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As it was shown earlier, oscillatory networks consisting of

limit-cycle oscillators interacting via complex-valued connec-

tions can be used for associative memory design. Phase mem-

ory as a special type of associative memory in oscillatory net-

works has been invented and studied. Detailed analysis of

phase memory features of phasor networks related to oscilla-

tory networks has been performed. It has been found that un-

der special choice of parameters the oscillatory networks pos-

sess high memory storage capacity and low extraneous mem-

ory.

The designed networks can be interpreted as networks con-

sisting of complex-valued neurons. They could be useful in

problems of invariant pattern recognition and in recognition

of colored patterns.

1. Introduction

Dynamical system governing the dynamics of nonlinear coupled limit

cycle oscillators [1-3] is studied here from the viewpoint of associative

memory modelling.

Similar dynamical systems and their limit cases (\phase" systems)

were studied in di�erent aspects for a long time, refs in [1-3] . The

main interest was concentrated around phase transition into the state of

synchronization.

As it is known, in the problem of associative memory network design

the following subproblems arise:

� development of an algorithm for calculation of the whole set of sta-

ble equilibria of the dynamical system at given W (network mem-

ory);

� development of an algorithm of imposing a prescribed set of stable

equilibria with natural, large enough basins of attraction;



� calculation of maximum number M of equilibria at a given �nite

number N of processing elements in a network;

� estimation of \loading ratio" � =M=N in the limit N !1, M !
1, M=N <1 (memory storage capacity);

� study of \extraneous" memory (additional equilibria arising in a

network together with the desired).

In addition, a proper learning algorithm should be developed.

As it was shown [1-3], the oscillatory networks of associative memory

with Hebbian matrix of connections (W is taken in the form of proper

outer product on memory vectors) can be designed. A number of ques-

tions from the listed subproblems have been elucidated.

The designed oscillatory networks can be implemented in semiconduc-

tor laser systems [4], since the dynamics in these systems is governed by

the same equations as in oscillatory networks. At the present time such

implementation is under development.

2. Oscillatory Networks and Phase Memories

Let us recall the dynamical system of N coupled limit cycle oscillators

[1-3]:

_zj = (1 + i!j � jzj j2)zj + �

NX
k=1

Wjk(zk � zj); j = 1; :::; N: (1)

Here z(t) is a complex-valued N -dimensional vector representing the

states of oscillators as functions of independent variable t, zj(t) =

rjexp(i�j) = xj+iyj . Each oscillator has a natural frequency !j . Complex-

valued N �N Hermitian matrix W = [Wjk ] speci�es the weights of con-

nections. Non-negative parameter � de�nes the absolute value of inter-

action strength in oscillatory system. Matrix W satis�es the following

natural restrictions:

W = W+; jWjkj � 1;
NX
k=1

jWjkj = 1: (2)

Matrix W is constant in the phase space CN .

The system (1) can be rewritten in matrix form:

_z = (A�Dz)z; (3)



A = D0 + �W . The diagonal matrix D0 = diag(D01; : : : ; D0N),

D0j = 1 + i � !j � ��j ; �j =
NX
k=1

Wjk;

is constant. In contrast, the diagonal matrix Dz = diag(jz1j2; : : : ; jzN j2)
depends on absolute values of zj .

In Cartesian coordinates the matrix A can be rewritten as follows:

A =

0
BBBB@

g1 + ih1 b12 + ic11 : : : b1N + ic1N
b12 � ic11 g2 + ih2 : : : b2N + ic2N

...
...

. . .
...

b1N � ic1N b2N � ic2N : : : gN + ihN

1
CCCCA (4)

Here bjk + icjk denote the weights �Wjk, gj = 1 � �Re(�j), hj = !j �
�Im(�j).

Dynamical system (1-3) demonstrates a great variety of complicated

dynamical regimes at di�erent values of its parameters !j , �, W . Among

them the regime of mutual synchronization at some threshold value ��

of interaction strength exists. Parametric domain for synchronization

regime can be roughly speci�ed as � > 
, where 
 = maxj j!j j. The

dynamical regime is simple in the domain of synchronization: if
P

j !j =

0, this is relaxation to stable equilibria. This condition for frequencies

can be always satis�ed by proper rescaling of (1-3), and below we assume

it satis�ed.

As it was found out ([1-3] and refs.), the system (1), being imposed

into parametric domain of synchronization, can possess su�ciently rich

set of stable equilibria. So, the problem of recurrent associative memory

design was posed. Let us remind the problem.

Given M arbitrary points V 1; : : : ; VM in the phase space CN of the

dynamical system, it is necessary to point out the parameters (!j , �, and

matrix W) to provide the following properties:

1) the points V 1; : : : ; VM are stable �xed points of dynamics;

2) basin of attraction for each V k is as large as possible;

3) total number of extraneous stable �xed points (other than V 1; : : : ;

VM) is as small as possible.

