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Abstract

The oscillatory network is proposed for modelling synchronization-based processing in the primary

visual cortex. We concentrate on one of the fundamental problems of visual processing | contour

integration in visual image perception. The network performance imitates self-organized collective

behavior of simple cells in the visual cortex while realizing the ability of contour integration task.

A single oscillator is a limit-cycle oscillator parametrically dependent on visual stimulus proper-

ties | local contrast and bar orientation. The oscillator demonstrates sharp stimulus-dependent

intrinsic dynamics, imitating simple cell responses | stable oscillatory activity or silence (quickly

damping oscillations).

The designed columnar architecture of the network reects the columnar structure of the visual

cortex. The dynamical connection of oscillator pair depends on the product of oscillator activities,

orientations of receptive �elds (internal parameter of each oscillator) and the distance between the

oscillators in the network.

The model demonstrates self-organized synchronization of contour-dependent oscillator ensembles

of the network and self-controlled suppression of noisy background.

The related reduced oscillatory network is obtained by averaging over the oscillators inside the

columns.

1 Introduction

Network models exploiting the onset of synchronized ocillations represent new class of models

for elucidation of the role of synchronization in brain information processing.

Synchronous oscillations were experimentally observed in the visual cortex (VC) of cat and

monkey [1,2] and later were discovered in other brain areas. The evidence exists that in primary

VC synchronization arises due to long-range dynamical connections extended over distances cover-

ing several orientation columns. The emerging dynamical connections are strongly dependent on

orientations of receptive �elds (RF).

Series of attempts were enterprised to elucidate the role of cortical oscillations and synchro-

nization in visual image processing [3-15]. The oscillatory network model of cluster structure [9]

should be mentioned �rst. The simplest phase oscillator was used as a network processing unit.

A cluster of oscillators imitated a column of the VC. RF orientations were assumed to be uni-

formly distributed over a cluster and short-range stationary inter-cluster connections | dependent

on RF orientations. The averaged RF orientation for a single cluster was evaluated in mean-�eld

approximation of statistical physics. The weak long-range inter-cluster interaction, providing syn-

chronization, was calculated. The model was studied in the context of visual image segmentation

problems. In particular, some results concerning image contour integration were obtained.



Oscillatory network models for image segmentation were designed in the series of papers [12-14].

Various types of limit cycle oscillators, imitating a whole VC column, were used as processing units.

Network architecture with local excitatory and global inhibitory connections was designed. The

networks were successfully applied to gray-scale real-world image recognition.

Oscillatory network models of spiking neurons (of homogeneous and two-layered architecture)

were used in [9-11] to perform pattern segmentation and feature linking problems. In appropri-

ate parametrical domains two-layered networks demonstrated stationary dynamics, synchronized

oscillations and so-called weakly locked states. In addition to computer simulations the analytical

results in terms of evolution of macrovariable "overlap" were obtained. In particular, the condition

of synchronization and the period of synchronized oscillations were found.

The oscillatory network of columnar architecture imitating functioning of the primary VC in

contour integration task was designed in [15]. A single oscillator formed by a pair of excitatory

and inhibitory neurons was previously proposed by W.Freeman (1987) and Z.Li & J. Hop�eld

(1989) in odor segmentation problem. Excitatory-excitatory and excitatory-inhibitory connections

were separately speci�ed for all oscillators to achieve biological plausibility. It was shown that

synchronization of network ensembles is facilitated for smooth, long and closed contours.

Our model was inspired primarily by the paper [15] and focused on study of synchronization of

oscillatory network ensembles dynamically encoded by visual image contours of su�cient contrast.

2 Columnar Oscillatory Network Model

Thus we concentrate on the VC ability of image contour integration. Dealing with this problem

it is relevant to model VC as a network of coupled oscillators. Following [12-15], we suppose that

single network oscillator is formed by a pair of interconnected excitatory and inhibitory neurons.

Stationary network connections of oscillators are supposed to be quasi-local; long-range dynamical

connections emerge in the process of oscillatory network functioning and depend on RF orientations.

We design the network of columnar architecture consisting of N = n2 columns of K oscillators

each (N �K is the total number of oscillators). The bases of the columns are located at the nodes

of 2D square lattice GN , whereas ocillators of each column are located at the nodes of 1D lattice

LK oriented normally with respect to the plane of GN . So the oscillators of the whole network are

located at the nodes of 3D lattice in the form of parallelogram ABCDA0B0C0D0 (see Fig.1). If one

chooses the Cartesian coordinates with the origin at the point A and the axes x; y; z oriented along

AD;AB and AA0 respectively, the location of a single oscillator can be obviously speci�ed by vector

r
k
lm = (xklm; y

k
lm; z

k
lm) � (a � l; a �m; b � k), l = 1; : : :n; m = 1; : : :n; k = 1; : : :K; n2 = N ,

where a and b are lattice periods of GN and LK respectively. The state of columnar network then

is naturally speci�ed by (n� n�K)-matrix of oscillator states.

