectors A and B.

Provided that the STOM forms a set of M images during the time interval corre-
sponding to the action of one of the light pulses (which corresponds to the definition
of M vectors or a data matrix), then we can obtain a set of M signals proportional
to (A;B), i = 1,2,..., M at the output of the resonant medium. The signal of a two-
pulse photon echo can be considered as a particular case of degenerated stimulated
photon echo when E, = E;. Then, similarly to time-domain coding, the image that
corresponds to the second pumping light pulse in two-pulse photon echo should con-
tain various regions of the spatial coding of the numbers being multiplied. Thus, in
contrast to an optical echo processor considered in the previous section (which rep-
resented a pixel structure with spectral filtration in conventional frequency domain),
in the case analyzed in this section, a resonant medium plays the role of a dynamic
multichannel hologram with spectral filtration in one-dimensional spatial frequency
domain.

5.3.3 Estimates of the main technical characteristics of digital echo processors

The most important characteristics of echo processors are: (a) the speed, which de-
termines, to a great extent, the performance of the system as a whole; (b) energy con-
sumption per one data bit processed, and (c) the capability to operate in a conveyer
(continuous) mode.

The speed of a processor is determined by the minimum time that is required to
complete a single operating cycle of vector-matrix multiplication. If a stimulated pho-
ton echo is employed as a functional method of data processing, this time is deter-
mined by the durations §; of three incident light pulses and the duration of the pho-
ton echo signal, which can be assumed to be greater than all the §; and all the time
intervals between the pumping light pulses and the photon echo signal itself. In the
regime, when the system calculates the correlation function or the convolution, the
duration of one of the pumping pulses should be less than the durations of other two
pulses. Therefore, to estimate the minimum time of the working cycle, we can use the
expression f,;, = 38 + 37 + T*, where t* > T, is the time required for the resonant
medium to return to the ground state. The value ¢_,, ~ 100 ns can be attained experi-
mentally.

Let us estimate the feasible performance of an echo processor. Since a VMM oper-
ates with MN numbers, the implementation of vector—matrix multiplication requires
2MN operations of multiplication and addition. The characteristic time that is re-

min
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quired to perform these operations is mainly determined by the time intervals between
pumping light pulses. Choosing M ~ N ~ 20, we can estimate the performance of the
system as 2MN/t,.. ~ 10'° operations of multiplication and addition per second. To
estimate the speed (in bits per second) of binary data processing, we should multiply
the above result by the number of digits in the employed numbers.

5.4 Optical implementation of neural networks based on photon
echo

Presently, optical implementation of associative memory network models (see Sec-
tion 1.4) is an important subarea of optical computing and data processing. Successful
realizations of associative memory networks, using the properties of Fourier transform
holography, photorefractive crystals, and spatial light modulators have been reported.
These elements are necessary to ensure the large number of interconnections of opti-
cal neural networks.

The photon echo effect allows the realization of an optically controlled matrix of
interconnections. This matrix can operate during a time interval less than the popu-
lation relaxation time of an optical medium. Moreover, all pulses in the photon echo
effect are separated in time, and this can improve the architecture of optical neural
networks in some cases.

5.4.1 Outer product scheme for optical neural networks

The properties of the photon echo effect can be used to realize an optical neural net-
work [3]. Figure 5.5 presents the implementation principles of the Hopfield network
based on the echo phenomenon. This system consists of input and output linear arrays
(N elements) and an N x N storage matrix which is an inhomogeneously broadened
medium interacting with a sequence of resonant optical pulses.

To store a network interconnection matrix, two 1D spatial light modulators (SLM)
oriented along orthogonal directions (see Figure 5.5 (a)) can be used. These modula-
tors allow the generation of the pulse train illustrated in Figure 5.5 (c), where EE’”) isthe
light amplitude of the ith element of the input array, corresponding to the mth mem-
ory image. The optical pulses interact with the inhomogeneously broadened medium,
which ensures the storage of the outer product matrix EE’")* EE.'"). This implies that each
pulse EE"’) is the first pulse and each pulse EE.'") is the second pulse of the excitation
echo sequence in Figure 5.1(c). These data pulses for each value of the index m are
separated by a time interval T. The optics required to increase the dimensions of the
input signals is omitted in the figures for simplicity.

The recognition stage is shown in Figure 5.5 (b). The image E;" is supposed to be
processed by the optical neural network. This 1D signal is generated with the help of a

(in)
i
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Fig. 5.5. Outer product scheme of the optical implementation of a Hopfield network based on the
properties of the photon echo: (a) storage of the outer product scheme; (b) the recognition stage,
1-the array of light emitters, 2 — resonant medium, 3 — the array of photodetectors.

v

horizontally oriented input SLM and then is spread in the vertical direction by means
of the appropriate optics. A pulse with such an amplitude distribution causes a great
number of echo responses corresponding to the pulse sequence that is preliminarily
stored in the medium. It is seen that within a time interval t after the recognition stage
has begun the stimulated photon echo signal appears in the output plane,

N M
Fi~Y ( Y E§’"’*E§.”‘>) E™, (5.4-1)
i=1 \m=1
where M is the number of stored images. The summation over the index i in (5.4-1) is
carried out by anamorphic optics, which yields this 1D vertically oriented distribution.
The output stimulated echo should be detected at the time ¢t = T + 7, where T corre-
sponds to the beginning of the recognition stage. To separate the useful echo signal
from the noise, an optical shutter can be placed before the photodetector array plane.
The noise echoes arise at the times T'+¢,, T +t,+ 7, T +t, + 27 and so on. Consequently,
if the time interval between adjacent data pulse pairs of the stored sequence in Fig-
ure 5.5 (¢) is sufficiently longer than r, the useful echo signal with the amplitude given
by (5.4-1) can be selected by means of an optical shutter. If a threshold operation and
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feedback are realized, as shown in Figure 5.5 (a), this system can be considered as an
optical implementation of a Hopfield neural network.