The set V 1; : : : ; VM is just the network memory.

Obviously, if we �x amplitudes rj of oscillators, then the corresponding

equilibrium points of eq.(3) are de�ned by the linear system with constant

coe�cients:

(A�Dz)z = 0:



Hence, the determinant of the matrix (A�Dz) must be zero to provide

at least one non-zero equilibrium point.

Jacobian of the system (3) in a point z can be written as follows:

J =

0
BBBB@

G1 BC12 : : : BC1N

BCT
12 G2 : : : BC2N

...
...

. . .
...

BCT
1N BCT

2N : : : GN

1
CCCCA (5)

Here Gj is the matrix of order 2:

Gj =

 
gj � 3x2j � y2j �hj � 2xjyj
hj � 2xjyj gj � x2j � 3y2j

!
;

and BCjk is also the matrix of order 2:

BCjk =

 
bj �cj
cj bj

!
;

BCT
jk denotes the transposed matrix.

An equilibrium point is stable i� one eigenvalue of J is zero (due to

invariance of solutions relative to multiplication with ei', where ' is any

constant angle), and all others are negative.

We call the stable points that have constant amplitudes rj � const:

phase memories. By convention, we call the stable points with non-

constant amplitudes amplitude memories. In general, both phase and

amplitude stable points exist in the system (3).

Phase memories have peculiar properties as associative memory and

can be studied exhaustively. First of all, let us note that if some phase

vector is an eigenvector of the matrix A with a positive eigenvalue, then,

taking this vector with an appropriate normalizing factor, we obtain an

equilibrium point of the system (3). Conversely, a phase equilibrium point

is an eigenvector of the matrix A. Thus, the one-to-one correspondence

exists between the eigenvectors and equilibrium points of the system (3).

Consequently, we can design a matrix A with a prescribed set of eigen-

vectors so that all extraneous memories will be amplitude ones. This

property looks very promising, because this is probably that a hardware

method might discriminate amplitude from phase memories.

Now, we describe the method permitting to load up to N � 1 phase

memories. Aiming at this goal, let us introduce the \phase basis".

If we take N phases (0; �12; : : : ; �
1
N) with arbitrary �12; : : : ; �

1
N and

calculate recurrently:



2
66666666664

0

�m2
�m3
:

:

:

�mN

3
77777777775

�!

2
66666666664

0

�m2 + '

�m3 + 2'

:

:

:

�mN + (N � 1)'

3
77777777775

(6)

' = 2�=N , then we obtain N linearly independent orthogonal phase

vectors Vm
j ; m = 1; : : : ; N; j = 1; : : : ; N in CN , if N is a prime number.

Any subset of these vectors can be loaded as phase memories.

Noteworthy is that extraneous memories (that can be easily revealed

as memories with di�erent amplitudes) are more or less abundant for one

or another combinations of M vectors from the phase basis for the same

values of M . Examples with N � 20 can be shown where M is close

to M=2 and extraneous memories do not appear in computer simulation

of the retrieval process (this means that if extraneous memories exist in

these cases, then they have very small basins of attraction).

3. Phase Memories in Oscillatory Networks of Low Di-

mensions

1. N = 2. In this case the strict analytical analysis of dynamical

system (3) with arbitrary parameters has been ful�lled and exact solution

of the system has been found.

Only one stable point can exist in the network of two coupled os-

cillators. Its polar coordinates: (r1; r2e
�2), r1 = r2 =

q
g +

p
d� h2,

�2 = �iln
�

b�ic
ih+

p
d�h2

�
. Here g = 1 � b12, h = ! � c12. So, in this case,

only phase memory exists.This point exists and is stable i�

d > h2; AND jg � 1j �
p
d AND (g > 0 OR g2 + h2 < d):

Conversely, for an arbitrary point (r1; r2e
�2) the parameters providing

its stability can be presented.

2. N = 3. In this case amplitude stable points exist. One arbitrary

phase vector can be loaded and two orthogonal phase vectors can be

loaded as well. The values gj in (4) have to be real and equal, if phase

vectors are loaded. Consequently, bjk are equal as well. This is not



true for N � 4, but in any case the matrices W providing storage of a

prescribed set of the vectors from the phase basis (8) are quite special.

4. Phasor Networks Related to Oscillatory Networks

Analysis of dynamical system (1) with arbitrary frequencies !j and ar-

bitrary matrix W represents a complicated mathematical problem. Only

a few number of rigorous results was obtained for the system (1) and for

its limit case | so-called phase model. Those results concern mainly the

case of the special architecture of connections | homogeneous all-to-all

connections (Wjk = N�1(1� �jk)).

Eq. (1) with !j � 0 represents an important special case of oscil-

latory system which can be regarded as phasor networks. These phasor

networks can be viewed as natural generalization of the known \clock"

neural networks.