We also will use further the successive numeration of the nodes of GN , utilizing a pair of indices

(j; k), j = 1; : : :N ; k = 1; : : :K for speci�cation of network oscillator locations. In the case the

state of the whole network is speci�ed by (N �K)-matrix. It permit to simplify formulas de�ning

contribution from oscillator interaction.

For each oscillator in a column the orientation l
k
j of its RF is speci�ed (lkj is 2D unit vector,

l
k
j = (cos kj ; sin 

k
j );  

k
j 2 [0; �)). The orientations lkj are assumed uniformly distributed:  kj =

k�=K; k = 1; : : : ; K; j = 1; : : : ; N . Homogeneous distribution of RF orientations corresponds to

regular arrangement of the corresponding layers inside the VC [16]. The orientation lkj of receptive

�eld is an important internal parameter of the network oscillator.



Fig.1

Fig.1

A visual image formed on retina represents an input into the oscillatory network. Model retina

should be considered as 2D square lattice completely structurally equivalent to GN . Therefore,

network input can be naturally parametrized by pairs of parameters (Ij ; sj); j = 1; : : : ; N , where Ij
is local contrast and sj | local orientation of elementary image bar. It is assumed that the same

input (Ij; sj) is delivered to all oscillators of the j-th column.

An input from retina is de�ned an initial state of recurrent oscillatory network. Being initiated

by some input the network state transfers into some state of stationary synchronized activity, where

only appropriate subensemble of network oscillators undergoes synchronized oscillations.

In the case of adequate network functioning the problem of contour integration should be solved

with the help of proper projection of the synchronized subensemble into GN . We try to achieve

this aim by the combination of two network features: stimilus-tuned single oscillator dynamics and

special type of nonlinear self-controlled dynamical interaction of network oscillators.



2.1. Single Columnar Oscillator.

The internal dynamics of a single oscillator is tuned in a manner to imitate stimulus orientation-

dependent response of simple cell in VC (Fig.1a,b). Namely, an oscillator is in active regime

(nondamping oscillations) if the following conditions are simultaneously satis�ed:

a) I(r) � h0, where h0 is some threshold value (imitates noise level contrast);

b) the orientation l of RF of the oscillator is su�ciently close to the orientation s of the corre-

sponding visual image bar.

The oscillator transfers into passive, or silent state (quickly damping oscillations or relaxation), if

at least one of these conditions is not satis�ed.

The system of two coupled di�erential equations for free columnar oscillator can be written in

the form of di�erential equation for complex variable z = x+ iy:

_z = (�2 + i! � jz � cj2)(z � c) + �(1� �(j � �j) + (1� g(I � h0)) (1)

Here �; c; ! are constants de�ning asymptotic parameters of stimulus-dependent limit cycle of dy-

namical equation (1): at � = 0 the limit cycle is the circle of radius � with center location at

the point c = jcjei� in the complex plane, ! is the cycle frequency. The complex-valued con-

stant � is a tuning constant. The function �(j�j) is a symmetrical peak-shaped function with

maximum at � = 0. We used the function �(j�j) = 2e��j�j=(1 + e�2�j�j). Parameter � controls

the width of �(j�j). Sigmoidal threshold function g can be also chosen of controlled steepness:

g(x� h0) = 1=(1 + e�2�(x�h0)).

Note that under proper scaling the variables x = Re(z) and y = Im(z) can be interpreted as

the states of excitatory and inhibitory neurons forming the oscillator.

2.2 Dynamical Equations for the Columnar Oscillator Network.

The state of the columnar network can be speci�ed by N �K-matrix ẑ = [zkj ], where j is the

number of orientation columns, j = 1; : : : ; N , and k is the number of oscillator in the column,

k = 1; : : : ; K. Then the dynamical system governing the dynamics of the network can be written

in the form:

_zkj = (�2+i!�jzkj �cj
2)(zkj �c)+�(1��(j 

k
j��j j)+(1�g(Ij�h0))+S

k
j ; j = 1; : : : ; N; k = 1; : : : ; K:

(2)

The term Skj determines interaction between oscillators in the network. If we denote by N k
j the

set of neighbors of an oscillator numbered (j; k) that are connected with it, the interaction term

Skj can be written as

Skj =
X

(j0;k0)2N k
j

W kk0

jj0 (z
k
j ; z

k0

j0 )z
k0

j0 : (3)

The connection weights W kk0

jj0 (z
k
j ; z

k0

j0 ) depend in nonlinear manner on the oscillator states zkj and

zk
0

j0 . In our model the following dependencies of W kk0

jj0 are included:

� the threshold character of the dependence on the product of mean levels of oscillator activities;

� the dependence on RF orientations;

� the dependence on the distance between the oscillators in the network.