5.4.2 Inner product scheme for optical neural networks

It is meaningful to investigate the optical implementation of an associative memory
network with access to the correlation domain. This approach allows us to use non-
linearities in the correlation plane to considerably improve the network information
capacity. The inner product scheme shown in Figure 5.6 is an example of an optical
scheme with access to the correlation domain. The main idea is to change the order of
the summations in (5.4-1). First, inner products of the input vector and memory vec-
tors, which are stored in the N x M matrix columns, are calculated. Then these inner
products weigh the corresponding memory vectors in the second matrix. Finally, the
summation over the index m is carried out by means of anamorphic optics, yielding
the output column. The realization of such optical scheme is possible using the photon
echo effect. In this case, the storage matrix is a resonant inhomogeneously broadened
optical medium. To store information, the first pulse should be a reference wave with
amplitude E; =1 (i = 1,2,..., N) for all M columns. The second pulse presents mem-
ory images that are stored in the columns of the first N x M matrix. The second matrix
in Figure 5.6 is prepared in the same manner.

Upon arrival of the input image Egi"), the stimulated photon echo signal appears in
the output plane. The echo amplitude determines the output image and has the form

M N
(m) plim) | )
Fj~ Y (Z E"E™ )Ej’”. (5.4-2)

m=1 \i=1

threshold device

Fig. 5.6. Inner product scheme of the optical implementation of a Hopfield network based on the
properties of the photon echo effect, 1 — array of light emitters, 2, 2’ — resonant medium, 3 — array
of photodetectors.
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The considered system can store and retrieve only 1D optical arrays, because one
transverse coordinate is needed for spatial separation of the memory vectors. In the
next section we show how the properties of the photon echo effect allow us to process
2D optical arrays by replacing the spatial separation with a temporal one.

5.4.3 Inner product scheme for 2D array processing

A modified optical associative memory scheme, similar to that described in the previ-
ous section, can be introduced. The 2D optical arrays can be processed with conser-

©)] 1

—| threshold device I —‘

(b) ()
(0)_1 151) E{gz) ,(/3) (M 1) E(M] (0) =1 i(/M] E[M -1) E(M 2) E:(IZ) E,(,l)
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E.(.in) 5(1) 5(2) 5(3) 5('") S(M-U S[M) Fkl
ij
t

Fig.5.7. @) Inner product scheme of the optical implementation of a Hopfield network for 2D array
processing, 1 - the 2D array of light emitters, 2, 2’ — resonant medium, 3 — the 2D array of photode-
tectors; (b) data pulse sequence for memory storage in the left matrix 2; (c) the same for the right
matrix 2’; (d) optical pulse sequence during the recognition phase.
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vation of parallelism, as shown in Figure 5.7 (a). Optical pulses with the 2D-amplitude
distributions of the data can be generated with the help of a 2D SLM placed in the input
plane. Then, these signals interact with the 2D storage matrix, which is an inhomoge-
neously broadened medium. Figure 5.7 (b) and (c) shows the data pulse sequence re-
quired to store memory images in the first and second matrices, respectively. The first
pulse of each sequence is a reference wave and has an amplitude equal to unity for all
2D array elements. The time condition ¢, > 7(M - 1) should be satisfied. It should be
stressed that the overall durations of the data pulse train is limited by the dephasing
time T,.

Upon arrival of the input image EEJ’:") , the temporal sequence of the stimulated echo
signals appears in the correlation domain, as shown in Figure 5.7 (d). After summation
in the transverse plane, their amplitudes are the inner products of the input and mem-
ory images,

S(m) ~ Z Eg%g."), (5.43)
ij
where m = 1,2,..., M and the corresponding times are ¢,, = T + ¢, + (m — 1)7. Then,
these pulses weigh the memory images preliminarily stored in the second matrix and
induce a set of stimulated echo responses that propagate into the output plane. The
useful signal should be detected at the time T + 2¢, + (M — 1)7. The 2D amplitude
distribution of the signal is

Fy~ Y SmE} =Y E Y EVEL. (5.4-4)
m m ik

The nearest noise stimulated echoes are separated from this echo pulse by the
time interval 7. Therefore, in this case an optical shutter can also be used to select the
output signal with the amplitude given by (5.4-4). For this purpose, the delay 7 in the
data pulse sequence is chosen according to the operating time of the optical shutter.

