
Oscillatory Networks with Hebbian Matrix of

Connections

Kuzmina M. G.,
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,

Miusskaya Sq. 4, 125047 Moscow, Russia Phone: 7(095)972-3491, Fax: 7(095)972-0737

e-mail: kuzmina@applmat.msk.su

Manykin E. A., Surina I. I.

Superconductivity and Solid State Physics Institute of Russian Research Center

"Kurchatov Institute", Kurchatov sq. 1, 123182 Moscow, Russia Phone: 7(095)196-91-07,

Fax: 7(095)196 59 73 e-mail: edmany@nlodep.kiae.su

The systems of symmetrically coupled limit cycle oscillators admit the design of re-

current associative memory networks with Hebbian matrix of connections. Unlike

the similar neural networks this matrix proved to be the complex-valued Hermitian

one with nonzero diagonal. In the case of strong interaction in oscillatory system the

memory vectors of the network are slightly perturbed properly normalized eigenvec-

tors of matrix of connections. They can be calculated by perturbation method on the

appropriate small parameter. The self-consistent analysis of dynamical system �xed

points in the case of homogeneously all-to-all connected oscillators is presented. It

is proved that for positive values of connection strength only a single memory vector

can be stored. Some questions concerning the "extraneous " memory of the networks

are discussed.

1 Introduction

Large systems of coupled oscillators [1-4] in the regime of synchronization (phase locking)
have an ability to memorize information [5-8]. So the problem of neural oscillatory system of

associative memory design arises. The design includes determination of matrix of connections

and proper choice of other modi�able parameters of the corresponding dynamical system to
provide e�ective retrieval characteristics of the network.

One of the most attractive features of oscillatory models is undoubtedly possible numerous

physical implementations. In contradiction with well known optoelectronic and nonlinear op-
tical implementations based on the idea of vector-matrix multiplier oscillatory models promise

direct - and by this reason much more e�ective - implementations. When one analyzes neural
network implementations based on photon-echo e�ect [9], it becomes clear that the potentiali-

ties of this e�ect that have been used so far are exceedingly greater than those already used in

the known schemes.
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As for theoretical study of oscillatory systems from the viewpoint of associative memory

modeling there is a number of various ways of the modeling based on systems of coupled oscil-

lators. One of them is the encoding of memory patterns by two subpopulations of oscillatory

system in the vicinity of phase transition into synchronized state - subpopulations of synchro-

nized and unsynchronized states - that has been developed in a number of works (see, for

instance, [5]).

The modeling of recurrent associative memory oscillatory network in the state of synchro-
nization is still at the very beginning [6-8]. Up to now only the special kind of oscillatory system

with the simplest kind of interaction - limit-cycle interacting oscillators with linear interactions

of pairs - have been studied.

It has been found out that such special oscillatory systems are closely related to the systems

of magnetic spins on the plane (clock spin glasses or phasor systems). The associative memory

networks with Hebbian matrix of connections have been designed for the clock spin systems and

the phase transition of memory "overloading", permitting to obtain the retrieval characteristics

of the network, has been analyzed [10]. However, the important problem of "extraneous"

memory for clock spin networks is not studied at all.

An attempt has been done to study phasor networks with asymmetrical complex-valued

matrix of connections and non-zero thresholds (clearly, the Hop�eld model is imbedded into
it). This model is the natural generalization of the phasor network model studied in [14]. The
further study of this model would be quite desirable.

As far as we know, the present work is the �rst attempt to design and to begin study of
recurrent associative memory oscillatory network with Hebbian matrix of connections.

2 The Dynamical Equations of the Model of Phase Os-

cillators.

We consider the system of N limit-cycle oscillators on the plane with symmetrical nonhomo-

geneous coupling, the state of each being de�ned as a complex-value a point zj = rjexp(i�j)
of complex plane. In appropriate parametric domain the dynamical system governing the dy-
namics of oscillatory system can be reduced to "phase" dynamical system

_�j = !j +K
NX

k=1

Wjksin(�k � �j + �jk); j = 1; :::; N: (1)

where !j ; j = 1; :::N; are the natural frequencies on the cycles and complex-valued Hermitian
N � N matrix W = [Wjk] = [Wjkexp(i�jk)], W = �W> � W+ speci�es the weights of

connections of oscillators in the network, the real value K de�nes the absolute value and the
sign of interaction strengths in the system [10].

