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Abstract

Oscillatory network for modelling of synchronization-

based functioning of the brain visual cortex is presented.

Single network oscillator, imitating the behavior of sim-

ple cells of the visual cortex, demonstrates stimulus-

dependent intrinsic dynamics | stable oscillations or

quick relaxation. Three-dimensional spatial architecture

of the network simulates the columnar structure of the

visual cortex. Nonlinear nonlocal dynamical interaction

of oscillators depends on instantaneous oscillator activi-

ties and orientations of receptive �elds. Two-dimensional

averaged network of idealized oscillator-columns is ex-

tracted.

The model demonstrates controlled synchronization of

image-dependent clusters of oscillatory network and self-

controlled suppression of noisy background.

1 Introduction

The brain visual cortex (VC) realizes solutions

of a variety of essentially di�erent tasks of vi-

sual processing. Since the experimantal discov-

ery of synchronous oscillations in the VC of cat

and monkey [1,2] (and later in other brain areas)

the viewpoint was adduced that syncronization-

based functioning is inherent to VC in problems

of visual processing.

Series of attempts was enterprised to elucidate

the role of cortical oscillations and synchroniza-

tion in visual image processing. A number of

network models with various types of oscillators

as processing units was designed in the 90th and

studied in the context of visual image segmen-

tation problems [3-7].

Oscillatory network of columnar architecture

imitating functioning of the primary VC in con-

tour integration task was designed in [8]. It was

shown that synchronization of network ensem-

bles is facilitated for smooth, long and closed

contours.

The performance of the presented model is based

on syncronization of network ensembles con-

trolled by visual image characteristics. We

concentrate so far on images of simple struc-

ture supposing that no preprocessing (�ltering)

caused by multi-scale image structure is nec-

essary. Following [8] we designed the network

of columnar architecture. However, several fea-

tures inherent in our model di�er it essentially

from the model [8]. First - the dynamics of

single oscillator is tuned by two visual image

characteristics - local contrast and elementary

bar orientation. Second - network connections

are de�ned directly in terms of oscillator inter-

action rather than in terms of excitatory and

inhibitory connections of neurons forming oscil-

lators. Third - the designed dynamical connec-

tions are of threshold character and strongly de-

pend on RF orientations. These properties of

our model just provide the promising network

features | synchronization of network clusters,

encoded by incoming visual image, and self-

controlled suppression of noisy background.



2 Columnar Oscillatory Network

Model

Modelling VC as a network of coupled oscillators

we imply, following [8], that single oscillator is

formed by a pair of interconnected excitatory

and inhibitory neurons.

The oscillatory network model of the VC is

designed as the network of columnar architec-

ture consisting of N2 columns of K oscillators

each (N2
� K is the total number of oscilla-

tors). The bases of the columns are located at

the nodes of 2D square lattice GN2 , whereas

oscillators of each column are located at the

nodes of 1D lattice LK oriented normally with

respect to the plane of GN2 . So the oscilla-

tors of the whole network are located at the

nodes of 3D lattice GN2 � LK .The location of

a single oscillator is speci�ed by a radius-vector

r
k
lm = (xkjm; y

k
jm; z

k
jm). The state of the net-

work is speci�ed by (N � N � K)-matrix of

oscillator states [ukjm]. For each oscillator the

orientation of its RF is speci�ed by 2D unit

vector nkjm, which is an important internal pa-

rameter. In accordance with [9] the orienta-

tioins n
k
jm are assumed deterministically uni-

formly distributed over the columns. The retina

is modelled by 2D square lattice similar to GN2 .

So, a continuous visual image arising in real

retina is represented by its discretization in the

retina lattice, that is, by a collection of pairs

(Ijm; sjm); j = 1; : : : ; N;m = 1; : : : ; N , where

Ij is local contrast and sjm | local orientation

of image elementary bar. Suitable type of dy-

namics imitating stimulus-dependent response

of simple cells in the VC is delivered by oscillator

with two degrees of freedom. De�ning oscillator

state by two-component real-valued vector func-

tion u = (u1; u2)
>, the system of two coupled

di�erential equations for u1; u2 can be written in

the form of single equation for complex-valued

function u = u1 + i � u2:

_u = (�2 + i! � ju� cj2)(u� c)+

�0(1� g(I � h0) + q(s;n)): (1)

Here �; c; ! are constants de�ning asymptotic

parameters of the limit cycle of dynamical equa-

tion (1): at �0 = 0 the limit cycle is the cir-

cle of radius � with center location at the point

c = jcjei� in the complex u-plane, ! is the cycle

frequency. The constant �0 is a complex (tun-

ing) constant. Properly constructed functions g

and q dependent on visual image characteristics

(I; s) provide controlling of bifurcation param-

eter � = �0(1 � g + q): the Hopf bifurcation

occurs at some � = ��, �� 2 (0; 1) (limit cy-

cle is converted into stable focus located in the

vicinity of the origin).