The above-considered scheme, together with the threshold device and feedback,
represent the optical implementation of a Hopfield neural network. One can see that
the presence of the time coordinate in the echo phenomenon permits us to increase
the dimensions of the optical array processed by the network. The temporal properties
of the photon echo effect are also important for implementation of some other neural
networks models. These are higher order neural networks and a neural network for
storage and retrieval of a complex temporal sequence of images.
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6 Stochastic oscillators for modeling polarized light
beams

6.1 Polarization analysis of quasimonochromatic light beams
6.1.1 Classical description of plane electromagnetic wave

Free classical electromagnetic field in the empty space satisfies homogeneous Maxwell
equations [4]

V x E(r, t) = —% aH(;;’ D V.Emn=o,
5 (6.1-1)
Vx H(r, 1) = LIB®D V.H(r, ) =0,
c ot

where E(r, t) and H(r, t) are the electric and magnetic field vectors, respectively, at the
space—time point (r, t). Here and in what follows we use cgs units.
The vector potential A(r, t), related to E(r, t) and H(r, t) by the expressions

1 0A(r, t
E(I‘,t) = _z%)

satisfies the homogeneous wave equation, which can be obtained from (6.1-1),

H(r,t) = V x A(r, 1), (6.1-2)

1 0*A(r,t)
VA1, t) - = =
() 2 or?

The solution of the wave equation specifies a plane transversal electromagnetic
wave, for which both the vector potential A(r, t), and electric and magnetic fields E(r, t)
and H(r, t) undergo oscillations in the plane orthogonal to the direction of the wave
vector k. Thus, in some real orthonormal basis B = {e,, e,, e_}, satisfying the condi-

tions

(6.13)

‘e, =0, e, = i xe,, (6.1-4)

the electric field of a plane monochromatic electromagnetic wave can be written in the
form

2
E(r,t) = z a; Re[e/ KT @%)]e

s=1

5> (6.1-5)
where the real amplitudes g, and phases «, determine the amplitude and polarization
of the wave. For example, if a, = 0, then the vector E(r, t) is always parallel or antipar-
allel to the fixed vector e, i.e. the wave is linearly polarized. In contrast, if a, = a,
and |a, — o, =m/2, then the end of the vector E(r, t) traces our a circle (in every fixed
point r), and the wave is circularly polarized.

In the general case, the end of vector E(r, t) traces out a spiral line in the space,
which projection onto the plane (e, , e,) is an ellipse, known as polarization ellipse (see

Figure 6.1).
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Fig. 6.1. Polarization ellipse.

Every monochromatic wave always has certain polarization. Real waves, however,
are not monochromatic and contain components with frequencies in some narrow
interval Aw:

E(r, 1) = Ey(r, t)e ™, (6.1-6)

where E(r,t) is a slow-varying function of time. Hence, polarization of the wave in
every fixed point r varies in time. For adequate description of polarization plane elec-
tromagnetic wave the electric field vector E(r,t) should be considered as a random
vector function of time, or random process, because in practice we always deal with
fluctuating electromagnetic fields. Then Figure 6.1 displays the behavior of E(r, t), the
statistical mean of E(r, t). The analysis of polarization of fluctuating electromagnetic
waves can be carried out in the frames second-order correlation effects of two-dimen-
sional vector random processes.

6.1.2 Polarization analysis in terms of coherence matrix

We consider well collimated, uniform beams of quasimonochromatic light of mean
frequency w. The complex amplitudes E_(t) = ax(t)e"i"‘x(t) and Ey(t) = ay(t)e"i"‘y(t) in
the expression (6.1-5) can be considered as slowly varying functions (in comparison
with cos wt and sin wt). We suppose them to be stationary random processes (random
functions of t), so that E(f) = [E,(¢), Ey(t)]T is a stationary two-dimensional vector
random process. Let E(¢) be the mean of E(¢). For stationary random processes the
statistical mean coincides with the mean over time (the ergodicity [8, 9]), that is

T

- 1

E(t) = (E(t)) = lim — | E(t)dt. 6.1-

0 = (€)= lim > [ B0 (617)
-T

It is known from the classical optics that second-order correlation characteristics

of fluctuating electric field E(r, t) are responsible for various interference phenomena.
The properties of a partially polarized quasimonochromatic beam are determined by
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the coherence matrix J:

. J.. T (E.E*) (E.E*)
=(EQE' @) =" "= " "> Ty, 6.1-8
J = (E@E'(t)) ( N ]yy> < (E,E%) (EyE;)> ( )

The diagonal elements of J define the intensities (average electric energy densi-
ties) of electromagnetic wave components with electric field E, and E, whereas the
element J,, defines correlation between the components. Other quadratic combina-
tions of the electric field, such as E,(t)E,.(t) or Ex(t)Ey(t), correspond to fast-oscillating
factors e**“' in (6.1-5) and vanish upon averaging.