Namely,

W kk0

jj0 (z
k
j ; z

k0

j0 ) = g(wjzkj jjz
k0

j0 j � h)� F (lkj ; l
k0

j0 )D(jr
k
j � r

k0

j0 j)e
i�kk

0

jj0 : (4)

Here rkj and r
k0

j0 are radius-vectors, de�ning geometrical locations of oscillators (j; k) and (j 0; k0) and

jzj = (x2 + y2)1=2. The function F (lkj ; l
k0

j0 ) � F (j kj �  
k0

j0 j), de�ning the dependence of interaction

on RF orientations, is similar to �(j�j) in eq.(1). The angle �kk
0

jj0 determines the phase of the

connection weight.

3 Reduced Oscillatory Network.

In the columnar oscillatory network all the N � N matrices of connections [W kk0

jj0 ] must be

speci�ed. Given the interaction [W kk0

jj0 ] and all response functions �, the inter-column averaging

over the oscillators in each column can be carried out. In this way we obtain the network consisting

of averaged columns de�ned in 2D grid GN . Such reduced network can be naturally regarded as

a macro-level approximation of the columnar (micro-level) network. The inter-columnar averaging

becomes trivially simple in a special limit that is the analogy of well-known thermodynamical limit

in statistical physics. Indeed, consider the following continual limit: a) the column is in�nitely long

K ! 1; b) the set of angles  k(lk) = (cos k; sin k) tends to continuous distribution over the

circle; c) the width of function �K(j�j) tends to zero at K !1.

The averaged response of the idealized column obviously coincides with the response of single

columnar oscillator that possesses RF orientation l � s. As a result we obtain the reduced oscil-

latory network consisting of oscillator-columns de�ned in a plane grid GN . Its state is de�ned by

N -dimensional vector z = (z1; : : : ; zN) instead of N �K matrix ẑ. The orientation lj of its single

j-th oscillator coincides with the stimulus bar orientation s; the internal dynamics of the oscillator

is governed by eq.(1) with �(j � �j) � 1.

Dynamical equations of the reduced network are:

_zj = (�2j + i!j�jzj�cj
2)(zj�c)+�(1�g(Ij�h0)) =

NX

k=1

Wjk(zj ; zk; sj; sk; h)zk; j = 1; : : : ; N; (5)

where

Wjk = g(wjzjjjzkj � h)F (sj; sk)D(jrj� rkj)e
�jk

4 Computer Experiments

The initial series of computer experiments was carried out with reduced oscillatory network.

The �rst step was to design properly tuned dynamics of single oscillator. The following properties

were achieved:

a) at I � �I the limit cycle of eq.(1) is a circle of maximum radius and maximum distance from

zeropoint;

b) under decreasing I the cycle radius is sharply decreasing;

c) the limit cycle bifurcates into stable focus (or node) located at the vicinity of zero at I � I�,

Fig. 1a,b.

The second step was testing the abilities of interaction (4). It was found out that the interaction

provides the desirable self-controlled coupling. Namely, it becomes weak in the cases:



a) one of the oscillator activities jz1j; jz2j is close to background;

b) the RF orientations are not close to each other;

c) the distance between oscillator locations exceeds the radius of interaction.

The example of two-oscillator dynamics is shown in Fig.4, where two phase portrait projections

and time dependencies x1(t); x2(t) are depicted. At the absence of coupling the �rst oscillator has

the limit cycle shown in (x; y)-plane, whereas the second one has the stable node denoted by P

in (z; u)-plane. When the coupling is switched on, synchronization occurs if coupling strength w

exceeds the threshold value w�(w� = 0:6). The limit cycle of small size arises in (z; u)-plane, and

relaxational dynamics is changed into oscillations.

The last series of experiments was concerned to 1D reduced network. Synchronization of ensem-

bles encoded by 1D contour of su�ciently high intensity and slowly varying stimulus bar orientations

was observed.

The computer experiments allows to expect the promising features of the designed model:

background suppression; unambiguous synchronization of oscillator ensembles dynamically encoded

by contours of appropriate contrast.

Conclusive Remarks

The columnar oscillatory network model is proposed.

Each oscillator in the network is a limit-cycle oscillator parametrically dependent on visual

stimulus contrast and orientation. It demonstrates stimulus-dependent dynamical behavior |

oscillatory activity or silence.

Oscillatory connections depend on oscillatory activities, RF orientations, and distances between

the oscillators. The designed interaction provides dynamical self-organization of the interconnection

architecture of the network.

The reduced oscillatory network of idealized averaged columns has been proposed.

Contour integration has been observed in the initial series of computer experiments.
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