The dynamical system (1) de�nes the model of system of "phase oscillators" which corre-

sponds to the approximation that interaction of network oscillators does not inuence on the

amplitudes of oscillations, the last being constant. So, the state vector of the network of phase
model is

z = (z1; :::; zN)
>; zj = exp(i�j);

Note that the matrix W in (1) should not have the zero diagonal in di�erence with the case

of neural networks. This is just the consequence of the form of representation of "operator" of

interaction of amplitude-phase dynamical system that is reduced to phase system (1).
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Any Hermitian matrix W can be represented in a form

W = N�1

MX

m=1

�mV m(V m)+; M = rankW; (2)

where fV mg is the set of mutually orthogonal eigenvectors of W corresponding to the set of its

nonzero eigenvalues [12]:

WV m = �mV m; (V s)+V m = N�ms; m = 1; :::N: (3)

where �ms denotes the Kronecker symbol. With the help of expansion (2) the dynamical system
(1) can be rewritten in the form

_�j = !j + (K=N)
MX

m=1

NX

k=1

�msin([�k � �mk ]� [�j � �mj ]): (4)

One more form of system (1) can be obtained if one uses the expansion of state vector z in

eigenbasis fV mg of matrix W

z =
MX

m=1

ZmV m; Zm = N�1(V m)+z = N�1

NX

j=1

exp(i[�j � �mj ]) = Rmexp(i m); (5)

The variables Zm, the inner products of current state vector z and the basis vectors V m, are
the macrovariables (in the case of high dimension N of the dynamical system). They are just
the "overlaps" which are usually used in asymptotical analysis of retrieval characteristics of

associative memory neural networks. For the case of oscillatory networks the "overlaps" have
the additional sense: the "order parameters", governing the phase transition of oscillatory
system into synchronized state.

Being rewritten in terms of macrovariables ZmR
mexp(i m), the system (1) has the form of

N independent equations.

_�j = !j +K
MX

m=1

�mRmsin( m + �mj � �j); (6)

System (3) provides the "self-consistent �eld" description of oscillatory network. It proved to
be very convenient for the analysis of �xed points of the phase dynamical system.

3 The "Hebbian" Solution to Associative Memory Net-

work Design Problem

.

As it is very well known from the theory of associative memory neural networks, the matrix of

connections that is the sum of outer products by orthogonal set of memory vectors just provides

the simplest solution to network design problem. The outer-product matrices of connections
themselves are usually regarded as "Hebbian" because of the relation to Hebbian learning

algorithm.

As it follows from (2),(3), the "Hebbian" solution to the associative memory design problem

exists for the model of system of "phase oscillators". More exactly, we have the following result.
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I. The case !j = 0 (phasor networks).

Let the set of M , M � N , of linearly independent vectors fVmg is given as Vmj = exp(i�mj )

is given. Then the "Hebbian" solution to the problem can be realized in the following steps:

� Find the orthogonal system of vectors fV mg, corresponding to the set fVmg.

� De�ne the matrix W by formulas (2),(3), where �m are some real values.

Then vectors V m are just the stable �xed points of phase dynamical system (4). Thus, the

memory vectors of oscillatory network coincide exactly with V m .
The question of proper choice of f�mg should be the subject of special analysis. It's worth

to recall from the theory of neural networks with Hebbian matrix of connections that there is

serious disadvantage in the choice of equal f�mg. Such a choice just leads to drastically great

extraneous memory (this is quite natural from the viewpoint of linear algebra). So the choice

of close, but di�erent f�mg seems to be preferable.

The existence of "extraneous" memory should be also a subject of special analysis. In any

case, it is very plausible that the "extraneous" memory exists in the subspace kerW of complex

unitary space of network state vectors [12].

II. The case !j 6= 0;
PN
j=1!j = 0. It can be shown that at arbitrary !j in

the case of "strong" interaction in the oscillatory network there exist the set ~V m, close to V m,
which is the set of memory vectors of oscillatory network with the matrix of connections de�ned
by formulas (2),(3).