There is the following relation between this matrix and covariation matrix D(z) of
the random process E(¢):

D;(1) = (E,(OE;(t + 1)) Jyup = Dpu(0). (6.1-9)

The trace of the coherence matrix is proportional to the average electric energy
density W, of the light beam, that is, to the light beam intensity I: tr] = (E E}) +
(EyE;) = 4nW, = I. Factoring out the light beam intensity, we get the normalized

coherence matrix j,

- 1

j=—J=
trJ

The matrix j describes the polarization propetties of the light beam, and its off-
diagonal element

J. (6.1-10)

~ =

T iyxy _ ] Xy -
Jxy = lixyle™ = T T » (6.111)
defines statistical correlation between E, () and E, ). The value | Jxy| s @ measure of
correlation between the components E,(t) and E y(t), and the value Vay is the effective
phase difference between them.
In optics the Stokes parameters I, Q, U and V, which represent the real-valued
linear combinations of J,,,, are frequently used for characterization of polarization
state of a light beam. The Stokes parameters are related with J,,,, as follows:

I=J+]y, = (a0 + (@),

Q=Ju Ty = (@) —(a),

(6.112)
U =Ty + ], = 2(a,a, cos(a, —a,)),
V =iy, = ],x) = 2{a.a, sin(a, —a)).
or, equivalently,
. 1 (I+Q U-iVv 1
J= > (U iV T1-Q ) = E(IO'O + Uo, + Vo, + Qoy), (6.113)

where ¢, is the 2 x 2 identity matrix and o,, 0,, o; are the Pauli matrices.
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Any coherence matrix can be uniquely expressed as the sum of two matrices, one
of which corresponds to completely polarized light and the other — to completely un-
polarized light:

f _ jpol + junpol’ jpol _ (A B) , j‘unpol -1 (1 0) ,

B* C 0 1
1 I
A== [(lm = J,,) + \/12 - 4det]] , B=]., (6.1-14)
C= % [(]yy — T+ |2 —4detf] , A= % [Ii \I? —4detf] :
The value -
po!
p- tr; O0<P<1) (6.115)

is called the degree of polarization. It defines the portion of completely polarized com-
ponent of light in the total light beam. At P = 1 the light is completely polarized,
at P = 0 — completely unpolarized, at 0 < P < 1 — partially polarized. The degree
of polarization can be expressed in terms of eigenvalues A, and A, of the coherence

matrix J:
A - Ayl J 4det]
p= il 2ot 6.116
AL+ A, I ( )

and in terms of Stokes parameters is

VQ* +U% + V2

I

P = (6.117)

For completely polarized beam the Stokes parameters define the form and the ori-
entation of polarization ellipse shown in Figure 6.1:

N
V@ FUT+ V2

For unpolarized light beam the coherence matrix J is proportional to the unit ma-
trix and does not depend on the choice of the polarization basis. This means that the
x- and y-components of the electric field vector are uncorrelated for all pairs of direc-
tions, and the average (E;E; ) has the same value for every direction i that is perpen-
dicular to the direction k of beam propagation.

For completely polarized light beam the coherence matrix has the form

R ] Ty

jPol = i Vleely . (6.119)
\/]xx]yye Tyy

It coincides with the coherence matrix of a plane monochromatic (deterministic)

electromagnetic wave with complex amplitude E(t) = ( ]xxeiﬁl, N ]yyeiﬁz)T, where f3

tan(2y) = g, sin(2f) = - (6.118)

and f3, are arbitrary constants with 3, — 3, = «. A quasimonochromatic wave with
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the coherence matrix j = jP°' cannot be distinguished from a strictly deterministic
monochromatic wave in canonical optical experiments, which include only polarizers
and compensators.

6.1.3 Classical and quantum correlations in optics

Theory of classical electromagnetic field successfully describes all the phenomena re-
lated to wave propagation, interference, and diffraction. But in the situations with very
few photons, the quantum optical description is necessary, because the very idea of
an oscillatory field with definite phase becomes meaningless. Surprisingly, classical
optics proceeds to correctly work even at extremely low light intensity levels. For in-
stance, such nonclassical optical effects as photoelectric bunching and photoelectric
counting statistics can be described in the frames of classical electromagnetic field
theory. However, there are some optical phenomena for which electromagnetic field
needs to be treated at quantum level of description.

Photons can be defined as quanta of the normal modes of the electromagnetic field
and are associated with plane waves of definite wave vector and definite polarization.
The concept of the photon as a localized particle traveling with the velocity ¢ can be
inappropriate and even misleading in some situations. There are several significant
differences between the predictions of classical field theory and those of quantized
field theory. An interesting nonclassical result can be obtained in the case of two cor-
related photon beams. Calculating the joint probability of detecting a photon at each
of two output ports of a beam splitter with the help of general classical formula for joint
probability, one can find that the probability can be equal to zero for special cases of
one-photon states. This result has no analogy in the classical electromagnetic field.
This is an example of quantum interference of the probability amplitude for a photon
pair [5].

Another example is provided by the famous paradox, demonstrated by the
so-called Bell state or, Einstein—Podolsky—-Rosen state known as an EPR-pair [2].
In optics it can be illustrated by a two-photon state with zero total angular momen-
tum J. Such state might be created in a cascade decay of an atom making a two-stage
transition of the type A] = 0 when two photons and, being in the states with orthog-
onal linear polarizations, leave the atom in the opposite directions. The results of the
experiment with these two photons, using two polarizers and two photodetectors,
were analyzed in detail. The joint probability that both photons are simultaneously
detected by the photodetectors when both polarizers are oriented at angles 8, and 6,,
can be calculated both in frames quantum optics and as classical joint probability.
A version of Bell inequalities can be written for classical joint probability, and it can
be shown that the inequalities are violated for quantum mechanical expression. Sev-
eral optical experiments confirming the Bell inequality violation have been carried
out[1, 3, 6, 7].
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6.2 Modeling superpositions of polarized light beams

In this section, we present a system of stochastic oscillators for modeling the electric
fields of quasimonochromatic light beams and their superpositions. A single stochas-
tic oscillator model imitates the electric field of a plane quasimonochromatic circu-
larly polarized electromagnetic wave. A pair of properly parameterized stochastic os-
cillators simulates the electric field of a light beam at arbitrary polarization state. A
superposition of 2N stochastic oscillators then simulates the electric field of the light
beam obtained as a result of superposition of N light beams propagating in the same
direction. The correlation matrix (or Stokes parameters) is used for estimation the state
of polarization of the composed light beam.

