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Abstract

The subject of our study is a class of networks consisting of locally con-

nected nonlinear oscillators. In spatially continual limit these oscillatory
networks can be considered as oscillatory media governed by a system of

reaction-di�usion equations. Formation of spatio-temporal patterns in

nonlinear active media (wave trains, standing waves, targets and shock
structures, spiral waves, stripe patterns, cluster states ) is the subject of

interest in physical, chemical, biological problems.

Here the results of analytical study of 1D oscillatory media corre-

sponding to closed and unclosed chains of limit-cycle oscillators are pre-

sented. Di�usion instability (caused by coupling) has been analysed.
The analysis is reduced to the problem of existence of growing solutions

of the second order ODE system for arbitrary spatial harmonics. The

conditions of standing waves existence has been clari�ed as well.

1 Introduction

Our previous studies on oscillatory systems were devoted to the networks

of limit-cycle oscillators coupled via arbitrary Hermitian matrix of connections.

Associative memory networks of Hop�eld type were designed and their main

characteristics were analysed [1].

In the present paper we study similar oscillatory networks from another

viewpoint: as a model of active oscillatory medium. Depending on a local

coupling template (de�ning the neighbors of each network unit) these networks

can be considered as 1D, 2D or nD spatially distributed arrays of large number

of processing units. Similarly to locally connected neural networks known as

cellular neural networks (CNN) [2, 3], locally connected oscillatory networks

may be naturally regarded as cellular oscillatory networks.



Cellular oscillatory networks were already used and can be used further for

modelling of a variety of phenomena in physics, chemistry, biology, neurophys-

iology. In particular, 1D and 2D networks of locally connected Wilson-Cowan

oscillators were successfully used for modelling of brain cortical oscillations.

A single oscillator of the model network is formed by a couple of connected

excitatory and inhibitory neurons [10].

Pattern formation in discrete cellular networks is closely related to forma-

tion of dissipative structures in the corresponding nonlinear media. Various

models of nonlinear media governed by the systems of reaction-di�usion equa-

tions were studied since 70s. [4 - 8]. Belousov-Zhabotinskii oscillating chemical

reaction in a thin layer of 
uid and oscillatory media of Ginzburg-Landau os-

cillators belong to the most familiar examples of active media. A considerable

scope of oscillatory media studies exists. The strict mathematical results [5 - 7],

physical level results [8, 9] and computer modelling [3, 8] could be mentioned

as examples.

Here we present qualitativemathematical analysis of 1Dmedia representing

spatially continual limit for closed and unclosed chains of limit-cycle oscillators

of Ginzburg-Landau type. The signi�cant feature of the governing reaction-

di�usion system is that the di�usion operator is not diagonal and in some

parametrical range is not positively de�ned.

2 Homogeneously Connected Oscillatory Chains and

Related 1D Oscillatory Media

We consider oscillatory network model consisting of limit-cycle oscillators

possessing two degrees of freedom. Limit cycle of a single oscillator is the circle

of unit radius in the plane. Dynamical equations governing the dynamics of

the network of N coupled oscillators are:

_uj = (1 + i!j � jujj
2)uj +

NX
k=1

Wjk(uk � uj); j = 1; :::; N: (1)

Here the variable uj(t) = Rj(t) exp(i�j(t)) de�nes the state of j-th oscillator

(Rj and �j are the amplitude and the phase of oscillations, respectively), !j
is its cycle frequency. The �rst term in the right-hand side of (1) de�nes the

intrinsic dynamics of a free isolated oscillator, while the second one, responsible

for interaction, is speci�ed by the matrix of connections W = [Wjk].

In the case of homogeneously locally connected oscillatory chains the matrix

of interaction in (1) can be written as

Wjk =

�
d = �ei� = d1 + id2 if k = j � 1; j + 1

0 if k 6= j � 1; j + 1
(2)

where d = �ei� is the coupling strength in the chain. To transfer from dy-

namical system (1) to spatially continuous description, one should introduce a

spatial variable x 2 [0; l] � R1 and a complex-valued function u(x; t) instead



of uj(t). Then the reaction-di�usion equation, representing spatially continual

limit of dynamical description (1), can be easily derived:

ut = (1 + i!(x)� juj2)u+ d � uxx; (3)

where u(x; t) = u1(x; t) + iu2(x; t) and uxx � @2u=@x2 is 1D Laplacian 4u

in spatially 1D case. Below we consider oscillatory media with !(x) = ! =

const; x 2 [0; l].

The equation (3) can be rewritten in terms of real-valued two-component

vector-function u = (u1; u2)
>:

u = F̂ (u)u+ D̂uxx; (4)

where

F̂ (u) =

�
1� u21 � u22 �!

! 1� u21 � u22

�
D̂ =

�
d1 �d2
d2 d1

�
: (5)

Oscillatory media governed by reaction-di�usion equation (RDE) (3) rep-

resent a special case of Ginzburg-Landau oscillatory media [7, 8]. However, the

di�usion operator is of more general type for RDE (3).

3 Di�usion Instability. Types of Spatio-Temporal Patterns

As one can easily obtain, RDE (3) possesses the following properties.

1. In the case !(x) = ! = const; x 2 [0; l], the RDE (3) can be reduced to

that one with ! = 0 for the function w(x; t) = u(x; t)e�i!t. So, if !(x) = const,

it is su�ciently to analyse only the RDE with ! = 0.

2. The function u0(x; t) = ei�0 is the spatially homogeneous solution to

RDE (3) at ! = 0.

3. To analyse the properties of nonlinear RDE it is often quite helpful to

use an expansion of its solutions into the series on orthonormalized system of

eigenfunctions fXm(x)g of the corresponding linear scalar di�usion operator.