The equilibria of oscillatory networks and corresponding phasor net-

works proved to be closely related. Namely, the following proposition is

valid.

Let N (f!jg; �;W ) be an oscillatory network with arbitrary

frequencies !j satisfying the condition
P

j !j = 0.

Let N (f0g; �;W ) be the corresponding phasor network

possessing the collection of M phase memory vectors

fU1; : : :UMg.
De�ne ~� > � satisfying the condition: 
 � 
=~� � 1, where


 = maxj j!j j.
Then oscillatory network N (f!jg; ~�;W ) has phase memory

vectors ~U1; : : : ; ~UM , which represent slight perturbations of

the corresponding U1; : : : ; UM .

The proof of this proposition has been obtained using the perturbation

method on small parameter 
. This proposition is also con�rmed by

computer studies of phase portraits of the dynamical system (1) for small

N .

5. The Class of Phasor Networks with Guaranteed Mem-

ory Characteristics.

Phasor networks governed by dynamical system (1) at !j = 0 can be

considered as basic ones among all oscillatory networks of given archi-

tecture (de�ned by the same matrix W ). Their memory has the most



symmetrical structure preserving at the same time all the features inher-

ent to oscillatory network memory.

As it was shown [2], special class of phasor networks with Hebbian

matrix of connections WH , possessing the guaranteed memory of high

storage capacity, can be designed. The construction of WH is based

on the important property of interaction term in eq. (1). As one can

see, the interaction between two oscillators of the network has the form

Wjk(zj � zk). This means that the matrices with nonzero diagonal are

admissible for speci�cation of network connections (unlike to the case of

neural networks). This permits to use the matrices of projection operators

in construction of Hebbian-like matrices of connection.

The most essential step in architecture design is introduction of a

special set of orthogonal vectors in N -dimensional complex space CN |

\phase" basis (6):

BN = f V m j (V s)+V m = N�sm m; s = 1; : : : ; N:g

The phase basis is de�ned by single generating vector V 0 = (1; :::1)>

and the single parameter ' = 2�=N . All other vectors are of BN can

be calculated with the help of recurrent transformation or, the same, by

multiple action on vector V 0 of irreducible group representation operator

Tg = diag(1; exp(i'); : : : ; exp(i(N � 1)'):

The basis BN is an eigenbasis of any weight Hermitian N �N matrix W

satisfying the conditions (2). Therefore, any W can be represented in the

form

W = N�1
NX

m=1

�mV m(Vm)+;

where �m; m = 1; : : :N , are real numbers, V m is column-vector (V m
1 ; :::Vm

N )>

and (V m)+ is the corresponding conjugated row-vector: (V m)+ = (�Vm
1 ; :::;

�V m
N ). For zero-diagonal W , obviously,

PN
m=1�

m = 0.

The matrix WH of rank M ,

WH =
XM

m=1
Vm(V m)+; M = rankW; (7)

is the matrix of the projection operator into M -dimensional subspace of

CN spanned on V 1; : : : ; VM .

Note, that both the basis BN and the matrices WH are cyclical.

The following results are valid for phasor networks with matrices of

connections WH .



1. Let N to be a prime number.

De�ne basis BN and choose any subset of M � N vectors

from this basis fV 1; : : :VMg. Construct WH in accordance

with (7).
Then phasor network has memory vectors

U1; : : :UM ; Um = cV m;

where c = 1 if V 0 2 fV 1; : : : ; VMg and c = (1 + �)1=2 if

V 0 =2 fV 1; : : : ; VMg.
All memory vectors U1; : : :U

M have equal basins of attrac-

tion.

The sizes of the basins can be controlled if weighted Hebbian

matrix
~WH =

XM

m=1
�mVm(Vm)+

is used. The values of �m should be slightly di�erent and all

close to unit.

It should be noted that all matrices WH are irreducible if N is prime.

2. Let the number of oscillators N to be not prime.

The main feature of the network memory in this case is

that the memory is not completely controllable unlike to

the previous case. Namely, only special odd numbers M

of vectors from the basis BN can be imposed into network

memory. If M is di�erent from mentioned special numbers,

recalling process is impossible at all: the dynamical system

(1) demonstrates continual set of degenerated equilibria.

The matrices WH are reducible in this case. Under the interaction

speci�ed by these matrices the phasor system is decomposed into non-

interacting subsystems.

Conclusions

The special type of oscillatory associative memory have been designed.

The class of oscillatory and corresponding phasor networks of high per-

formance can be pointed out. It is characterized by fully controllable

memory of high storage capacity: up to N�1 memory vectors from some

speci�c set ("phase" basis) can be loaded into the memory of the net-



work consisting of N processing units. The weight matrix is designed in

Hebbian form generalized to complex-valued connections.

Extraneous memory exists, but it can be easily discriminated due to

its non-phase character.

Oscillatory networks are promising from many viewpoints, in partic-

ular, in view of possibility of physical (optical) implementations.
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