6.2.1 Oscillatory model of polarized light beam

The model of stochastic oscillator is designed based on the simplest limit cycle oscil-
lator named Ginzburg-Landau oscillator (see Section 2.2.1). The circle of radius p in
the plane R? is the limit cycle of the oscillator dynamics. The dynamical equation can
be written as

z=(p* +iw-|z[)z, (6.2-1)

where z = x + iy, p is the limit cycle radius and w is the oscillator frequency (see
Figure 2.7). A pair of uncoupled Ginzgurg-Landau oscillators with chaotically modu-
lated dynamics is necessary for modeling quasimonochromatic polarized light beams.
In our model we use the oscillators with chaotically fluctuating limit cycle radii ,, p,
and oscillator frequencies @,, @,. The modulated dynamical equations are written in
the form

z = (pr) +ie D) - 1z*) 2z, i=1,2, (6.22)

where

ﬁi(t) =pt+ Ei(t);

(6.2:3)
@;(t) = w; +1;(t),

and &,(¢), n,(¢) are the stationary random functions of time (stationary random pro-
cesses) with zero mean: (&;(t)) = 0, (n;(t)) = 0. Due to ergodicity of stationary random
processes all stochastic means are equal to the corresponding means over a large time
period, that is (;(t)) = &;(t), (%;(1)) = #;(t).

The oscillator pair with p; = p, = p, w = —w, = —w corresponds to a pair of cir-
cularly polarized light beams in mutually orthogonal states of right and left circular
polarization. To be convinced that dynamical equations (6.2-2) really specify a stochas-
tic dynamics, one can rewrite each of two-dimensional equations (6.2-2) in the form of



148 —— 6 Stochastic oscillators for modeling polarized light beams

two equivalent uncoupled equations for variables r = |z| and 0 = arg z:

i=[p+&° -rIr,

. (6.2-4)
0=w+1.

Then each of dynamic equation (6.2-2) can be represented in the form of two inde-
pendent Langevin stochastic equations
# = [pf = r’Ir + Bi(0),

. 6.2-5
0; = w; + g;(1), ( )

where
() =8O8 +2plr,  (pi(r,1)) =0,
gi = n;(1), (g;@®) = 0.

The Langevin equations (6.2-5) and (6.2-6) describe dynamics of a “particle” under
the action of fluctuating external force (Brownian wandering).

If we assume the real-valued electric field components E, (r, t) and Ey(r, t) to be
proportional to x = Rez and y = Im z, respectively, the trajectory of dynamical sys-
tem (6.2-2) imitates the electric field behavior of plane quasimonochromatic circular
polarized wave. As we saw earlier, a general fully polarized state of a plane electro-
magnetic wave is the state of elliptic polarization: the end of electric field vector E(r, t)
traces out a spiral line in the space, which projection onto a plane, orthogonal to the
direction of wave propagation depicts an ellipse. To determine the form and orienta-
tion of the polarization ellipse, one should decompose the electric field into the sum
of two mutually orthogonal components and find their amplitudes and a phase dif-
ferences between them. This corresponds to the decomposition of the complex ampli-
tude E of vector E(t) in some orthogonal basis. In particular, the states of right and left
circular polarizations, denoted by the vectors e® = (1/ V2)(e, + ie,), are often used
as the basis states for representation of arbitrary elliptic polarization and polarization
analysis. Obviously, the oscillator pair with parameters p = p,, w = wy and p = p,,
w = -w, and vanishing random fluctuations &, ,(t) = 0, ,,(t) = 0 corresponds to
circular polarization basis states e and e, respectively.

The examples of the electric field E(t) behavior corresponding to the light beam
in the state of horizontal linear polarization are shown in Figure 6.2, where the vari-
ables z; = x + iy and z, = z + iu correspond to oscillators forming the total electric
field z; + z, = v + iw. In terms of these variables the dynamical equations are

(6.2-6)