For RDE (4) at ! = 0 we put:

u1(x; t) =

1X
m=1

Xm(x)Pm(t); u2(x; t) =

1X
m=1

Xm(x)Qm(t): (6)

For medium corresponding to unclosed chain the boundary conditions for RDE

are: u1t(0; t) = u2t(l; t) = 0. It gives Xm(x) = cos(�mx); �m = �m=l. In the

case the following system of coupled ODE for fPm(t); Qm(t)g can be derived:

_P0 = P0 � 1=2P0R0 +

1X
m=1

PmRm (7)

_Q0 = Q0 � 1=2Q0R0 +

1X
m=1

QmRm (8)



_Pk = Pk��
2
k(d1Pk�d2Qk)�1=2

mX
k=1

Pk�mRm�1=2

1X
m=1

(Pk+mRm+PmRk+m)

(9)

_Qk = Qk��
2
k(d2Pk+d1Qk)�1=2

mX
k=1

Qk�mRm�1=2

1X
m=1

(Qk+mRm+QmRk+m);

(10)

where

R0 = 1=2[P 2
0 + Q2

0 +

1X
m=1

(P 2
m + Q2

m)]; (11)

Rm = 1=2

mX
l=1

(PmPm�l +QmQm�l) +

1X
l=1

(PmPm+l + QmQm+l): (12)

The "moment" system (7)-(12) is in complete agreement with the analogous

system derived in [7] for the case of oscillatory medium of Ginzburg - Landau

oscillators with real-valued interaction.

Now the behavior of some types of RDE solutions can be discussed.

3.1 Di�usion instability of spatially homogeneous solution

Spatially homogeneous solution u0(x; t) = ei�0 can lose the stability for

some parameters of di�usion operator under some types of spatial structure of

perturbations. This kind of instability inherent to nonlinear media is known

as di�usion instability (because it is caused by the presence of di�usion). Elu-

cidation of di�usion instability parametrical domain can be reduced to the

analysis of RDE linearized around u0(x; t). Let us consider oscillatory medium

corresponding to unclosed chain, put

u = u0 + ~u; u0 = (1; 0)>;

and use the expansion (6) for the solution ~u of linearized RDE. Then we obtain

the following second order ODE for Tk(t) = (Pk(t); Qk(t))
>, de�ning time

behavior of k-th spatial harmonics:

_Tk = B̂(�k)Tk; B̂(�k) =

�
�(2 + d1�

2
k) d2�

2
k

�d2�
2
k d1�

2
k

�
(13)

The eigenvalues of B̂(�k), that can be easily calculated in the explicit form,

provide the information on di�usion instability with respect to perturbation

of the spatially homogeneous state by k-th spatial harmonics. In particular,

the following result can be obtained: the di�usion instability with respect to

perturbation of arbitrary spatial structure occurs in parametrical range � 2

[3�=4; �] of angles �, de�ning oscillatory interaction accordingly to (2).



3.2 Wave trains

Plane wave trains are RDE solutions of the form u(x; t) = U (z), where

z = !t � kx. Strict results on small amplitude wave train solution existence

were obtained in [5]. These wave trains arise as a result of bifurcation from a

uniform spatially homogeneous state. One-parametrical family of wave trains

was shown to exist in the case of a special class of RDE systems | so called

(� � !)-systems. The RDE (4) belongs to the class of (� � !)-systems in the

case of diagonal di�usion operator, i.e., at real-valued interaction.

3.3 Target patterns, spiral waves, shock structures

In the case of 2D oscillatory media the well known target patterns and

rotating spiral waves exist. Strict analysis of these structures is based on the

theory of "slowly varying waves" [6], which | locally in space and time |

are close to plane wave trains. This study demands the deriving and analysis

of dispersion relations. Impringing wave trains (analogous to converging tar-

get patterns) and shock structures that accompany target patterns were also

studied in detail [6].

3.4 Standing Waves. Cluster States

Modulated standing waves are special RDE solutions with separated vari-

ables x and t. In the case of oscillatory media related to unclosed chains these

are the solutions of the form

u(x; t) = T0e
�i!t + Tke

�i(!t+
) cos(kx) (14)

The existence of standing waves for RDE (4) can be established either with

the help of moment system (7)-(12) or by direct substitution of (14) into the

RDE. In this way one can obtain four equations: two equations for T 2
0 , T

2
k , the

dispersion equation re
ecting the relation between ! and k and the algebraic

equation for tan(
). Analysis of the algebraic equation shows the existence of

real-valued solutions for tan(
). Therefore, standing wave solutions to RDE (4)

exist. The parametrical domain of their existence still remains to be revealed.

Cluster states are RDE solutions with separated variables of another type:

they correspond to medium decomposition into synchronously oscillating sub-

domains (clusters). The own amplitude, phase shift and frequency of oscilla-

tions are inherent to each cluster. Irregular oscillations of clusters are possible

as well.

All the listed types of spatio-temporal patterns were con�rmed experimen-

tally in CO oxidation oscillating reaction on platinum crystal surface [9].

Conclusive Remarks

The results of qualitative mathematical analysis of RDE governing the

formation of spatio-temporal structures in 1D active oscillatory media are pre-

sented. The study of 1D media should be considered as an initial step of study



of dissipative structures in 2D media. The ability of 2D nonlinear media to

form a rich variety of spatio-temporal patterns seems to be promising from the

viewpoint of modelling of 2D locally connected networks of visual cortex. To

attain this objective the model of oscillatory network consisting of limit-cycle

oscillators with modi�able cycle radius and center location, governed by natural

generalization of dynamical system (1), can be proposed.
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