Constructing g and q we exploited threshold

character of dependence of oscillator response on

visual image contrast I and sharp peak-shaped

dependence on js � nj. In eq.(1) we used the

functions g(I � h0) = 1=(1 + e�2�(I�h0)), and

�(j�j) = 2e��j�j=(1+ e�2�j�j), where � =  � �,

the angles  and � de�ne the orientations of

vectors n and s, respectively (s = (cos�; sin �),

n = (cos ; sin )).

The dynamical system governing the dynamics

of the oscillatory network can be written as

_ukjm = f(ukjm; �(Ijm; sjm;n
k
jm)) + Skjm;

j;m = 1; : : : ; N; k = 1; : : : ; K: (2)

Here f(u; �) = (�2+i!�ju�cj2)(u�c)+�; � =

�0(1� g(Ijm � h0) + q(sjm;n
k
jm)) and the term

Skjm speci�es interaction between oscillators in

the network. It can be written as

Skjm =
X

j0;m0;k0

W kk0

jj0mm0(ukjm; u
k0

j0m0)(uk
0

j0m0 � ukjm);

(3)

where the elements of matrix of connections W

are represented in the factorized form:

W kk0

jj0mm0 =

P kk0

jj0mm0(u; u0)Qkk0

jj0mm0(n;n0)Dkk0

jj0mm0(jr� r
0
j);

(4)

r and r
0 are radius-vectors, de�ning spatial lo-

cations of oscillators (j;m; k) and (j0; m0; k0).

In (4) factor P kk0

jj0mm0 de�nes the dependence of

connections on the product of oscillator states

(of threshold character) , factor Qkk0

jj0mm0 | the

dependence on RF orientations and Dkk0

jj0mm0 |

on spatial distance in the network.



3 2D Averaged Oscillatory Network.

It is helpful to introduce a network of simpli-

�ed architecture de�ned in the lattice GN2 and

closely related to the columnar one. This aver-

aged network, consisting of idealized oscillator-

columns, can be derived from the columnar net-

work as a result of inter-column averaging and

special limit analogous to well-known thermody-

namical limit in statistical physics. The state of

the averaged network is de�ned byN�N matrix

[ujm]. The RF orientation njm of its single oscil-

lator coincides with the stimulus bar orientation

sjm. The internal dynamics of the oscillator is

governed by eq.(1) with q(s;n) � 1, and the

elements of network matrix of connections are:
�Wjj0mm0 = �Wjj0mm0(u; u0; sjm; sj0m0).

Thus, dynamical equations of the reduced net-

work can be written as

_ujm = �f (ujm; �) +
NX

j0;m0=1

�Wjmj0m0(uj0m0 � ujm);

j = 1; : : : ; N; m = 1; : : : ; N: (5)

In the case of local dynamical connections the

nonlinear di�usion equation (reaction-di�usion

equation) governing the dynamics of oscillatory

medium | continual analogy of the reduced os-

cillatory network | can be derived. Some re-

sults of qualitative analysis of reaction-di�usion

equation for oscillatory media with kinetics (1)

at �0 = 0 were obtained in [10].

4 Computer Experiments

The initial series of computer experiments was

carried out with 2D averaged oscillatory net-

work. The �rst step was to design properly

tuned dynamics of single oscillator. Sharp oscil-

lator response on visual stimulus characteristics

was achieved, Figs. 1-2.

The second step consisted in testing the abilities

of interaction (4). It was found out that the

interaction provides the desirable self-controlled

coupling. Namely, it becomes weak in the cases:

a) one of the oscillator activities ju1j; ju2j is close

to background;

b) the RF orientations are not close to each

other;

c) the distance between oscillator locations ex-

ceeds the radius of interaction.

The example of two-oscillator dynamics is shown

in Fig.3. At the absence of coupling the �rst

oscillator has the limit cycle shown in (u1; u2)-

plane, whereas the second one has the stable

node denoted by P in (v1; v2)-plane. When

the coupling is switched on, synchronization oc-

curs if coupling strength w exceeds the thresh-

old value w�. The limit cycle of small size arises

in (v1; v2)-plane, and relaxational dynamics is

changed into oscillations.

The last series of experiments concerned 1D av-

eraged network. Synchronization of ensembles

encoded by 1D contour of su�cient contrast and

slowly varying bar orientations was observed.

Conclusive Remarks

The columnar oscillatory network model is pro-

posed. The main feature of the model is the

combination of oscillator dynamics parametri-

cally tunable by visual image characteristics and

nonlocal dynamical oscillator interaction depen-

dent on instantaneous oscillator states and ori-

entations receptive �elds.

Visual image contour detection has been ob-

served in the initial series of computer experi-

ments with the averaged network model.
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