£= filoyh  filey) = (@2 - Px-any,
y=f069),  flxy) =ax+ -2 -y,

2= filzu),  filzu) = (B - 22— ud)z - a,u, (6.27)
u= f4(Z, u), f4(Z, u) = W,z + (p"22 _ 22 _ u2)u’
and
i (6.2-8)

w=fo+ fy
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(d

Fig. 6.2. Stochastic oscillator imitating electric field of light beam in the state of linear polarization:
@ gl,z(t) =0, 7’11,2(1') =0;(b) 'sl,z(t) +0, 711,2(1') =0;(0) 'sl,z(t) =0, 7’]1,2(1') #0; (d) 51,2(t) +0, ’11,2(t) # 0.
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The polarization state is controlled via the set of parameters: p,, p,, w;, w,, x(0),
¥(0), z(0), u(0), &, ,(t), and 7, ,(t). The examples of the field of horizontally polarized
wave are presented in the panel (v, w) of Figure 6.2. The field of deterministic horizon-
tally linearly polarized electromagnetic wave (no amplitude and frequency chaotic
fluctuations) is depicted in the panel (v, w) of Figure 6.2 (a). In this case the determin-
istic polarization ellipse is reduced to a horizontally oriented line segment. In Fig-
ure 6.2 (b) simulated electric field of fluctuating linearly polarized electromagnetic
wave is shown in the case of chaotic modulation of the wave amplitude at constant
frequency. As one can see, at solely amplitude chaotic modulation only polarization
ellipse form fluctuates, whereas the polarization plane remains unperturbed (hori-
zontal). Different situation occurs in the case of chaotic modulation of electric field
frequency at constant amplitude: fluctuations of the polarization plane orientation
arise (with zero mean) (see Figure 6.2 (c)). In general case of fluctuating both field am-
plitude and frequency, the electric field behavior is presented in Figure 6.2 (d). Both
the polarization ellipse form and the polarization plane orientation now fluctuate.

In the above consideration, the random processes &, ,(t) and #, ,(t) are assumed
to be slow-varying functions of time, i.e. their mean frequencies Q; and , are small
compared with the mean frequency w. Then, the state of the Ginzburg-Landau oscilla-
tor (6.2-2) never deviates from the limit cycle significantly, and its dynamics can be ap-
proximated with just a perturbed harmonic oscillator. In other words, equation (6.2-5)
can be reduced to

7:'1,2 = P12 (), (6.2-9)
01 = w5 +4;5().

In the absence of fluctuations, that is when p,,(t) = 4,,(t) = 0, these equations

correspond to the exact harmonic solution (6.1-5) of the Maxwell equations (6.1-1).

6.2.2 Modeling the action of a polarizer

A polarizer is one of widely used optical devices that transforms light polarization,
converting a beam of arbitrarily polarized light into the beam with well-defined po-
larization (for instance, linear polarization). Let E be the vector of complex ampli-
tude of the electrical field of quasimonochromatic light wave of incident beam. The
electric field vector E' of the light beam transmitted through optical device is defined
asE' = AE, where A is the so-called Jones operator (or a Jones matrix) of the device. In
the Cartesian basis {e,, e} the Jones matrix of an ideal linear polarizer, can be written

as
2 .
- cos” 6 cos 8, sin 6
A,=C 0 oo, 6.210
P (cos 0, sin 6, sin 6, ( )

where 6, is the angle between e, and the plane of transmitted polarization and the
constant C depends on the thickness and refractive index of the polarizer. The Jones



6.2 Modeling superpositions of polarized light beams = 151

matrix of an optical compensator is diagonal in the basis {e'*), e(}. In the basis {e. e}
it has the form

Ac _ ( cos(6/2) J_rsin(8/2))) (6.211)

Fsin(6/2)  cos(6/2)

where § is the additional phase difference between the field components, provided by
the compensator.

In the frames of our model of stochastic oscillators, the action of any Jones oper-
ator on the beam is realized by adding the properly constructed free term F = (F,, F,)
into the dynamical equations written in the basis {e,, e }. The function F describes the
“switching on” of the action of an optical device in the dynamical equations at desir-
able given moment of time. The result of the action of an ideal linear polarizer on the
electric field with horizontal elliptical polarization is presented in Figure 6.3.

In the panel (v, w) of Figure 6.3, the large axis of stochastically modulated po-
larization ellipse was initially horizontally oriented. After the transmission through
a linear polarizer with polarization angle 6, = 60° the ellipse transforms into a line
segment with orientation angle 60° with respect to e,.

> x
>0
N
>
=
:
v t

Fig. 6.3. Polarization state change of elliptically polarized qubit after transmission through ideal
linear polarizer with polarization angle 6, = 60°.
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6.2.3 Construction of superpositions of quasimonochromatic light beams

We now consider a classical superposition of two beams. First, we will give a simple
analytical analysis of some general properties of this superposition. It is convenient to
study the features of dynamical behavior of the electric field in terms of the dynamical
system (6.2-5) written in variables r = |z| and 6 = arg z. If the mean frequencies Q; and
0, of processes &, ,(t) and #,,(t) are small compared with wave frequency w (this is
always fulfilled for quasimonochromatic waves), the dynamical system (6.2-5) can be
exactly integrated to give the explicit expressions for amplitude and phase of electrical
field:

P -
T — P = P + E(t)a
V1 + ce 20t (6.212)

0t) =0, +@t, @=w+nt),

7(t) = a(t) =

where ¢ = £(0)[2p + £(0)]/p”.