To formulate the result more exactly, �rst of all note that the parameter  = 
=K, where


 = maxjj!j j, is the essential parameter of the system. For instance, the simple su�cient
condition of synchronization of oscillatory network is  � 1. The case of !j = 0 can be

considered as the limit case of in�nitely strong interaction of oscillators in the network (K !1

). When K is great, but �nite value,  is the small parameter, and the perturbation method
for the system of equation de�ning the �xed points of network dynamics can be derived. It is

just the system (6) that proved to be the most convenient for this purpose. The perturbation
method provides the following result.

At su�ciently small � =  = 
=K the memory vectors ~V m of oscillatory network belong to
small vicinities of vectors V m and the following estimations take place:

~V m
j = V m

j + �(�m)�1!j +O(�2);m = 1; :::M; j = 1; :::N: (7)

These facts permit to conclude that the retrieval characteristics of clock spin networks
(phasor networks) obtained in [10] (storage capacity � � 0:037, the limit value of "overlap"

equals to � 0:9) are simultaneously the retrieval characteristics of oscillatory networks in the

case of strong interaction.
The fact that the memory vectors of the network under strong interaction are slightly

perturbed eigenvectors of matrix W is con�rmed in computer experiments. The last ones also

show that in the process of further gradual increase of  the stable �xed points ~V m disappear

one after another. This process stops at  = � where � is the threshold of synchronization. In

small vicinity of � the dynamical system (4) has a single stable �xed point. So, in principle, the
parameter  can be used as the parameter controlling the memory storage abilities of oscillatory
networks.
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4 The Oscillatory Networks Containing a Single Mem-

ory Vector

The oscillatory networks with homogeneous all-to-all connections can be regarded as the net-
works containing a single memory vector. Indeed, their matrices of connections [Wjk] = N�1

contain only the single term of the expansion (2):

W = N�1V V >; V = (1; :::1)>; (8)

and the dynamical system in the form (6), which one is especially simple, can be written as:

_�j = ~!j +Rsin( � �j); (9)

where
Z = N�1 < z; V >= N�1

XN

j=1
exp(i�j) = Rexp(i ); (10)

and ~!j � !j=
: Note that in this case the single macrovariable Z coincides with well known

order parameter which was elsewhere used for investigation of phase transition into synchronized
state for the systems of uniformly all-to-all coupled phase oscillators [1-4]. The functional self-

consistent equation for Z in closed form, which together with the equations for �xed points

~!j +Rsin( � �j) = 0 (11)

delivers the self-consistent analysis of network equilibria, can be obtained. The self-consistent
analysis shows that the phase  can be chosen arbitrary (the consequence of rotational sym-
metry of the system) and the self-consistency equation for R can be written in the forms:

R2 = N�1
XN

j=1
(R2 � 2~!2j )

1=2; (12)

or
 = N�1u

XN

j=1
(1� ~!2u2)1=2; u � =R: (13)

The analysis of �xed points of phase dynamical system on the base of (11), (12) and (13)
gives the following results ( for K > 0 ):

1. There exists the single stable �xed point of the network �z = ~V . At  = 0 ~V = V ,

at !j 6= 0 ~V is slightly perturbed V at small  in accordance with (7). Gradual increase of 

leads to greater deviations of ~V from V . The point ~V exists up to  = � being the threshold

of synchronization. The later can be calculated exactly from (13) and in the case of three

oscillator network is equal to .588.

2. The condition R = 0 de�nes N unstable �xed points of the network that are symmetrical
ones and can be complicated equilibrium states of the dynamical system.

5 Concluding Remarks

The following results have been obtained.

� The associative memory oscillatory network with Hebbian Matrix of connections is de-

signed. In the case of strong oscillatory interaction ( = 
=K is small) the memory

vectors of the oscillatory network are slightly perturbed properly normalized eigenvectors

of matrix of connections. The retrieval characteristics (in the same case) coincide with

those ones of a clock spin network [10]
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� An example of self-consistent analysis of total �xed points of the network is given in the

case of the network, containing a single memory vector (of the network with uniform

all-to-all connections).
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