The expressions (6.2-12) allow us to clarify the dependence of the amplitude and
phase fluctuations on properties of processes £, , (t) and #, , (t) and to analyze the prop-
erties of the correlation matrix. We can use the following expression for the electric
field of the beam with arbitrary linear polarization:

2= Ad =ad 1a e, (6.213)

where

- - (6.2-14)
G sin0" — 4 sin0”

a*sin@* +a sinf-
Due to ergodicity of &, ,(¢) and 7, , (t), the means (A% and (&) can be calculated as

8t +4

(Az) = A2 = 4p2 cos’ (d)t + ) + A2€+ + AZE_,

P (6.2-15)
- 0 +6

(@="—"—, a;=Dj=()

In particular, from (6.2-14) and (6.2-15), we obtain for the state with horizontal lin-
ear polarization (§* = 8§~ = 0):
A% = (a") -2a"a +4a*a cos’(at),

GETNR
T IT tan(@t), (6.2-16)

(A3)) = 4p” cos’(@t) + A25+ + AZE,,
<5‘H> =0

tan &y =
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and for the state with vertical linear polarization (6* = 7/2, 6~ = —r/2):
- - 2 * -
Ay =Ay, tangy, = —@ cot(at),
£ -3 (6.217)
@) =2
Vv 2 .

The correlation matrix J for the superposition of these states can be calculated
using (6.2-16) and (6.2-17). The most essential fact is that in the case of equal mean
frequencies (@) = (@") of the waves, one finds for the matrix J the expression

. 1(1 1
]=5<1 1>> (6.2-18)

which correspond to the completely linearly polarized wave with the angle of orienta-
tion of polarization plane y = 7/4. Thus, we obtained the following important result:
two quasimonochromatic waves in the states of mutually orthogonal polarization can
be considered as completely noncorrelated (independent) only under the fulfillment
of the condition (@) # (@"). If the condition is fulfilled, the superposition of two
quasimonochromatic completely polarized electromagnetic waves gives unpolarized

@ (b)

W,

w,+w,

vi+Vv,

Fig. 6.4. Simulated electric field of light beam obtained as a result of a incoherent superposition of
two light beams in the states of full horizontal (a) and vertical (b) polarization. The electric field of
the incoherent two beam superposition is shown in (c).
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quasimonochromatic wave, for which the coherence matrix J is proportional to the
unit matrix.

The study of the simulated electric field confirmed the results of preliminary anal-
ysis, given earlier. The first example of electric field behavior corresponds the field of
light beam obtained as a result of superposition of two light beams in the states of
mutually orthogonal full linear polarization. The simulated electrical field is shown in
Figure 6.4. Here the projection of phase trajectory of the dynamical system (6.2-7) onto
the plane (x, y) displays the behavior of the random electric field vector E”(¢) in the
state of horizontal linear polarization, the trajectory projection into the plane (z, u) -
the behavior of the electric field vector EV (¢) in the state of vertical linear polarization,
and the trajectory projection into the plane (v, w) — the behavior of the electric field

W+ w,

VitV + V4,

Fig. 6.5. Simulated electric field, corresponding to the superposition of four fully polarized light
beams: (1), (4) the electric fields of fully horizontally polarized light beams; (2), (3) the electric fields
of fully vertically polarized light beams; (a) the electric field of the superposition of light beams (1)
and (2); (b) the electric field of the superposition of light beams (3) and (4); (c) the electric field of
symmetrized superposition of four light beams.
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vector EB(t) = E(t) + EV (¢) that represents their superposition. The mean frequencies
of EF(¢) and E" (¢) were chosen close, but different (@™ # @").

The characteristics of the random vector E5(¢) were estimated via calculation of
the correlation matrix J? according to (6.1-8). The correlation coefficient | Ixyl [T ex] y

for the components of the electric field EB(¢t) was found to be less than 1072. Hence,
the behavior of E5(t) properly imitates the behavior of the electrical field vector of
unpolarized quasimonochromatic electromagnetic wave.

The second example of simulated electric field is a four beam superposition. It is
presented in Figure 6.5. The random electric fields of light beams in the states of full
linear polarization, are depicted in the panels (1)-(4); the electric fields of light beams,
representing the superpositions of two beams in the states of mutually orthogonal lin-
ear polarization, are displayed in Figure 6.5 (a) and (b); the electric field of light beam,
obtained as a result of superposition of four fully polarized light beams, is presented
in Figure 6.5 (c).

6.3 Outline of the design of feedforward network of stochastic
oscillators

The model of system of stochastic oscillators, described in Section 6.2 is currently un-
der development. It can be used for modeling transformations of coherent and inco-
herent superpositions polarized light beams that can be adequately described in the
frames of classical stochastic electrodynamics. In the case of modeling the classical
random electric field of a polarized light beam via the system of stochastic oscillators,
the level of fluctuations of the simulated electric field, and the random electric field
symmetry figure as the free parameters of the system. The beam electric field change
caused by the beam transformations, modeled as optical measurements, can be used
for organization of some computational process, similar to usual optical computing.
We design the feedforward oscillatory network model consisting of N processing
units. The network processing unit modeling classical random electrical of a polarized
light beam is formed by a superposition of two stochastic oscillators with internal dy-
namics defined by (6.2-2). A quasimonochromatic unpolarized light beam can be com-
posed of N independent unpolarized sub-beams, in which mean frequencies belong
to a collection of nonintersecting narrow frequency intervals. A network consisting of
N uncoupled units can be related to the total composite light beam. The evolution of
the initially uncoupled feedforward network can be studied. If the state of separate
beam components are changed at some discrete time moments as a result of exter-
nal optical device (e.g. a polarizer) actions modifying the polarization degree of light
beam, the state of the whole network will be changed in a discrete manner in response
to these external actions. The coherence degree change of the total light beam during
the network evolution can be accurately estimated through the network correlation



156 —— 6 Stochastic oscillators for modeling polarized light beams

(coherence) matrix calculation. The coherence degree of the network state will grad-
ually increase, reflecting the incoherence degree destruction of the initial completely
incoherent composite light beam. This increase in the total light beam coherence can
be interpreted as gradual emergence of effective dynamical coupling in the stochastic
oscillatory network.

It would be also interesting to analyze the nonlinear optical effect in the language
of the oscillatory model. Nonlinear effects in optics arise when the intensity of light
beams become sufficiently high (the electric field should be comparable to an atomic
electric field). They cause the effective interaction of light beam, which do not interact
in the linear case, and lead to a plethora of optical phenomena: harmonics genera-
tion, sum and difference frequency generation, self-focusing, photon echo and many
others. Some of these phenomena can be described by the introduction of intraoscil-
lator coupling in the network. Much work is still to be done in this area before some
of the results could be stated.
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Summary and some perspectives

A series of oscillatory neural network models aimed at the elucidation of some as-
pects of the brain modules functioning and design of neuromorphic dynamical al-
gorithms, realizing parallel distributed information processing, are presented in the
book. Highly parallel, distributed, adaptive, self-organized manner of functioning is
inherent to the brain. Oscillatory neural activity, synchronization, and resonance ac-
company the work of many brain neural structures, providing fast rearrangement of
their work. Therefore, oscillatory network models, reflecting the features of the brain
functioning, can be regarded as a relevant tool for construction of neuromorphic os-
cillatory computational algorithms with synchronization-based performance.

In Chapter 2, the recurrent associative memory networks of limit cycle oscillators
and the related phasor networks, designed by the authors, are presented and dis-
cussed. The phasor networks appear to be closely related to artificial neural networks
of complex-valued neurons. The choice of network parameters providing associative
memory networks with guaranteed memory characteristic was specified. As was no-
ticed earlier, symmetry properties of the phasor networks cardinally affect their as-
sociative memory structure. So, a more detailed analysis of these properties would
be quite desirable. The macrodynamical analysis of a memory retrieval process for
large scale feedforward and recurrent neural networks of associative memory as well
as some their other features (such as noise reduction ability) are also presented in
Chapter 2.

A series of oscillatory network models for modeling the brain structures perfor-
mance is described in Chapter 3. Among them there are the famous oscillatory net-
work model LEGION, the three-dimensional biologically inspired network model by
Li imitating the brain visual cortex performance and a three-dimensional oscillatory
network model with synchronization-based performance developed by the authors. In
the latter two models the orientation selectivity, inherent to the subset of simple cells
of the brain visual cortex, was reflected in model performance. It provided the network
with the capability of segmentation of images containing the texture fragments and
contour integration.

A spatially two-dimensional oscillatory network model with controllable synchro-
nization and self-organized synchronization-based performance, developed by the
authors for image processing tasks, is presented in Chapter 4. The network oscillators
are localized in two-dimensional spatial lattice isomorphic with image pixel array. The
internal dynamics of single network oscillator reflects the main features of dynamics
of neural oscillator of the brain visual cortex. The amplitude of oscillation of single
oscillator monotonically depends on the brightness of the image pixel corresponding
to the oscillator. Several network coupling principles were constructed for different
image processing tasks. As a result the model demonstrates a variety of capabilities,
such as brightness segmentation of real gray-level and color images, selective image
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segmentation and a simplest version of visual scene analysis — successive selection of
spatially separated fragments of a visual scene. The further model development could
allow us to encompass additional image processing tasks, including the selection of
moving objects in a visual scene and other tasks of active vision.

The information on photon echo, a nonlinear optical phenomenon, that adjoins
the phenomenon of dynamical binding in the brain structures, is given in Chapter 5.
The photon echo is remarkable from the viewpoint of its capabilities of massive paral-
lel information processing. In contrast to usual optical computing, which nowadays
receives great attention of researchers, this effect allows us to use the temporal di-
mension in additional to the spatial one. In the chapter, the information on optical
vector-matrix multipliers, and optical implementation of artificial neural networks is
given.

Chapter 6 presents the initial results of using a model of stochastic oscillators
for the simulation of the electric field of quasimonochromatic polarized light beams.
Single stochastic oscillator is a Ginzburg-Landau limit cycle oscillator with chaot-
ically modulated limit cycle size and frequency. Random electromagnetic field of a
light beam in an arbitrary polarization state is modeled by a superposition of a pair
of the stochastic oscillators. The electric field of a composite light beam consisting
of N components is modeled by a proper superposition of 2N stochastic oscillators.
The evolution of the electric field can be studied via evolution of the state of feedfor-
ward stochastic oscillatory network. The change of correlation characteristics of elec-
tric field of the total light beam can be estimated by calculating the coherence matrix
of the composite light beam. It permits to observe the emergence of coherence in the
composite system.

As we hope, the models of oscillatory neural networks, presented in the book and
applied in various image processing tasks, will appear to be of interest for researchers
dealing with the development of brain-inspired oscillatory network models with syn-
chronization-based performance and related algorithms of parallel information pro-
cessing.
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